metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(N-nitroso-N-phenyl­hy­droxy­laminato-κ2O,O′)(1,10-phenanthroline-κ2N,N′)lead(II)

aDepartment of Chemistry, General Campus, Shahid Beheshti University, Tehran 1983963113, Iran, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 20 February 2011; accepted 22 February 2011; online 26 February 2011)

The two cupferronate ions and the N-heterocycle in the mononuclear title compound, [Pb(C6H5N2O2)2(C12H8N2)], O,O′- and N,N′-chelate to the PbII atom, the geometry of which is a distorted Ψ-penta­gonal bipyramid.

Related literature

For the structure of dinuclear [Pb(C6H5N2O2)2]2, see: Najafi et al. (2011[Najafi, E., Amini, M. M. & Ng, S. W. (2011). Acta Cryst. E67, m377.]).

[Scheme 1]

Experimental

Crystal data
  • [Pb(C6H5N2O2)2(C12H8N2)]

  • Mr = 661.63

  • Monoclinic, P 21 /c

  • a = 7.7033 (4) Å

  • b = 15.9948 (8) Å

  • c = 18.8929 (10) Å

  • β = 100.919 (1)°

  • V = 2285.7 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 7.43 mm−1

  • T = 100 K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.318, Tmax = 0.524

  • 21418 measured reflections

  • 5233 independent reflections

  • 4676 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.018

  • wR(F2) = 0.047

  • S = 0.91

  • 5233 reflections

  • 316 parameters

  • H-atom parameters constrained

  • Δρmax = 0.74 e Å−3

  • Δρmin = −0.53 e Å−3

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The cupferronate ion is a common ion used for the complexation of metals; the lead(II) derivative exists as a dinuclear compound, the four cupferronate ions in dinuclear [Pb(C6H5N2O2)2]2 O,O'-chelate to the lead(II) atom, and two of the four nitroso O atoms are also involved in bridging. The geometry of both five-coordinate lead atoms is Ψ-octahedral; if another longer intermolecular Pb···O interactions (approx. 3.0 Å) are considered, the geometry is a Ψ-square-antiprism (Najafi et al., 2011). The 1,10-phenanthroline adduct is monomeric (Scheme I, Fig. 1). The two cupferronate ions and the N-heterocycle in mononuclear Pb(C12H8N2)(C6H5N2O2)2 chelate to the lead(II) atom; the geometry of the lead atom is a Ψ-pentagonal bipyramid.

Related literature top

For the structure of dinuclear [Pb(C6H5N2O2)2]2, see: Najafi et al. (2011).

Experimental top

Lead(II) nitrate (0.33 g, 1 mmol) dissolved in ethanol (20 ml) was added to the cupferron ligand (0.31 g, 2 mmol) and 1,10-phenanthroline hydrate (0.40, 2 mmol) dissolved in ethanol (20 ml). The mixture was stirred and then set aside for the growth of brown colored crystals.

Refinement top

Hydrogen atoms were placed in calculated positions (C–H 0.95 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C).

Omitted from the refinement were the following reflections owing to bad disagreement between the observed and calculated F2 values: (0 0 1), (0 1 2), (1 0 1), (0 0 2), (11 4 7), (-9 - 11 5), (11 3 8), (11 5 6), (-4 - 9 10), (-9 - 9 2) and (3 - 2 14).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Anisotropic displacement ellipsoid plot (Barbour, 2001) of Pb(C12H8N2)(C6H5N2O2)2 at the 70% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.
Bis(N-nitroso-N-phenylhydroxylaminato- κ2O,O')(1,10-phenanthroline-κ2N,N')lead(II) top
Crystal data top
[Pb(C6H5N2O2)2(C12H8N2)]F(000) = 1272
Mr = 661.63Dx = 1.923 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9896 reflections
a = 7.7033 (4) Åθ = 2.2–28.3°
b = 15.9948 (8) ŵ = 7.43 mm1
c = 18.8929 (10) ÅT = 100 K
β = 100.919 (1)°Prism, brown
V = 2285.7 (2) Å30.20 × 0.10 × 0.10 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
5233 independent reflections
Radiation source: fine-focus sealed tube4676 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω scansθmax = 27.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 910
Tmin = 0.318, Tmax = 0.524k = 2018
21418 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.018Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.047H-atom parameters constrained
S = 0.91 w = 1/[σ2(Fo2) + (0.0315P)2 + 1.0382P]
where P = (Fo2 + 2Fc2)/3
5233 reflections(Δ/σ)max = 0.001
316 parametersΔρmax = 0.74 e Å3
0 restraintsΔρmin = 0.53 e Å3
Crystal data top
[Pb(C6H5N2O2)2(C12H8N2)]V = 2285.7 (2) Å3
Mr = 661.63Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.7033 (4) ŵ = 7.43 mm1
b = 15.9948 (8) ÅT = 100 K
c = 18.8929 (10) Å0.20 × 0.10 × 0.10 mm
β = 100.919 (1)°
Data collection top
Bruker SMART APEX
diffractometer
5233 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4676 reflections with I > 2σ(I)
Tmin = 0.318, Tmax = 0.524Rint = 0.028
21418 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0180 restraints
wR(F2) = 0.047H-atom parameters constrained
S = 0.91Δρmax = 0.74 e Å3
5233 reflectionsΔρmin = 0.53 e Å3
316 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pb10.545412 (12)0.564925 (6)0.707994 (5)0.01407 (4)
O10.6518 (3)0.57008 (11)0.83910 (10)0.0215 (4)
O20.6004 (3)0.43217 (11)0.77043 (10)0.0221 (4)
O30.3666 (2)0.67625 (11)0.74664 (10)0.0171 (4)
O40.2682 (2)0.52341 (11)0.72411 (10)0.0168 (4)
N10.6651 (3)0.49786 (14)0.87218 (11)0.0167 (4)
N20.6420 (3)0.42654 (14)0.84043 (12)0.0207 (5)
N30.2048 (3)0.65180 (13)0.74731 (10)0.0123 (4)
N40.1479 (3)0.57674 (12)0.73517 (11)0.0139 (4)
N50.4379 (3)0.44824 (13)0.60458 (12)0.0156 (4)
N60.3223 (3)0.61102 (14)0.58176 (11)0.0160 (4)
C10.7119 (4)0.49851 (17)0.94969 (14)0.0189 (5)
C20.6692 (4)0.43069 (17)0.98924 (15)0.0228 (6)
H20.61110.38310.96570.027*
C30.7135 (5)0.43430 (18)1.06373 (16)0.0298 (7)
H30.68770.38821.09170.036*
C40.7955 (5)0.5050 (2)1.09786 (15)0.0355 (8)
H40.82290.50751.14900.043*
C50.8371 (5)0.57181 (19)1.05735 (16)0.0345 (8)
H50.89470.61961.08080.041*
C60.7950 (4)0.56902 (18)0.98277 (15)0.0254 (6)
H60.82250.61470.95480.031*
C70.0758 (3)0.71352 (15)0.75744 (13)0.0132 (5)
C80.0737 (3)0.68857 (16)0.78329 (13)0.0159 (5)
H80.08650.63250.79800.019*
C90.2042 (4)0.74779 (17)0.78711 (14)0.0193 (5)
H90.30890.73190.80340.023*
C100.1817 (4)0.83009 (17)0.76720 (14)0.0211 (6)
H100.27220.87010.76860.025*
C110.0270 (4)0.85391 (16)0.74523 (14)0.0187 (5)
H110.00990.91080.73380.022*
C120.1030 (3)0.79543 (15)0.73976 (13)0.0156 (5)
H120.20840.81150.72420.019*
C130.4890 (4)0.36929 (17)0.61474 (14)0.0195 (6)
H130.56400.35500.65900.023*
C140.4390 (4)0.30593 (17)0.56419 (14)0.0213 (6)
H140.47860.25020.57430.026*
C150.3320 (4)0.32538 (17)0.49995 (14)0.0202 (6)
H150.29740.28320.46470.024*
C160.2737 (3)0.40803 (17)0.48634 (14)0.0174 (5)
C170.3300 (3)0.46863 (17)0.54094 (13)0.0153 (5)
C180.1582 (4)0.43202 (17)0.42116 (14)0.0204 (6)
H180.12050.39120.38500.024*
C190.1015 (4)0.51195 (18)0.41007 (14)0.0198 (6)
H190.02430.52630.36640.024*
C200.1563 (4)0.57524 (16)0.46329 (14)0.0177 (5)
C210.2698 (3)0.55380 (16)0.52921 (13)0.0156 (5)
C220.0991 (4)0.65833 (18)0.45407 (14)0.0210 (6)
H220.02370.67500.41060.025*
C230.1520 (4)0.71536 (18)0.50770 (14)0.0217 (6)
H230.11360.77180.50210.026*
C240.2643 (3)0.68889 (17)0.57130 (14)0.0194 (5)
H240.30020.72870.60850.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pb10.01178 (6)0.01599 (6)0.01461 (5)0.00027 (4)0.00298 (4)0.00125 (3)
O10.0316 (12)0.0155 (10)0.0164 (9)0.0056 (8)0.0021 (8)0.0018 (7)
O20.0287 (12)0.0188 (10)0.0172 (9)0.0091 (8)0.0003 (8)0.0034 (7)
O30.0097 (8)0.0152 (9)0.0267 (9)0.0040 (7)0.0043 (7)0.0032 (7)
O40.0155 (9)0.0112 (9)0.0250 (9)0.0015 (7)0.0073 (7)0.0010 (7)
N10.0163 (11)0.0166 (11)0.0173 (10)0.0003 (9)0.0031 (8)0.0008 (9)
N20.0243 (13)0.0184 (12)0.0181 (11)0.0058 (9)0.0008 (9)0.0022 (9)
N30.0109 (10)0.0117 (10)0.0137 (9)0.0006 (8)0.0006 (8)0.0003 (8)
N40.0140 (11)0.0102 (10)0.0175 (10)0.0011 (8)0.0033 (8)0.0001 (8)
N50.0143 (11)0.0172 (11)0.0162 (10)0.0009 (9)0.0049 (9)0.0002 (8)
N60.0139 (11)0.0187 (11)0.0160 (10)0.0012 (9)0.0047 (8)0.0001 (9)
C10.0192 (14)0.0211 (14)0.0157 (12)0.0002 (11)0.0015 (10)0.0006 (10)
C20.0258 (16)0.0186 (14)0.0225 (14)0.0020 (11)0.0004 (11)0.0013 (11)
C30.043 (2)0.0256 (16)0.0197 (14)0.0043 (14)0.0019 (13)0.0061 (11)
C40.058 (2)0.0329 (18)0.0131 (13)0.0125 (16)0.0011 (13)0.0020 (12)
C50.053 (2)0.0283 (17)0.0179 (14)0.0126 (15)0.0028 (14)0.0020 (12)
C60.0319 (17)0.0239 (16)0.0197 (13)0.0081 (12)0.0031 (12)0.0041 (11)
C70.0126 (12)0.0131 (12)0.0128 (11)0.0004 (9)0.0002 (9)0.0021 (9)
C80.0152 (13)0.0117 (12)0.0204 (12)0.0026 (10)0.0025 (10)0.0019 (10)
C90.0158 (13)0.0186 (14)0.0237 (13)0.0008 (11)0.0041 (11)0.0066 (10)
C100.0202 (14)0.0175 (13)0.0249 (13)0.0068 (11)0.0023 (11)0.0047 (11)
C110.0245 (15)0.0108 (12)0.0193 (12)0.0002 (11)0.0007 (11)0.0009 (10)
C120.0167 (13)0.0130 (12)0.0163 (11)0.0010 (10)0.0010 (10)0.0005 (10)
C130.0178 (14)0.0215 (14)0.0202 (13)0.0035 (11)0.0059 (11)0.0002 (11)
C140.0225 (14)0.0148 (13)0.0288 (14)0.0008 (11)0.0100 (11)0.0006 (11)
C150.0197 (14)0.0196 (14)0.0230 (13)0.0040 (11)0.0082 (11)0.0043 (11)
C160.0140 (13)0.0218 (13)0.0186 (12)0.0045 (11)0.0085 (10)0.0022 (10)
C170.0101 (12)0.0196 (13)0.0175 (12)0.0046 (10)0.0059 (10)0.0019 (10)
C180.0192 (14)0.0249 (15)0.0180 (12)0.0082 (11)0.0060 (11)0.0036 (11)
C190.0163 (13)0.0294 (15)0.0135 (12)0.0051 (11)0.0020 (10)0.0003 (10)
C200.0145 (13)0.0254 (15)0.0146 (12)0.0024 (11)0.0062 (10)0.0024 (10)
C210.0127 (13)0.0206 (14)0.0152 (12)0.0025 (10)0.0068 (10)0.0008 (10)
C220.0143 (13)0.0293 (15)0.0188 (12)0.0008 (11)0.0018 (10)0.0078 (11)
C230.0207 (14)0.0219 (15)0.0238 (13)0.0004 (11)0.0073 (11)0.0044 (11)
C240.0198 (13)0.0187 (13)0.0212 (12)0.0003 (11)0.0080 (10)0.0002 (10)
Geometric parameters (Å, º) top
Pb1—O42.3106 (18)C7—C81.392 (3)
Pb1—O22.4270 (18)C8—C91.393 (4)
Pb1—O32.4457 (17)C8—H80.9500
Pb1—O12.4586 (19)C9—C101.389 (4)
Pb1—N52.715 (2)C9—H90.9500
Pb1—N62.763 (2)C10—C111.387 (4)
O1—N11.308 (3)C10—H100.9500
O2—N21.304 (3)C11—C121.389 (4)
O3—N31.309 (3)C11—H110.9500
O4—N41.305 (3)C12—H120.9500
N1—N21.285 (3)C13—C141.396 (4)
N1—C11.440 (3)C13—H130.9500
N3—N41.284 (3)C14—C151.367 (4)
N3—C71.439 (3)C14—H140.9500
N5—C131.326 (3)C15—C161.404 (4)
N5—C171.365 (3)C15—H150.9500
N6—C241.325 (3)C16—C171.422 (4)
N6—C211.354 (3)C16—C181.428 (4)
C1—C61.386 (4)C17—C211.443 (4)
C1—C21.392 (4)C18—C191.354 (4)
C2—C31.385 (4)C18—H180.9500
C2—H20.9500C19—C201.433 (4)
C3—C41.392 (4)C19—H190.9500
C3—H30.9500C20—C221.401 (4)
C4—C51.387 (4)C20—C211.421 (4)
C4—H40.9500C22—C231.367 (4)
C5—C61.385 (4)C22—H220.9500
C5—H50.9500C23—C241.406 (4)
C6—H60.9500C23—H230.9500
C7—C121.378 (3)C24—H240.9500
O4—Pb1—O276.42 (7)C8—C7—N3119.2 (2)
O4—Pb1—O365.37 (6)C7—C8—C9118.5 (2)
O2—Pb1—O3123.25 (6)C7—C8—H8120.8
O4—Pb1—O190.97 (7)C9—C8—H8120.8
O2—Pb1—O162.97 (6)C10—C9—C8120.1 (2)
O3—Pb1—O176.93 (6)C10—C9—H9119.9
O4—Pb1—N574.56 (6)C8—C9—H9119.9
O2—Pb1—N575.51 (6)C11—C10—C9120.0 (2)
O3—Pb1—N5127.08 (6)C11—C10—H10120.0
O1—Pb1—N5138.25 (6)C9—C10—H10120.0
O4—Pb1—N675.59 (6)C10—C11—C12120.7 (2)
O2—Pb1—N6132.52 (7)C10—C11—H11119.7
O3—Pb1—N676.70 (6)C12—C11—H11119.7
O1—Pb1—N6153.50 (7)C7—C12—C11118.5 (2)
N5—Pb1—N660.47 (6)C7—C12—H12120.8
N1—O1—Pb1115.64 (14)C11—C12—H12120.8
N2—O2—Pb1122.70 (14)N5—C13—C14123.8 (3)
N3—O3—Pb1112.12 (13)N5—C13—H13118.1
N4—O4—Pb1122.37 (14)C14—C13—H13118.1
N2—N1—O1124.7 (2)C15—C14—C13118.9 (3)
N2—N1—C1117.8 (2)C15—C14—H14120.5
O1—N1—C1117.5 (2)C13—C14—H14120.5
N1—N2—O2113.4 (2)C14—C15—C16119.7 (2)
N4—N3—O3124.9 (2)C14—C15—H15120.2
N4—N3—C7116.4 (2)C16—C15—H15120.2
O3—N3—C7118.64 (19)C15—C16—C17117.8 (2)
N3—N4—O4114.2 (2)C15—C16—C18122.4 (2)
C13—N5—C17118.0 (2)C17—C16—C18119.8 (3)
C13—N5—Pb1120.57 (17)N5—C17—C16121.8 (2)
C17—N5—Pb1121.42 (16)N5—C17—C21119.0 (2)
C24—N6—C21118.7 (2)C16—C17—C21119.2 (2)
C24—N6—Pb1121.10 (17)C19—C18—C16121.1 (2)
C21—N6—Pb1120.19 (16)C19—C18—H18119.4
C6—C1—C2121.9 (2)C16—C18—H18119.4
C6—C1—N1118.0 (2)C18—C19—C20121.0 (2)
C2—C1—N1120.1 (2)C18—C19—H19119.5
C3—C2—C1118.4 (3)C20—C19—H19119.5
C3—C2—H2120.8C22—C20—C21117.7 (2)
C1—C2—H2120.8C22—C20—C19122.6 (2)
C2—C3—C4120.5 (3)C21—C20—C19119.7 (2)
C2—C3—H3119.8N6—C21—C20121.9 (2)
C4—C3—H3119.8N6—C21—C17118.9 (2)
C5—C4—C3120.2 (3)C20—C21—C17119.3 (2)
C5—C4—H4119.9C23—C22—C20119.9 (3)
C3—C4—H4119.9C23—C22—H22120.0
C6—C5—C4120.1 (3)C20—C22—H22120.0
C6—C5—H5119.9C22—C23—C24118.8 (3)
C4—C5—H5119.9C22—C23—H23120.6
C1—C6—C5119.0 (3)C24—C23—H23120.6
C1—C6—H6120.5N6—C24—C23123.1 (3)
C5—C6—H6120.5N6—C24—H24118.5
C12—C7—C8122.1 (2)C23—C24—H24118.5
C12—C7—N3118.6 (2)
O4—Pb1—O1—N168.29 (18)C1—C2—C3—C41.3 (5)
O2—Pb1—O1—N15.91 (16)C2—C3—C4—C51.4 (6)
O3—Pb1—O1—N1132.71 (18)C3—C4—C5—C61.0 (6)
N5—Pb1—O1—N10.7 (2)C2—C1—C6—C50.3 (5)
N6—Pb1—O1—N1126.70 (18)N1—C1—C6—C5178.4 (3)
O4—Pb1—O2—N292.0 (2)C4—C5—C6—C10.4 (5)
O3—Pb1—O2—N244.2 (2)N4—N3—C7—C12152.2 (2)
O1—Pb1—O2—N26.17 (19)O3—N3—C7—C1223.7 (3)
N5—Pb1—O2—N2169.3 (2)N4—N3—C7—C826.5 (3)
N6—Pb1—O2—N2147.37 (18)O3—N3—C7—C8157.6 (2)
O4—Pb1—O3—N37.02 (13)C12—C7—C8—C93.9 (4)
O2—Pb1—O3—N359.47 (16)N3—C7—C8—C9174.7 (2)
O1—Pb1—O3—N3104.23 (15)C7—C8—C9—C101.7 (4)
N5—Pb1—O3—N337.44 (17)C8—C9—C10—C111.7 (4)
N6—Pb1—O3—N373.02 (14)C9—C10—C11—C122.9 (4)
O2—Pb1—O4—N4146.36 (18)C8—C7—C12—C112.7 (4)
O3—Pb1—O4—N49.37 (16)N3—C7—C12—C11176.0 (2)
O1—Pb1—O4—N484.50 (17)C10—C11—C12—C70.8 (4)
N5—Pb1—O4—N4135.20 (18)C17—N5—C13—C140.0 (4)
N6—Pb1—O4—N472.39 (17)Pb1—N5—C13—C14179.90 (19)
Pb1—O1—N1—N26.5 (3)N5—C13—C14—C150.5 (4)
Pb1—O1—N1—C1174.66 (17)C13—C14—C15—C160.5 (4)
O1—N1—N2—O21.0 (4)C14—C15—C16—C170.2 (4)
C1—N1—N2—O2179.9 (2)C14—C15—C16—C18178.3 (2)
Pb1—O2—N2—N15.4 (3)C13—N5—C17—C160.4 (4)
Pb1—O3—N3—N45.5 (3)Pb1—N5—C17—C16179.72 (17)
Pb1—O3—N3—C7170.04 (15)C13—N5—C17—C21178.8 (2)
O3—N3—N4—O42.4 (3)Pb1—N5—C17—C211.1 (3)
C7—N3—N4—O4177.98 (19)C15—C16—C17—N50.3 (4)
Pb1—O4—N4—N310.2 (3)C18—C16—C17—N5178.9 (2)
O4—Pb1—N5—C1396.9 (2)C15—C16—C17—C21178.9 (2)
O2—Pb1—N5—C1317.25 (19)C18—C16—C17—C210.3 (4)
O3—Pb1—N5—C13138.21 (18)C15—C16—C18—C19178.8 (3)
O1—Pb1—N5—C1323.3 (2)C17—C16—C18—C190.3 (4)
N6—Pb1—N5—C13178.8 (2)C16—C18—C19—C200.3 (4)
O4—Pb1—N5—C1783.03 (18)C18—C19—C20—C22179.3 (3)
O2—Pb1—N5—C17162.6 (2)C18—C19—C20—C210.9 (4)
O3—Pb1—N5—C1741.7 (2)C24—N6—C21—C200.6 (4)
O1—Pb1—N5—C17156.59 (17)Pb1—N6—C21—C20179.48 (18)
N6—Pb1—N5—C171.10 (17)C24—N6—C21—C17178.8 (2)
O4—Pb1—N6—C2498.62 (19)Pb1—N6—C21—C171.0 (3)
O2—Pb1—N6—C24154.25 (17)C22—C20—C21—N60.1 (4)
O3—Pb1—N6—C2431.04 (18)C19—C20—C21—N6178.6 (2)
O1—Pb1—N6—C2437.1 (3)C22—C20—C21—C17179.4 (2)
N5—Pb1—N6—C24178.8 (2)C19—C20—C21—C170.9 (4)
O4—Pb1—N6—C2181.27 (18)N5—C17—C21—N60.0 (3)
O2—Pb1—N6—C2125.6 (2)C16—C17—C21—N6179.2 (2)
O3—Pb1—N6—C21148.84 (19)N5—C17—C21—C20179.5 (2)
O1—Pb1—N6—C21142.83 (17)C16—C17—C21—C200.3 (4)
N5—Pb1—N6—C211.08 (17)C21—C20—C22—C230.4 (4)
N2—N1—C1—C6158.2 (3)C19—C20—C22—C23178.1 (2)
O1—N1—C1—C620.8 (4)C20—C22—C23—C240.3 (4)
N2—N1—C1—C223.7 (4)C21—N6—C24—C230.7 (4)
O1—N1—C1—C2157.4 (3)Pb1—N6—C24—C23179.37 (18)
C6—C1—C2—C30.7 (5)C22—C23—C24—N60.3 (4)
N1—C1—C2—C3178.8 (3)

Experimental details

Crystal data
Chemical formula[Pb(C6H5N2O2)2(C12H8N2)]
Mr661.63
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)7.7033 (4), 15.9948 (8), 18.8929 (10)
β (°) 100.919 (1)
V3)2285.7 (2)
Z4
Radiation typeMo Kα
µ (mm1)7.43
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.318, 0.524
No. of measured, independent and
observed [I > 2σ(I)] reflections
21418, 5233, 4676
Rint0.028
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.018, 0.047, 0.91
No. of reflections5233
No. of parameters316
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.74, 0.53

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

 

Acknowledgements

We thank Shahid Beheshti University and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationNajafi, E., Amini, M. M. & Ng, S. W. (2011). Acta Cryst. E67, m377.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds