organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(Piperidin-1-yl)-3-(2,4,6-tri­methyl­phen­yl)propan-2-ol

aDepartment of Organic Chemistry, Baku State University, Baku, Azerbaijan, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 20 February 2011; accepted 21 February 2011; online 26 February 2011)

The title compound, C17H27NO, features a bufferfly-shaped substituted 2-propanol having an aromatic ring on the 1-carbon and a piperidine ring on the 3-carbon. The piperidine ring adopts a chair conformation and its N atom shows a trigonal coordination. In the crystal, the hy­droxy group inter­acts with the N atom of an inversion-related mol­ecule, generating an O—H⋯N hydrogen-bonded dimer.

Related literature

For background to the synthesis: see: Yadigarov et al. (2010[Yadigarov, R. R., Khalilov, A. N., Mamedov, I. G., Nagiev, F. N., Magerramov, A. M. & Allakhverdiev, M. A. (2010). Russ. J. Org. Chem. 45, 1856-1858.]). For the structure of tolperisone hydro­chloride, see: Tanaka & Hirayama (2007[Tanaka, R. & Hirayama, N. (2007). X-ray Struct. Anal. Online, 23, x85-x86.]). For a related structure, see: Maharramov et al. (2011[Maharramov, A. M., Khalilov, A. N., Gurbanov, A. V., Allahverdiyev, M. A. & Ng, S. W. (2011). Acta Cryst. E67, o721.]).

[Scheme 1]

Experimental

Crystal data
  • C17H27NO

  • Mr = 261.40

  • Monoclinic, P 21 /c

  • a = 11.7992 (12) Å

  • b = 8.0940 (8) Å

  • c = 17.0196 (17) Å

  • β = 107.489 (1)°

  • V = 1550.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 100 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker APEXII diffractometer

  • 6615 measured reflections

  • 3537 independent reflections

  • 2964 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.110

  • S = 1.02

  • 3537 reflections

  • 179 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1i 0.85 (1) 2.07 (1) 2.880 (1) 158 (2)
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

A recent study reported the reaction of 1-chloro-3-(2,4,6-trimethylphenyl)propan-2-one and primary amines. The chlorine atom in the α-chloro ketone is not replaced directly by the amino RNH– group; the intermediate product undergoes a Favorskii rearrangement that furnishes a compound having two methylene groups between the aromatic system and the amido unit (Yadigarov et al., 2010). A recent study used thiourea as the amino reactant (Maharramov et al., 2011). The present study employs a cyclic secondary amine as the amino reactant in the synthesis of a compound having a formulation similar to that of tolperisone (a piperidine derivative that is commercially used as a muscle relaxant), which has been characterized as a hydrochloride (Tanaka & Hirayama, 2007). The title compound, C17H27NO, (Scheme I) is a bufferfly-shaped substituted 2-propanol having an aromatic ring on one carbon end and a piperidinyl ring on the other. The hydroxy group interacts with the N atom of an inversion-related molecule to generate a hydrogen-bonded dimer (Fig. 1).

Related literature top

For background to the synthesis: see: Yadigarov et al. (2010). For the structure of tolperisone hydrochloride, see: Tanaka & Hirayama (2007). For a related structure, see: Maharramov et al. (2011).

Experimental top

1-Chloro-3-(2,4,6-trimethylphenyl)propan-2-one (1 mol) and piperidine (1 mmol) were stirred in water for 18 h at 53 K. The water was decanted and the oil was distilled in vacuum. The distallate was a liquid; the liquid crystallized after 6 months; yield 70%.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C–H 0.95 to 0.99 Å; U(H) 1.2 to 1.5U(C)] and were included in the refinement in the riding model approximation, with U(H) set to 1.2 to 1.5U(C).

The hydroxy H-atom was located in a difference Fourier map, and was refined with a distance restraint of O–H 0.84±0.01 Å.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Anisotropic displacement ellipsoid plot (Barbour, 2001) of the hydrogen-bonded dimeric structure of C17H27NO at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
1-(Piperidin-1-yl)-3-(2,4,6-trimethylphenyl)propan-2-ol top
Crystal data top
C17H27NOF(000) = 576
Mr = 261.40Dx = 1.120 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1896 reflections
a = 11.7992 (12) Åθ = 2.8–29.2°
b = 8.0940 (8) ŵ = 0.07 mm1
c = 17.0196 (17) ÅT = 100 K
β = 107.489 (1)°Prism, colorless
V = 1550.3 (3) Å30.30 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker APEXII
diffractometer
2964 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.016
Graphite monochromatorθmax = 27.5°, θmin = 2.5°
ϕ and ω scansh = 1315
6615 measured reflectionsk = 810
3537 independent reflectionsl = 1522
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0565P)2 + 0.4799P]
where P = (Fo2 + 2Fc2)/3
3537 reflections(Δ/σ)max = 0.001
179 parametersΔρmax = 0.36 e Å3
1 restraintΔρmin = 0.19 e Å3
Crystal data top
C17H27NOV = 1550.3 (3) Å3
Mr = 261.40Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.7992 (12) ŵ = 0.07 mm1
b = 8.0940 (8) ÅT = 100 K
c = 17.0196 (17) Å0.30 × 0.20 × 0.20 mm
β = 107.489 (1)°
Data collection top
Bruker APEXII
diffractometer
2964 reflections with I > 2σ(I)
6615 measured reflectionsRint = 0.016
3537 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0401 restraint
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.36 e Å3
3537 reflectionsΔρmin = 0.19 e Å3
179 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.42350 (7)0.36548 (10)0.53159 (5)0.0213 (2)
H10.4165 (15)0.373 (2)0.4804 (6)0.042 (5)*
N10.54620 (8)0.67399 (12)0.62908 (6)0.0164 (2)
C10.64459 (10)0.66941 (15)0.70653 (7)0.0196 (2)
H1A0.67160.55390.71900.023*
H1B0.61610.71000.75220.023*
C20.74826 (10)0.77528 (15)0.70081 (7)0.0219 (3)
H2A0.78070.72960.65800.026*
H2B0.81210.77230.75410.026*
C30.70960 (11)0.95379 (15)0.67944 (7)0.0229 (3)
H3A0.77591.01720.66970.027*
H3B0.68901.00540.72610.027*
C40.60210 (11)0.95923 (15)0.60243 (7)0.0225 (3)
H4A0.57171.07380.59300.027*
H4B0.62630.92490.55400.027*
C50.50422 (10)0.84561 (14)0.61153 (7)0.0196 (2)
H5A0.47510.88630.65680.024*
H5B0.43690.84810.56010.024*
C60.44843 (10)0.56903 (15)0.63656 (7)0.0194 (2)
H6A0.40010.63290.66440.023*
H6B0.48250.47340.67210.023*
C70.36711 (10)0.50483 (14)0.55465 (7)0.0173 (2)
H70.35490.59280.51160.021*
C80.24722 (10)0.45733 (15)0.56663 (7)0.0186 (2)
H8A0.26250.38060.61400.022*
H8B0.21070.55830.58130.022*
C90.15852 (10)0.37740 (14)0.49344 (7)0.0162 (2)
C100.08491 (10)0.47543 (14)0.43015 (7)0.0170 (2)
C110.00046 (10)0.40041 (14)0.36511 (7)0.0177 (2)
H110.04960.46760.32260.021*
C120.01591 (10)0.22964 (14)0.36054 (7)0.0175 (2)
C130.05775 (10)0.13441 (14)0.42312 (7)0.0178 (2)
H130.04880.01770.42090.021*
C140.14458 (10)0.20477 (14)0.48924 (7)0.0172 (2)
C150.21904 (11)0.09380 (15)0.55627 (7)0.0229 (3)
H15A0.20380.02190.53940.034*
H15B0.19840.11250.60720.034*
H15C0.30340.11870.56570.034*
C160.11163 (11)0.15251 (15)0.29073 (7)0.0245 (3)
H16A0.09340.03540.28610.037*
H16B0.11530.20920.23910.037*
H16C0.18840.16270.30150.037*
C170.09396 (11)0.66162 (14)0.43230 (8)0.0213 (3)
H17A0.03260.70810.38510.032*
H17B0.17260.69480.42970.032*
H17C0.08250.70280.48350.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0219 (4)0.0226 (4)0.0206 (4)0.0023 (3)0.0080 (4)0.0009 (3)
N10.0141 (4)0.0170 (5)0.0163 (5)0.0008 (4)0.0017 (4)0.0007 (4)
C10.0176 (5)0.0214 (6)0.0169 (5)0.0004 (4)0.0010 (4)0.0011 (4)
C20.0172 (6)0.0247 (6)0.0214 (6)0.0025 (5)0.0022 (4)0.0019 (5)
C30.0249 (6)0.0212 (6)0.0227 (6)0.0065 (5)0.0074 (5)0.0038 (5)
C40.0275 (6)0.0180 (5)0.0216 (6)0.0005 (5)0.0066 (5)0.0007 (5)
C50.0189 (6)0.0187 (5)0.0194 (6)0.0029 (4)0.0028 (4)0.0000 (4)
C60.0185 (6)0.0233 (6)0.0164 (5)0.0042 (4)0.0050 (4)0.0009 (4)
C70.0161 (5)0.0185 (5)0.0169 (5)0.0018 (4)0.0045 (4)0.0011 (4)
C80.0175 (5)0.0210 (5)0.0179 (5)0.0027 (4)0.0064 (4)0.0035 (4)
C90.0142 (5)0.0177 (5)0.0180 (5)0.0015 (4)0.0067 (4)0.0027 (4)
C100.0167 (5)0.0156 (5)0.0205 (6)0.0002 (4)0.0083 (4)0.0012 (4)
C110.0157 (5)0.0185 (5)0.0186 (5)0.0011 (4)0.0048 (4)0.0012 (4)
C120.0158 (5)0.0193 (5)0.0181 (5)0.0018 (4)0.0059 (4)0.0024 (4)
C130.0192 (6)0.0140 (5)0.0214 (6)0.0017 (4)0.0079 (5)0.0014 (4)
C140.0164 (5)0.0174 (5)0.0187 (5)0.0009 (4)0.0068 (4)0.0015 (4)
C150.0227 (6)0.0204 (6)0.0236 (6)0.0005 (5)0.0040 (5)0.0033 (5)
C160.0256 (6)0.0236 (6)0.0209 (6)0.0052 (5)0.0017 (5)0.0025 (5)
C170.0226 (6)0.0152 (5)0.0261 (6)0.0010 (4)0.0072 (5)0.0009 (4)
Geometric parameters (Å, º) top
O1—C71.4233 (14)C8—C91.5106 (15)
O1—H10.852 (9)C8—H8A0.9900
N1—C61.4687 (14)C8—H8B0.9900
N1—C11.4720 (14)C9—C141.4062 (15)
N1—C51.4749 (14)C9—C101.4079 (16)
C1—C21.5205 (16)C10—C111.3923 (15)
C1—H1A0.9900C10—C171.5104 (15)
C1—H1B0.9900C11—C121.3933 (16)
C2—C31.5258 (17)C11—H110.9500
C2—H2A0.9900C12—C131.3883 (16)
C2—H2B0.9900C12—C161.5068 (15)
C3—C41.5262 (17)C13—C141.3955 (16)
C3—H3A0.9900C13—H130.9500
C3—H3B0.9900C14—C151.5092 (16)
C4—C51.5203 (17)C15—H15A0.9800
C4—H4A0.9900C15—H15B0.9800
C4—H4B0.9900C15—H15C0.9800
C5—H5A0.9900C16—H16A0.9800
C5—H5B0.9900C16—H16B0.9800
C6—C71.5265 (15)C16—H16C0.9800
C6—H6A0.9900C17—H17A0.9800
C6—H6B0.9900C17—H17B0.9800
C7—C81.5375 (15)C17—H17C0.9800
C7—H71.0000
C7—O1—H1108.5 (12)C6—C7—H7109.8
C6—N1—C1109.65 (9)C8—C7—H7109.8
C6—N1—C5109.73 (9)C9—C8—C7115.77 (9)
C1—N1—C5109.36 (9)C9—C8—H8A108.3
N1—C1—C2111.20 (9)C7—C8—H8A108.3
N1—C1—H1A109.4C9—C8—H8B108.3
C2—C1—H1A109.4C7—C8—H8B108.3
N1—C1—H1B109.4H8A—C8—H8B107.4
C2—C1—H1B109.4C14—C9—C10119.03 (10)
H1A—C1—H1B108.0C14—C9—C8120.59 (10)
C1—C2—C3111.12 (10)C10—C9—C8120.32 (10)
C1—C2—H2A109.4C11—C10—C9119.67 (10)
C3—C2—H2A109.4C11—C10—C17118.91 (10)
C1—C2—H2B109.4C9—C10—C17121.40 (10)
C3—C2—H2B109.4C10—C11—C12121.89 (11)
H2A—C2—H2B108.0C10—C11—H11119.1
C2—C3—C4110.11 (10)C12—C11—H11119.1
C2—C3—H3A109.6C13—C12—C11117.82 (10)
C4—C3—H3A109.6C13—C12—C16121.53 (10)
C2—C3—H3B109.6C11—C12—C16120.64 (10)
C4—C3—H3B109.6C12—C13—C14122.05 (10)
H3A—C3—H3B108.2C12—C13—H13119.0
C5—C4—C3110.84 (10)C14—C13—H13119.0
C5—C4—H4A109.5C13—C14—C9119.52 (10)
C3—C4—H4A109.5C13—C14—C15119.10 (10)
C5—C4—H4B109.5C9—C14—C15121.35 (10)
C3—C4—H4B109.5C14—C15—H15A109.5
H4A—C4—H4B108.1C14—C15—H15B109.5
N1—C5—C4111.78 (9)H15A—C15—H15B109.5
N1—C5—H5A109.3C14—C15—H15C109.5
C4—C5—H5A109.3H15A—C15—H15C109.5
N1—C5—H5B109.3H15B—C15—H15C109.5
C4—C5—H5B109.3C12—C16—H16A109.5
H5A—C5—H5B107.9C12—C16—H16B109.5
N1—C6—C7114.35 (9)H16A—C16—H16B109.5
N1—C6—H6A108.7C12—C16—H16C109.5
C7—C6—H6A108.7H16A—C16—H16C109.5
N1—C6—H6B108.7H16B—C16—H16C109.5
C7—C6—H6B108.7C10—C17—H17A109.5
H6A—C6—H6B107.6C10—C17—H17B109.5
O1—C7—C6107.70 (9)H17A—C17—H17B109.5
O1—C7—C8111.31 (9)C10—C17—H17C109.5
C6—C7—C8108.36 (9)H17A—C17—H17C109.5
O1—C7—H7109.8H17B—C17—H17C109.5
C6—N1—C1—C2179.35 (9)C14—C9—C10—C110.41 (16)
C5—N1—C1—C260.29 (12)C8—C9—C10—C11176.83 (10)
N1—C1—C2—C357.57 (13)C14—C9—C10—C17178.63 (10)
C1—C2—C3—C452.80 (13)C8—C9—C10—C171.39 (16)
C2—C3—C4—C552.23 (13)C9—C10—C11—C120.14 (17)
C6—N1—C5—C4179.48 (9)C17—C10—C11—C12178.12 (11)
C1—N1—C5—C460.20 (12)C10—C11—C12—C130.52 (17)
C3—C4—C5—N156.81 (13)C10—C11—C12—C16178.08 (10)
C1—N1—C6—C7155.49 (10)C11—C12—C13—C140.34 (16)
C5—N1—C6—C784.37 (12)C16—C12—C13—C14178.24 (11)
N1—C6—C7—O181.03 (12)C12—C13—C14—C90.20 (17)
N1—C6—C7—C8158.46 (9)C12—C13—C14—C15178.26 (10)
O1—C7—C8—C956.80 (13)C10—C9—C14—C130.57 (16)
C6—C7—C8—C9175.04 (10)C8—C9—C14—C13176.66 (10)
C7—C8—C9—C1498.81 (13)C10—C9—C14—C15178.59 (10)
C7—C8—C9—C1084.00 (13)C8—C9—C14—C151.36 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.85 (1)2.07 (1)2.880 (1)158 (2)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC17H27NO
Mr261.40
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)11.7992 (12), 8.0940 (8), 17.0196 (17)
β (°) 107.489 (1)
V3)1550.3 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker APEXII
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6615, 3537, 2964
Rint0.016
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.110, 1.02
No. of reflections3537
No. of parameters179
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.36, 0.19

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.85 (1)2.07 (1)2.880 (1)157.6 (16)
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

We thank Baku State University and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMaharramov, A. M., Khalilov, A. N., Gurbanov, A. V., Allahverdiyev, M. A. & Ng, S. W. (2011). Acta Cryst. E67, o721.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTanaka, R. & Hirayama, N. (2007). X-ray Struct. Anal. Online, 23, x85–x86.  CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYadigarov, R. R., Khalilov, A. N., Mamedov, I. G., Nagiev, F. N., Magerramov, A. M. & Allakhverdiev, M. A. (2010). Russ. J. Org. Chem. 45, 1856–1858.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds