organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3β-Acet­­oxy-12α-chloro-D-friedooleanan-28,14β-olide

aDepartment of Organic Chemistry, Poznan University of Medical Sciences, ul. Grunwaldzka 6, 60-780 Poznań, Poland, and bFaculty of Pharmacy, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, ul. M. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland
*Correspondence e-mail: akgzella@ump.edu.pl

(Received 11 February 2011; accepted 16 February 2011; online 23 February 2011)

The title compound, C32H49ClO4, was obtained along with nitrile and lactam products in the POCl3-catalysed Beckmann rearrangement from 3β-acet­oxy-12-hydroxyiminoolean-28-olic acid methyl ester. The mechanism of the transformation leading to the title compound remains unclear and requires further investigation. Rings A, B and E are in chair conformations, ring C has a twisted-boat conformation, ring D a conformation halfway between boat and twisted-boat and rings D and E are cis-fused. In the crystal, mol­ecules are connected by weak inter­molecular C—H⋯O hydrogen bonds into layers extending parallel to the bc plane.

Related literature

For background to the synthesis of lactam and thiol­actam derivatives of oleanolic acid, see: Bednarczyk-Cwynar (2007[Bednarczyk-Cwynar, B. (2007). Synthesis of lactam and thiolactam derivatives of oleanolic acid that are activators of transdermal transport. Thesis, Poznan University of Medical Sciences, Poland.]). For ring conformation analysis, see Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C32H49ClO4

  • Mr = 533.16

  • Monoclinic, P 21

  • a = 14.1022 (2) Å

  • b = 6.6481 (1) Å

  • c = 15.2632 (2) Å

  • β = 90.621 (1)°

  • V = 1430.88 (4) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 1.45 mm−1

  • T = 130 K

  • 0.35 × 0.10 × 0.05 mm

Data collection
  • Oxford Diffraction SuperNova Single source at offset Atlas diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.452, Tmax = 1.000

  • 10416 measured reflections

  • 5530 independent reflections

  • 5337 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.119

  • S = 1.04

  • 5530 reflections

  • 342 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.35 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2413 Friedel pairs

  • Flack parameter: 0.024 (14)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16B⋯O4i 0.97 2.41 3.358 (2) 167
C32—H32A⋯O4ii 0.96 2.55 3.390 (3) 146
Symmetry codes: (i) x, y-1, z; (ii) x, y-1, z+1.

Data collection: CrysAlis PRO (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In a POCl3-catalysed Beckmann rearrangement of 3β-acetoxy-12-hydroxyiminoolean-28-olic acid methyl ester, an unexpected compound with a chlorine instead of nitrogen atom was obtained along with the typical nitrile and lactam products. The X-ray analysis allowed to identify the compound as 3β-acetoxy-12α-chloro-D-friedooleanan-28,14β-olide (3β-acetoxy-12α-chloro-14β-isooleanan-28,14β-olide) (I). The mechanism of the reaction that led to compound (I) requires further investigations.

The X-ray analysis has revealed that the title compound contains a δ-lactone ring with the C28O4 group adjacent to C17. Formation of the lactone bridge is possible because of the change in the configuration of the chiral centers C13 and C14. As a result, the ether oxygen atom O3 at C14 and the methyl group at C13 are axial with respect to rings C and D. The former substituent reveals β-configuration, while the latter one has α-configuration. This observation shows that methyl group C27 has undergone 1,2-shift from C14 to C13 retaining its original orientation.

The chlorine atom at C12, belonging to ring C, is oriented equatorially and assumes α-configuration.

Rings A, B and E of the triterpenoid skeleton adopt chair conformations, each with different degree of distortion. Ring C has a twisted-boat conformation. Puckering parameters (Cremer & Pople, 1975) are Q = 0.747 (2) Å, θ = 95.61 (15)°, ϕ = 36.80 (17)°, while ring D reveals a conformation halfway between boat and twisted-boat [Cremer & Pople puckering parameters: Q = 0.839 (2) Å, θ = 88.13 (14)°, ϕ = 48.76 (15)°].

The values of the dihedral angles in the title compound confirm the trans configuration of rings A/B, B/C and C/D [13.96 (8), 17.63 (4) and 13.26 (4)°] and the cis configuration of rings D/E [46.54 (6)°].

The acetoxy group at C3 is planar and adopts β-orientation. The carbonyl group C31O2 of the above acetoxy group is synperiplanar with respect to the O1—C3 bond [torsion angle C3—O1—C31—O2: -5.0 (3)°] and adopts a conformation similar to synperiplanar with respect to the C2—C3 bond [torsion angle C2—C3—C31—O2: 72.9 (2)°].

In the crystal lattice, the molecules are connected with three-centered weak hydrogen bonds C32—H32A···O4i···H16Bii—C16ii [(i) x, -1+y, 1+z; (ii) x, y, 1+z] into layers extending parallel to the bc plane. The layer thickness is about a half of the a parameter length.

Related literature top

For background to the synthesis of lactam and thiolactam derivatives

of oleanolic acid, see: Bednarczyk-Cwynar (2007). For ring conformation analysis, see Cremer & Pople (1975).

Experimental top

The title compound was obtained as a by-product in POCl3-catalysed Beckmann rearrangement reaction and recrystallized from ethanol solution at room temperature.

Refinement top

All H-atoms were placed in geometrically calculated positions and were refined with a riding model with C—H = 0.96–0.98 Å and with Uiso = 1.2 Ueq(C) or 1.5 Ueq(C) for methyl groups. The methyl H atoms were refined as rigid groups, which were allowed to rotate. The absolute configuration of the title compound was established by refinement of the Flack (1983) parameter.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis PRO (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atomic labelling scheme. Non-H atoms are drawn as 30% probability displacement ellipsoids and H atoms are drawn as spheres of an arbitrary size.
[Figure 2] Fig. 2. The hydrogen bonding (dotted lines) in the title structure. H atoms not involved in hydrogen bonds have been omitted for clarity. [Symmetry codes: (i) x, -1 + y, 1 + z; (ii) x, y, 1 + z]
3β-acetoxy-12α-chloro-D-friedooleanano-28,14β-olide top
Crystal data top
C32H49ClO4F(000) = 580
Mr = 533.16Dx = 1.237 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54184 Å
Hall symbol: P 2ybCell parameters from 7077 reflections
a = 14.1022 (2) Åθ = 2.9–73.7°
b = 6.6481 (1) ŵ = 1.45 mm1
c = 15.2632 (2) ÅT = 130 K
β = 90.621 (1)°Needle, colourless
V = 1430.88 (4) Å30.35 × 0.10 × 0.05 mm
Z = 2
Data collection top
Oxford Diffraction SuperNova Single source at offset Atlas
diffractometer
5530 independent reflections
Radiation source: SuperNova (Cu) X-ray Source5337 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.032
Detector resolution: 10.5357 pixels mm-1θmax = 73.8°, θmin = 2.9°
ω scansh = 1717
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
k = 88
Tmin = 0.452, Tmax = 1.000l = 1818
10416 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.119 w = 1/[σ2(Fo2) + (0.0742P)2 + 0.2024P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
5530 reflectionsΔρmax = 0.41 e Å3
342 parametersΔρmin = 0.35 e Å3
1 restraintAbsolute structure: Flack (1983), 2413 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.024 (14)
Crystal data top
C32H49ClO4V = 1430.88 (4) Å3
Mr = 533.16Z = 2
Monoclinic, P21Cu Kα radiation
a = 14.1022 (2) ŵ = 1.45 mm1
b = 6.6481 (1) ÅT = 130 K
c = 15.2632 (2) Å0.35 × 0.10 × 0.05 mm
β = 90.621 (1)°
Data collection top
Oxford Diffraction SuperNova Single source at offset Atlas
diffractometer
5530 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
5337 reflections with I > 2σ(I)
Tmin = 0.452, Tmax = 1.000Rint = 0.032
10416 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.119Δρmax = 0.41 e Å3
S = 1.04Δρmin = 0.35 e Å3
5530 reflectionsAbsolute structure: Flack (1983), 2413 Friedel pairs
342 parametersAbsolute structure parameter: 0.024 (14)
1 restraint
Special details top

Experimental. CrysAlisPro (Oxford Diffraction, 2007) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.01593 (3)0.72974 (8)0.07850 (3)0.03101 (13)
O10.34716 (12)0.4238 (3)0.40093 (10)0.0353 (4)
O20.26503 (15)0.1327 (3)0.40399 (12)0.0463 (4)
O30.27784 (11)0.9153 (2)0.15431 (10)0.0298 (3)
O40.26583 (13)1.0712 (2)0.28151 (11)0.0372 (4)
C10.19066 (14)0.5857 (4)0.21099 (14)0.0296 (4)
H1A0.12930.65160.20940.036*
H1B0.18350.45470.18370.036*
C20.22185 (15)0.5574 (4)0.30664 (14)0.0322 (5)
H2A0.22510.68710.33570.039*
H2B0.17600.47490.33700.039*
C30.31775 (16)0.4575 (3)0.30991 (14)0.0302 (4)
H30.31220.32630.28100.036*
C40.39682 (15)0.5760 (4)0.26497 (15)0.0330 (5)
C50.36160 (14)0.6135 (3)0.16899 (14)0.0284 (4)
H50.35430.47850.14400.034*
C60.43350 (14)0.7172 (5)0.10948 (16)0.0399 (5)
H6A0.43710.85890.12430.048*
H6B0.49570.65850.11910.048*
C70.40540 (14)0.6949 (4)0.01315 (16)0.0382 (6)
H7A0.40750.55350.00240.046*
H7B0.45170.76450.02230.046*
C80.30584 (14)0.7777 (3)0.00945 (15)0.0290 (4)
C90.23589 (13)0.6866 (3)0.05772 (13)0.0224 (4)
H90.24010.54130.04780.027*
C100.26190 (13)0.7119 (3)0.15757 (13)0.0256 (4)
C110.13101 (13)0.7367 (4)0.03798 (13)0.0270 (4)
H11A0.09170.62780.05920.032*
H11B0.11390.85750.06970.032*
C120.11030 (13)0.7687 (3)0.05947 (13)0.0241 (4)
H120.12440.90960.07300.029*
C130.17042 (14)0.6377 (3)0.11985 (14)0.0261 (4)
C140.27356 (13)0.7205 (3)0.10760 (13)0.0277 (4)
C150.34176 (15)0.5844 (3)0.15818 (15)0.0304 (4)
H15A0.34410.45240.13110.037*
H15B0.40510.64120.15640.037*
C160.30721 (16)0.5649 (3)0.25483 (16)0.0323 (5)
H16A0.36000.58940.29360.039*
H16B0.28480.42890.26520.039*
C170.22661 (14)0.7154 (3)0.27601 (14)0.0281 (4)
C180.13854 (14)0.6671 (3)0.21902 (13)0.0237 (4)
H180.09680.78490.22140.028*
C190.08285 (15)0.4893 (3)0.25754 (14)0.0285 (4)
H19A0.02700.46660.22240.034*
H19B0.12190.36940.25400.034*
C200.05171 (17)0.5218 (4)0.35383 (15)0.0364 (5)
C210.14176 (17)0.5539 (4)0.40761 (14)0.0339 (5)
H21A0.12400.57860.46820.041*
H21B0.17960.43220.40570.041*
C220.20191 (16)0.7308 (4)0.37383 (14)0.0344 (4)
H22A0.26020.73670.40690.041*
H22B0.16760.85510.38420.041*
C230.48479 (19)0.4402 (5)0.26288 (18)0.0484 (7)
H23A0.47240.32650.22570.073*
H23B0.49940.39430.32110.073*
H23C0.53760.51480.24050.073*
C240.42270 (18)0.7675 (4)0.31517 (18)0.0431 (6)
H24A0.46550.84680.28100.065*
H24B0.45260.73230.36980.065*
H24C0.36620.84360.32620.065*
C250.25426 (19)0.9299 (4)0.19146 (16)0.0384 (5)
H25A0.31390.99710.18410.058*
H25B0.23830.92850.25240.058*
H25C0.20580.99980.15890.058*
C260.3105 (2)1.0101 (4)0.00024 (18)0.0398 (5)
H26A0.24781.06530.00600.060*
H26B0.35051.06480.04430.060*
H26C0.33591.04390.05700.060*
C270.16265 (15)0.4122 (3)0.09463 (13)0.0279 (4)
H27A0.19000.39170.03750.042*
H27B0.19600.33210.13660.042*
H27C0.09710.37310.09420.042*
C280.25886 (16)0.9156 (3)0.24151 (15)0.0302 (4)
C290.0028 (2)0.3326 (5)0.38573 (18)0.0538 (8)
H29A0.04500.22010.37900.081*
H29B0.01440.34760.44640.081*
H29C0.05330.30980.35200.081*
C300.01811 (19)0.6979 (5)0.36211 (16)0.0477 (7)
H30A0.07130.67470.32470.072*
H30B0.03980.70880.42180.072*
H30C0.01310.82040.34500.072*
C310.31790 (16)0.2516 (4)0.43831 (14)0.0357 (5)
C320.36249 (19)0.2262 (6)0.52764 (16)0.0495 (6)
H32A0.32180.14590.56360.074*
H32B0.37130.35580.55420.074*
H32C0.42280.16060.52210.074*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0209 (2)0.0390 (3)0.0330 (2)0.0011 (2)0.00120 (16)0.0023 (2)
O10.0357 (8)0.0442 (9)0.0259 (7)0.0047 (7)0.0085 (6)0.0020 (7)
O20.0516 (10)0.0507 (11)0.0365 (9)0.0055 (9)0.0073 (8)0.0023 (8)
O30.0297 (8)0.0218 (7)0.0381 (8)0.0039 (6)0.0031 (6)0.0019 (6)
O40.0483 (10)0.0235 (7)0.0398 (8)0.0068 (7)0.0048 (7)0.0053 (6)
C10.0181 (9)0.0431 (11)0.0275 (10)0.0026 (8)0.0025 (7)0.0031 (9)
C20.0220 (9)0.0473 (13)0.0271 (10)0.0022 (9)0.0037 (8)0.0037 (9)
C30.0300 (10)0.0364 (11)0.0241 (9)0.0037 (9)0.0059 (8)0.0034 (8)
C40.0203 (9)0.0431 (12)0.0355 (11)0.0055 (9)0.0052 (8)0.0014 (10)
C50.0191 (9)0.0333 (11)0.0328 (10)0.0023 (8)0.0021 (7)0.0002 (8)
C60.0167 (8)0.0579 (15)0.0451 (12)0.0006 (11)0.0044 (8)0.0114 (12)
C70.0174 (9)0.0555 (15)0.0418 (12)0.0025 (10)0.0030 (8)0.0086 (10)
C80.0193 (9)0.0303 (11)0.0373 (11)0.0012 (7)0.0015 (8)0.0074 (8)
C90.0170 (8)0.0216 (9)0.0286 (9)0.0007 (6)0.0007 (7)0.0021 (7)
C100.0192 (8)0.0270 (10)0.0305 (9)0.0025 (8)0.0050 (7)0.0052 (8)
C110.0203 (8)0.0306 (9)0.0300 (9)0.0040 (9)0.0023 (7)0.0041 (9)
C120.0180 (8)0.0238 (10)0.0305 (9)0.0021 (7)0.0011 (7)0.0001 (7)
C130.0209 (9)0.0279 (9)0.0294 (10)0.0014 (8)0.0019 (7)0.0018 (8)
C140.0211 (8)0.0288 (10)0.0333 (10)0.0001 (9)0.0022 (7)0.0047 (9)
C150.0212 (9)0.0272 (9)0.0429 (11)0.0009 (8)0.0047 (8)0.0003 (9)
C160.0275 (11)0.0285 (10)0.0412 (11)0.0015 (8)0.0091 (9)0.0047 (9)
C170.0276 (9)0.0221 (9)0.0348 (10)0.0039 (8)0.0087 (8)0.0009 (8)
C180.0221 (9)0.0212 (8)0.0278 (9)0.0014 (7)0.0037 (7)0.0015 (7)
C190.0276 (10)0.0305 (10)0.0274 (10)0.0075 (8)0.0022 (8)0.0007 (8)
C200.0303 (11)0.0519 (14)0.0270 (10)0.0083 (10)0.0001 (9)0.0029 (9)
C210.0364 (12)0.0390 (12)0.0263 (10)0.0000 (10)0.0033 (8)0.0013 (9)
C220.0408 (11)0.0295 (10)0.0330 (10)0.0025 (10)0.0101 (8)0.0009 (9)
C230.0321 (12)0.0718 (19)0.0413 (13)0.0215 (13)0.0058 (10)0.0050 (13)
C240.0338 (11)0.0483 (15)0.0469 (13)0.0085 (11)0.0169 (10)0.0006 (11)
C250.0430 (13)0.0325 (11)0.0394 (12)0.0080 (10)0.0144 (10)0.0102 (10)
C260.0450 (13)0.0319 (11)0.0422 (13)0.0106 (10)0.0083 (11)0.0030 (10)
C270.0281 (10)0.0255 (9)0.0302 (10)0.0036 (8)0.0023 (8)0.0004 (8)
C280.0280 (10)0.0254 (9)0.0372 (11)0.0033 (8)0.0089 (8)0.0014 (9)
C290.0549 (18)0.0704 (19)0.0361 (13)0.0270 (15)0.0009 (12)0.0084 (13)
C300.0374 (12)0.072 (2)0.0342 (11)0.0081 (13)0.0040 (9)0.0052 (12)
C310.0312 (10)0.0468 (13)0.0290 (10)0.0090 (11)0.0011 (8)0.0004 (10)
C320.0479 (13)0.0700 (18)0.0304 (11)0.0069 (16)0.0079 (10)0.0091 (14)
Geometric parameters (Å, º) top
Cl1—C121.8191 (19)C15—H15B0.9700
O1—C311.346 (3)C16—C171.546 (3)
O1—C31.463 (3)C16—H16A0.9700
O2—C311.203 (3)C16—H16B0.9700
O3—C281.355 (3)C17—C281.500 (3)
O3—C141.480 (3)C17—C221.533 (3)
O4—C281.206 (3)C17—C181.557 (2)
C1—C21.532 (3)C18—C191.533 (3)
C1—C101.548 (3)C18—H180.9800
C1—H1A0.9700C19—C201.545 (3)
C1—H1B0.9700C19—H19A0.9700
C2—C31.507 (3)C19—H19B0.9700
C2—H2A0.9700C20—C291.513 (4)
C2—H2B0.9700C20—C301.534 (4)
C3—C41.533 (3)C20—C211.534 (3)
C3—H30.9800C21—C221.536 (3)
C4—C241.528 (4)C21—H21A0.9700
C4—C231.535 (3)C21—H21B0.9700
C4—C51.562 (3)C22—H22A0.9700
C5—C61.532 (3)C22—H22B0.9700
C5—C101.559 (3)C23—H23A0.9600
C5—H50.9800C23—H23B0.9600
C6—C71.526 (3)C23—H23C0.9600
C6—H6A0.9700C24—H24A0.9600
C6—H6B0.9700C24—H24B0.9600
C7—C81.544 (3)C24—H24C0.9600
C7—H7A0.9700C25—H25A0.9600
C7—H7B0.9700C25—H25B0.9600
C8—C91.553 (3)C25—H25C0.9600
C8—C261.554 (3)C26—H26A0.9600
C8—C141.607 (3)C26—H26B0.9600
C9—C111.542 (2)C26—H26C0.9600
C9—C101.573 (3)C27—H27A0.9600
C9—H90.9800C27—H27B0.9600
C10—C251.543 (3)C27—H27C0.9600
C11—C121.528 (3)C29—H29A0.9600
C11—H11A0.9700C29—H29B0.9600
C11—H11B0.9700C29—H29C0.9600
C12—C131.531 (3)C30—H30A0.9600
C12—H120.9800C30—H30B0.9600
C13—C271.552 (3)C30—H30C0.9600
C13—C141.564 (3)C31—C321.505 (3)
C13—C181.587 (3)C32—H32A0.9600
C14—C151.535 (3)C32—H32B0.9600
C15—C161.554 (3)C32—H32C0.9600
C15—H15A0.9700
C31—O1—C3116.63 (18)C15—C16—H16A109.3
C28—O3—C14117.76 (16)C17—C16—H16B109.3
C2—C1—C10112.78 (17)C15—C16—H16B109.3
C2—C1—H1A109.0H16A—C16—H16B108.0
C10—C1—H1A109.0C28—C17—C22110.32 (19)
C2—C1—H1B109.0C28—C17—C16106.33 (18)
C10—C1—H1B109.0C22—C17—C16113.95 (18)
H1A—C1—H1B107.8C28—C17—C18103.14 (16)
C3—C2—C1109.51 (17)C22—C17—C18112.56 (16)
C3—C2—H2A109.8C16—C17—C18109.82 (17)
C1—C2—H2A109.8C19—C18—C17110.67 (17)
C3—C2—H2B109.8C19—C18—C13114.17 (16)
C1—C2—H2B109.8C17—C18—C13109.81 (16)
H2A—C2—H2B108.2C19—C18—H18107.3
O1—C3—C2110.13 (17)C17—C18—H18107.3
O1—C3—C4107.68 (17)C13—C18—H18107.3
C2—C3—C4114.56 (19)C18—C19—C20113.35 (18)
O1—C3—H3108.1C18—C19—H19A108.9
C2—C3—H3108.1C20—C19—H19A108.9
C4—C3—H3108.1C18—C19—H19B108.9
C24—C4—C3112.0 (2)C20—C19—H19B108.9
C24—C4—C23108.2 (2)H19A—C19—H19B107.7
C3—C4—C23107.4 (2)C29—C20—C30108.6 (2)
C24—C4—C5114.1 (2)C29—C20—C21108.7 (2)
C3—C4—C5106.04 (17)C30—C20—C21112.6 (2)
C23—C4—C5108.86 (19)C29—C20—C19108.3 (2)
C6—C5—C10110.29 (18)C30—C20—C19111.1 (2)
C6—C5—C4114.97 (17)C21—C20—C19107.46 (18)
C10—C5—C4116.68 (17)C20—C21—C22112.59 (19)
C6—C5—H5104.4C20—C21—H21A109.1
C10—C5—H5104.4C22—C21—H21A109.1
C4—C5—H5104.4C20—C21—H21B109.1
C7—C6—C5111.14 (19)C22—C21—H21B109.1
C7—C6—H6A109.4H21A—C21—H21B107.8
C5—C6—H6A109.4C17—C22—C21113.23 (19)
C7—C6—H6B109.4C17—C22—H22A108.9
C5—C6—H6B109.4C21—C22—H22A108.9
H6A—C6—H6B108.0C17—C22—H22B108.9
C6—C7—C8114.00 (19)C21—C22—H22B108.9
C6—C7—H7A108.8H22A—C22—H22B107.7
C8—C7—H7A108.8C4—C23—H23A109.5
C6—C7—H7B108.8C4—C23—H23B109.5
C8—C7—H7B108.8H23A—C23—H23B109.5
H7A—C7—H7B107.6C4—C23—H23C109.5
C7—C8—C9107.22 (17)H23A—C23—H23C109.5
C7—C8—C26107.2 (2)H23B—C23—H23C109.5
C9—C8—C26110.55 (19)C4—C24—H24A109.5
C7—C8—C14111.84 (18)C4—C24—H24B109.5
C9—C8—C14110.34 (16)H24A—C24—H24B109.5
C26—C8—C14109.59 (18)C4—C24—H24C109.5
C11—C9—C8113.67 (17)H24A—C24—H24C109.5
C11—C9—C10112.29 (15)H24B—C24—H24C109.5
C8—C9—C10117.06 (16)C10—C25—H25A109.5
C11—C9—H9104.0C10—C25—H25B109.5
C8—C9—H9104.0H25A—C25—H25B109.5
C10—C9—H9104.0C10—C25—H25C109.5
C25—C10—C1106.53 (18)H25A—C25—H25C109.5
C25—C10—C5115.01 (17)H25B—C25—H25C109.5
C1—C10—C5107.68 (17)C8—C26—H26A109.5
C25—C10—C9114.12 (17)C8—C26—H26B109.5
C1—C10—C9107.86 (15)H26A—C26—H26B109.5
C5—C10—C9105.32 (15)C8—C26—H26C109.5
C12—C11—C9113.15 (15)H26A—C26—H26C109.5
C12—C11—H11A108.9H26B—C26—H26C109.5
C9—C11—H11A108.9C13—C27—H27A109.5
C12—C11—H11B108.9C13—C27—H27B109.5
C9—C11—H11B108.9H27A—C27—H27B109.5
H11A—C11—H11B107.8C13—C27—H27C109.5
C11—C12—C13113.91 (16)H27A—C27—H27C109.5
C11—C12—Cl1108.18 (13)H27B—C27—H27C109.5
C13—C12—Cl1111.72 (14)O4—C28—O3118.8 (2)
C11—C12—H12107.6O4—C28—C17127.6 (2)
C13—C12—H12107.6O3—C28—C17113.55 (18)
Cl1—C12—H12107.6C20—C29—H29A109.5
C12—C13—C27111.07 (17)C20—C29—H29B109.5
C12—C13—C14104.35 (16)H29A—C29—H29B109.5
C27—C13—C14112.24 (17)C20—C29—H29C109.5
C12—C13—C18110.54 (16)H29A—C29—H29C109.5
C27—C13—C18109.62 (16)H29B—C29—H29C109.5
C14—C13—C18108.90 (15)C20—C30—H30A109.5
O3—C14—C15104.16 (15)C20—C30—H30B109.5
O3—C14—C13107.05 (16)H30A—C30—H30B109.5
C15—C14—C13108.61 (18)C20—C30—H30C109.5
O3—C14—C8103.27 (17)H30A—C30—H30C109.5
C15—C14—C8115.83 (17)H30B—C30—H30C109.5
C13—C14—C8116.64 (15)O2—C31—O1124.5 (2)
C14—C15—C16109.57 (17)O2—C31—C32124.9 (3)
C14—C15—H15A109.8O1—C31—C32110.7 (2)
C16—C15—H15A109.8C31—C32—H32A109.5
C14—C15—H15B109.8C31—C32—H32B109.5
C16—C15—H15B109.8H32A—C32—H32B109.5
H15A—C15—H15B108.2C31—C32—H32C109.5
C17—C16—C15111.53 (17)H32A—C32—H32C109.5
C17—C16—H16A109.3H32B—C32—H32C109.5
C10—C1—C2—C358.0 (3)C27—C13—C14—O3165.62 (16)
C31—O1—C3—C287.0 (2)C18—C13—C14—O344.0 (2)
C31—O1—C3—C4147.49 (19)C12—C13—C14—C15174.07 (17)
C1—C2—C3—O1178.22 (19)C27—C13—C14—C1553.7 (2)
C1—C2—C3—C460.2 (2)C18—C13—C14—C1567.9 (2)
O1—C3—C4—C2453.5 (2)C12—C13—C14—C841.0 (2)
C2—C3—C4—C2469.4 (2)C27—C13—C14—C879.4 (2)
O1—C3—C4—C2365.1 (2)C18—C13—C14—C8159.04 (17)
C2—C3—C4—C23172.0 (2)C7—C8—C14—O3108.90 (18)
O1—C3—C4—C5178.59 (17)C9—C8—C14—O3131.84 (15)
C2—C3—C4—C555.7 (2)C26—C8—C14—O39.9 (2)
C24—C4—C5—C660.6 (3)C7—C8—C14—C154.3 (3)
C3—C4—C5—C6175.7 (2)C9—C8—C14—C15115.00 (19)
C23—C4—C5—C660.4 (3)C26—C8—C14—C15123.0 (2)
C24—C4—C5—C1070.9 (3)C7—C8—C14—C13134.01 (19)
C3—C4—C5—C1052.9 (2)C9—C8—C14—C1314.8 (2)
C23—C4—C5—C10168.2 (2)C26—C8—C14—C13107.2 (2)
C10—C5—C6—C761.6 (3)O3—C14—C15—C1660.3 (2)
C4—C5—C6—C7164.0 (2)C13—C14—C15—C1653.5 (2)
C5—C6—C7—C857.3 (3)C8—C14—C15—C16172.97 (17)
C6—C7—C8—C950.2 (3)C14—C15—C16—C1710.2 (2)
C6—C7—C8—C2668.5 (3)C15—C16—C17—C2847.7 (2)
C6—C7—C8—C14171.3 (2)C15—C16—C17—C22169.42 (18)
C7—C8—C9—C11173.74 (19)C15—C16—C17—C1863.3 (2)
C26—C8—C9—C1169.7 (2)C28—C17—C18—C19167.84 (17)
C14—C8—C9—C1151.7 (2)C22—C17—C18—C1949.0 (2)
C7—C8—C9—C1052.7 (2)C16—C17—C18—C1979.1 (2)
C26—C8—C9—C1063.9 (2)C28—C17—C18—C1365.2 (2)
C14—C8—C9—C10174.74 (16)C22—C17—C18—C13175.90 (18)
C2—C1—C10—C2570.6 (2)C16—C17—C18—C1347.8 (2)
C2—C1—C10—C553.3 (2)C12—C13—C18—C19106.4 (2)
C2—C1—C10—C9166.51 (17)C27—C13—C18—C1916.4 (2)
C6—C5—C10—C2567.8 (3)C14—C13—C18—C19139.51 (18)
C4—C5—C10—C2565.8 (3)C12—C13—C18—C17128.64 (17)
C6—C5—C10—C1173.67 (18)C27—C13—C18—C17108.59 (18)
C4—C5—C10—C152.7 (2)C14—C13—C18—C1714.6 (2)
C6—C5—C10—C958.8 (2)C17—C18—C19—C2056.0 (2)
C4—C5—C10—C9167.64 (18)C13—C18—C19—C20179.47 (17)
C11—C9—C10—C2564.6 (2)C18—C19—C20—C29176.8 (2)
C8—C9—C10—C2569.6 (2)C18—C19—C20—C3064.1 (3)
C11—C9—C10—C153.6 (2)C18—C19—C20—C2159.5 (3)
C8—C9—C10—C1172.27 (17)C29—C20—C21—C22174.1 (2)
C11—C9—C10—C5168.34 (17)C30—C20—C21—C2265.6 (3)
C8—C9—C10—C557.5 (2)C19—C20—C21—C2257.1 (3)
C8—C9—C11—C1228.7 (3)C28—C17—C22—C21163.09 (19)
C10—C9—C11—C12164.46 (17)C16—C17—C22—C2177.4 (2)
C9—C11—C12—C1333.5 (3)C18—C17—C22—C2148.5 (3)
C9—C11—C12—Cl1158.41 (15)C20—C21—C22—C1753.8 (3)
C11—C12—C13—C2753.4 (2)C14—O3—C28—O4176.93 (19)
Cl1—C12—C13—C2769.55 (19)C14—O3—C28—C175.6 (3)
C11—C12—C13—C1467.8 (2)C22—C17—C28—O40.0 (3)
Cl1—C12—C13—C14169.29 (13)C16—C17—C28—O4124.0 (2)
C11—C12—C13—C18175.31 (16)C18—C17—C28—O4120.4 (2)
Cl1—C12—C13—C1852.36 (19)C22—C17—C28—O3177.17 (17)
C28—O3—C14—C1555.2 (2)C16—C17—C28—O358.8 (2)
C28—O3—C14—C1359.7 (2)C18—C17—C28—O356.7 (2)
C28—O3—C14—C8176.65 (16)C3—O1—C31—O25.0 (3)
C12—C13—C14—O374.01 (19)C3—O1—C31—C32173.44 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16B···O4i0.972.413.358 (2)167
C32—H32A···O4ii0.962.553.390 (3)146
Symmetry codes: (i) x, y1, z; (ii) x, y1, z+1.

Experimental details

Crystal data
Chemical formulaC32H49ClO4
Mr533.16
Crystal system, space groupMonoclinic, P21
Temperature (K)130
a, b, c (Å)14.1022 (2), 6.6481 (1), 15.2632 (2)
β (°) 90.621 (1)
V3)1430.88 (4)
Z2
Radiation typeCu Kα
µ (mm1)1.45
Crystal size (mm)0.35 × 0.10 × 0.05
Data collection
DiffractometerOxford Diffraction SuperNova Single source at offset Atlas
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
Tmin, Tmax0.452, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
10416, 5530, 5337
Rint0.032
(sin θ/λ)max1)0.623
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.119, 1.04
No. of reflections5530
No. of parameters342
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.35
Absolute structureFlack (1983), 2413 Friedel pairs
Absolute structure parameter0.024 (14)

Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16B···O4i0.972.413.358 (2)167
C32—H32A···O4ii0.962.553.390 (3)146
Symmetry codes: (i) x, y1, z; (ii) x, y1, z+1.
 

References

First citationBednarczyk-Cwynar, B. (2007). Synthesis of lactam and thiolactam derivatives of oleanolic acid that are activators of transdermal transport. Thesis, Poznan University of Medical Sciences, Poland.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationOxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds