organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Meth­­oxy­anilinium 3-hy­dr­oxy-2,4,6-tri­nitro­phenolate

aPG & Research Department of Chemistry, Seethalakshmi Ramaswami College, Tiruchirappalli 620 002, Tamil Nadu, India, bDepartment of Chemistry, Thanthai Hans Roever College, Perambalur 621 212, Tamilnadu, India, and cSchool of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, Tamilnadu, India
*Correspondence e-mail: kalaivbalaj@yahoo.co.in

(Received 28 December 2010; accepted 16 February 2011; online 23 February 2011)

The cation and anion of the title mol­ecular salt, C7H10NO+·C6H2N3O8, are linked via an N—H⋯O hydrogen bond. An intra­molecular O—H⋯O hydrogen bond is also found in the anion. In the crystal, the anions self-assemble via O—H⋯O hydrogen bonds, forming a C(9) supra­molecular chain the b axis. Further inter­molecular N—H⋯O inter­actions also occur.

Related literature

For crystalline metal complexes of styphnic acid, see: Cui et al. (2008a[Cui, Y., Zhang, T. L., Zhang, J. G. & Yang, L. (2008a). Chin. J. Chem. 26, 2021-2028.],b[Cui, Y., Zhang, T. L., Zhang, J. G., Yang, L., Hu, X. C. & Zhang, J. (2008b). J. Mol. Struct. 889, 177-185.]); Orbovic & Codoceo (2008[Orbovic, N. & Codoceo, C. L. (2008). Prop. Explos. Pyrotech. 33, 459-466.]); Zheng et al. (2006a[Zheng, H., Zhang, T. L., Zhang, J. G., Qiao, X. L., Yang, L. & Sun, Y. H. (2006a). Wuji Huaxue Xuebao, 22, 346-350.],b[Zheng, H., Zhang, T. L., Zhang, J. G., Qiao, X. L., Yang, L. & Yu, K. B. (2006b). Chin. J. Chem. 24, 845-848.]); Zhu & Xiao (2009[Zhu, W. & Xiao, H. (2009). J. Phys. Chem. B, 113, 10315-10321.]). For crystalline adducts of styphnic acid with organic bases, see: Abashev et al. (2001[Abashev, G. G., Kazheva, O. N., Dyachenko, O. A., Gritsenko, V. V., Tanishev, A. G., Nishimura, K. & Saito, G. (2001). Mendeleev Commun. 4, 1225-1227.]); Liu et al. (2008[Liu, Z. H., Ao, G. J., Zhang, T. L., Yang, L., Zhang, J. G. & Zang, Y. (2008). Wuji Huaxue Xuebao, 24, 1155-1159.]); Tenishev et al. (2002[Tenishev, A. G., Dyachenko, O. A. & Physica, E. (2002). Physica E, 13, 1268-1270.]); For related mol­ecular salts, see: Kalaivani & Malarvizhi (2010[Kalaivani, D. & Malarvizhi, R. (2010). Acta Cryst. E66, o2698.]); Vogel (1978[Vogel, A. I. (1978). Textbook of Practical Organic Chemistry, 4th ed., p. 1093. London: Longman.]).

[Scheme 1]

Experimental

Crystal data
  • C7H10NO+·C6H2N3O8

  • Mr = 368.27

  • Monoclinic, P 21 /c

  • a = 10.6957 (4) Å

  • b = 17.8368 (5) Å

  • c = 8.0527 (3) Å

  • β = 91.991 (2)°

  • V = 1535.34 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 293 K

  • 0.22 × 0.18 × 0.12 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.978, Tmax = 0.988

  • 19208 measured reflections

  • 4930 independent reflections

  • 3539 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.142

  • S = 1.04

  • 4930 reflections

  • 238 parameters

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2 0.89 1.89 2.7408 (16) 158
N1—H1C⋯O2i 0.89 1.87 2.7569 (16) 177
O5—H5⋯O6 0.82 1.95 2.6311 (18) 140
O5—H5⋯O9ii 0.82 2.29 2.9263 (17) 135
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

In spite of the fact that many crystalline complexes have been derived from styphnic acid and metals in recent years [(Cui et al., 2008a, 2008b), (Orbovic et al., 2008), (Zheng et al., 2006a, 2006b), (Zhu & Xiao, 2009)], only a few crystalline complexes are known from styphnic acid and organic molecules [(Abashev et al., 2001), (Liu et al., 2008), (Tenishev et al., 2002)]. It has also been pointed out that aromatic hydrocarbons (and also some amines) form 1:1 adducts with styphnic acid and these derivatives do not crystallize as well as the corresponding picrates (Vogel, 1978). In the present work an elegant method has been proposed to prepare a crystalline molecular salt from 2-methoxyaniline and styphnic acid.

The title compound (I), is shown in Fig 1. The adduct formation between styphnic acid and 2-methoxyaniline may involve two important types of charge-transfer interactions (i) π-π* transition and (ii) proton transfer. A view of the crystal packing is shown in Fig 2. The proton transfer from phenolic OH to amino group is the main contributing factor which stabilizes the title molecular salt. The same observation has been reported by us in a related molecular salt (Kalaivani & Malarvizhi, 2010). The 3-hydroxy-2,4,6-trinitrophenolate ions self-assemble via O—H···O hydrogen bonds to from a supramolecular chain the b axis, with the graph-set notation C(9); this is shown in Fig. 3.

Related literature top

For crystalline metal complexes of styphnic acid, see: Cui et al. (2008a,b); Orbovic & Codoceo (2008); Zheng et al. (2006a,b); Zhu & Xiao (2009). For crystalline adducts of styphnic acid with organic bases, see: Abashev et al. (2001); Liu et al. (2008); Tenishev et al. (2002); For related molecular salts, see: Kalaivani & Malarvizhi (2010); Vogel (1978).

Experimental top

2,4,6-Trinitro-1,3-benzenediol (styphnic acid: 2.45 g, 0.01 mol) was dissolved in the minimum quantity of dimethyl sulphoxide. 2-Methoxyaniline (1.23 g, 0.01 mol) dissolved in the minimum amount of dimethyl sulphoxide was added to styphnic acid solution. The mixture was stirred well for 3 h and kept as such for another 12 h. The mixture was then poured into ice cold water with stirring. The molecular salt (adduct) formed was filtered and washed first with water and then with alcohol and dried. The dried adduct was washed several times with ether and recrystallized from ethanol (yield 70–75%, mp.455 K). Good pale yellow crystals of the molecular salt were obtained by slow evaporation of ethanol at room temperature. The same molecular salt was obtained when styphnic acid (0.01 mol) was mixed with excess of 2-methoxyaniline (0.03 mol).

Refinement top

All hydrogen atoms were positioned geometrically and were refined using a riding model. The C—H, O—H and N—H bond lengths are 0.93–0.96, 0.82 and 0.89 Å, respectively [Uiso (H)=1.2 Ueq(parent atom)].

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), showing 50% probability displacement ellipsoids. Dashed lines indicate hydrogen bonds.
[Figure 2] Fig. 2. The packing view of 2-methoxyanilinium 3-hydroxy- 2,4,6-trinitrophenolate.Dashed lines indicate hydrogen bonds H atoms not involved in hydrogen bonding have been omitted [symmetry codes: (i) x, -y + 1/2, z + 1/2; (vi) -x + 1, y - 1/2, -z + 1/2].
[Figure 3] Fig. 3. Hydrogen-bonding patterns in the supramolecular chain in compound (I). Dashed lines indicate hydrogen bonds H atoms not involved in hydrogen bonding have been omitted [symmetry codes: (vi) -x + 1, y - 1/2, -z + 1/2].
2-Methoxyanilinium 3-hydroxy-2,4,6-trinitrophenolate top
Crystal data top
C7H10NO+·C6H2N3O8F(000) = 760
Mr = 368.27Dx = 1.593 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4930 reflections
a = 10.6957 (4) Åθ = 1.9–31.8°
b = 17.8368 (5) ŵ = 0.14 mm1
c = 8.0527 (3) ÅT = 293 K
β = 91.991 (2)°Prism, colourless
V = 1535.34 (9) Å30.22 × 0.18 × 0.12 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4930 independent reflections
Radiation source: fine-focus sealed tube3539 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ and ω scansθmax = 31.8°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1515
Tmin = 0.978, Tmax = 0.988k = 2526
19208 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0626P)2 + 0.4547P]
where P = (Fo2 + 2Fc2)/3
4930 reflections(Δ/σ)max < 0.001
238 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
C7H10NO+·C6H2N3O8V = 1535.34 (9) Å3
Mr = 368.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.6957 (4) ŵ = 0.14 mm1
b = 17.8368 (5) ÅT = 293 K
c = 8.0527 (3) Å0.22 × 0.18 × 0.12 mm
β = 91.991 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4930 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3539 reflections with I > 2σ(I)
Tmin = 0.978, Tmax = 0.988Rint = 0.028
19208 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.142H-atom parameters constrained
S = 1.04Δρmax = 0.45 e Å3
4930 reflectionsΔρmin = 0.40 e Å3
238 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.00430 (12)0.14533 (7)0.45345 (16)0.0536 (4)
N10.18296 (12)0.21738 (7)0.59909 (15)0.0366 (3)
C10.08388 (13)0.26071 (8)0.51522 (17)0.0344 (4)
C20.01386 (14)0.22085 (9)0.43872 (19)0.0400 (4)
C30.10912 (16)0.26008 (12)0.3561 (2)0.0529 (6)
C40.10434 (19)0.33740 (12)0.3498 (3)0.0592 (6)
C50.0059 (2)0.37645 (11)0.4229 (3)0.0580 (6)
C60.08921 (16)0.33785 (9)0.5076 (2)0.0450 (5)
C70.1013 (2)0.10034 (13)0.3781 (3)0.0712 (8)
O20.30956 (10)0.18764 (5)0.31638 (13)0.0372 (3)
O30.18239 (12)0.01420 (9)0.30014 (18)0.0662 (5)
O40.26170 (13)0.05325 (8)0.53302 (15)0.0569 (4)
O50.43465 (12)0.06180 (6)0.30043 (17)0.0508 (4)
O60.64034 (12)0.08887 (6)0.14078 (16)0.0519 (4)
O70.76246 (12)0.00182 (7)0.07391 (18)0.0585 (4)
O80.63270 (16)0.25143 (8)0.0819 (3)0.0929 (7)
O90.46083 (14)0.28678 (7)0.1770 (3)0.0813 (7)
N20.26692 (12)0.04141 (7)0.38421 (16)0.0376 (4)
N30.66485 (12)0.02118 (7)0.12862 (16)0.0405 (4)
N40.53537 (12)0.23793 (7)0.14816 (19)0.0428 (4)
C80.39391 (12)0.14238 (7)0.27345 (16)0.0299 (3)
C90.38107 (13)0.06399 (7)0.30251 (17)0.0323 (4)
C100.46368 (14)0.00851 (7)0.26041 (18)0.0346 (4)
C110.57235 (13)0.03198 (8)0.17977 (18)0.0346 (4)
C120.59200 (13)0.10722 (8)0.14638 (18)0.0353 (4)
C130.50678 (13)0.16065 (7)0.19047 (17)0.0326 (4)
H1A0.233600.198700.524000.0550*
H1B0.149300.180000.655600.0550*
H1C0.226400.247000.668900.0550*
H30.175800.234500.305300.0630*
H40.168700.363600.295100.0710*
H5A0.003300.428500.415600.0700*
H60.155700.363700.558500.0540*
H7A0.179800.112900.425100.1070*
H7B0.083200.048300.397900.1070*
H7C0.105800.109600.260600.1070*
H50.490300.090100.271600.0760*
H120.664000.121700.093300.0420*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0559 (7)0.0422 (6)0.0617 (8)0.0173 (5)0.0108 (6)0.0007 (5)
N10.0394 (6)0.0344 (6)0.0360 (6)0.0046 (5)0.0009 (5)0.0036 (5)
C10.0349 (7)0.0371 (7)0.0316 (6)0.0025 (5)0.0071 (5)0.0028 (5)
C20.0382 (7)0.0448 (8)0.0372 (7)0.0080 (6)0.0054 (6)0.0011 (6)
C30.0390 (8)0.0708 (12)0.0487 (9)0.0041 (8)0.0011 (7)0.0013 (8)
C40.0530 (10)0.0678 (12)0.0567 (11)0.0164 (9)0.0010 (9)0.0078 (9)
C50.0692 (12)0.0435 (9)0.0616 (11)0.0104 (8)0.0064 (10)0.0029 (8)
C60.0491 (9)0.0380 (8)0.0484 (9)0.0038 (6)0.0070 (7)0.0043 (6)
C70.0722 (13)0.0657 (12)0.0750 (14)0.0377 (11)0.0093 (11)0.0021 (10)
O20.0427 (5)0.0302 (5)0.0391 (5)0.0093 (4)0.0059 (4)0.0036 (4)
O30.0518 (7)0.0849 (10)0.0619 (9)0.0254 (7)0.0013 (6)0.0089 (7)
O40.0685 (8)0.0630 (8)0.0397 (6)0.0072 (6)0.0112 (6)0.0038 (5)
O50.0551 (7)0.0250 (5)0.0729 (8)0.0048 (5)0.0093 (6)0.0032 (5)
O60.0591 (7)0.0340 (6)0.0626 (8)0.0103 (5)0.0011 (6)0.0118 (5)
O70.0470 (7)0.0551 (7)0.0744 (9)0.0086 (6)0.0155 (6)0.0091 (6)
O80.0737 (10)0.0508 (8)0.1580 (18)0.0022 (7)0.0568 (11)0.0234 (10)
O90.0604 (8)0.0281 (6)0.1575 (17)0.0013 (6)0.0329 (10)0.0079 (8)
N20.0429 (7)0.0294 (5)0.0407 (7)0.0008 (5)0.0036 (5)0.0046 (5)
N30.0436 (7)0.0376 (6)0.0400 (7)0.0088 (5)0.0023 (5)0.0090 (5)
N40.0378 (6)0.0310 (6)0.0595 (8)0.0029 (5)0.0004 (6)0.0055 (5)
C80.0339 (6)0.0269 (6)0.0286 (6)0.0017 (5)0.0021 (5)0.0003 (4)
C90.0346 (6)0.0269 (6)0.0353 (7)0.0002 (5)0.0018 (5)0.0003 (5)
C100.0407 (7)0.0257 (6)0.0371 (7)0.0021 (5)0.0037 (6)0.0022 (5)
C110.0355 (7)0.0317 (6)0.0363 (7)0.0059 (5)0.0017 (5)0.0052 (5)
C120.0326 (6)0.0359 (7)0.0373 (7)0.0010 (5)0.0003 (5)0.0026 (5)
C130.0338 (6)0.0262 (6)0.0375 (7)0.0012 (5)0.0020 (5)0.0002 (5)
Geometric parameters (Å, º) top
O1—C21.356 (2)C1—C61.379 (2)
O1—C71.430 (3)C2—C31.387 (2)
O2—C81.2676 (16)C3—C41.381 (3)
O3—N21.2119 (19)C4—C51.377 (3)
O4—N21.2200 (18)C5—C61.388 (3)
O5—C101.3342 (17)C3—H30.9300
O6—N31.2401 (17)C4—H40.9300
O7—N31.2183 (18)C5—H5A0.9300
O8—N41.210 (2)C6—H60.9300
O9—N41.2090 (19)C7—H7C0.9600
O5—H50.8200C7—H7A0.9600
N1—C11.4583 (19)C7—H7B0.9600
N1—H1C0.8900C8—C131.4374 (19)
N1—H1A0.8900C8—C91.4251 (18)
N1—H1B0.8900C9—C101.3769 (19)
N2—C91.4634 (19)C10—C111.414 (2)
N3—C111.4408 (19)C11—C121.386 (2)
N4—C131.4550 (18)C12—C131.3739 (19)
C1—C21.390 (2)C12—H120.9300
O1···N12.6221 (18)N3···C10iii3.3846 (19)
O1···C4i3.415 (3)N4···O22.9496 (17)
O2···C13.2183 (17)N3···H52.5400
O2···N1ii2.7569 (16)C1···O23.2183 (17)
O2···C6ii3.397 (2)C1···C3i3.511 (2)
O2···O43.0189 (17)C2···C3i3.562 (2)
O2···O92.6703 (19)C3···C2ii3.562 (2)
O2···N12.7408 (16)C3···O8xi3.365 (3)
O2···N22.7068 (15)C3···C1ii3.511 (2)
O2···N42.9496 (17)C4···O1ii3.415 (3)
O3···O53.0194 (18)C6···O7ix3.402 (2)
O3···O7iii3.103 (2)C6···O2i3.397 (2)
O4···N13.0974 (19)C7···O7xii3.311 (3)
O4···O23.0189 (17)C7···O4v3.324 (3)
O4···C11iv3.2443 (19)C10···N3iii3.3846 (19)
O4···C7v3.324 (3)C11···C11iii3.431 (2)
O4···N3iv2.8670 (18)C11···O4iv3.2443 (19)
O4···O6iv2.8654 (18)C12···O6iii3.3512 (19)
O5···N32.9560 (18)C13···O6iii3.3074 (19)
O5···O62.6311 (18)C3···H7C2.7900
O5···O9vi2.9263 (17)C3···H7A2.7900
O5···N22.6733 (17)C5···H7Ci2.9700
O5···O33.0194 (18)C5···H1Bii2.9400
O6···O9vi2.890 (2)C6···H1Bii2.9500
O6···C13iii3.3074 (19)C7···H32.5800
O6···C12iii3.3512 (19)C8···H6ii3.0300
O6···O52.6311 (18)C8···H1A2.8700
O6···O4iv2.8654 (18)C8···H1Cii2.7800
O7···C6vi3.402 (2)H1A···O12.7600
O7···O3iii3.103 (2)H1A···O9i2.7000
O7···C7vii3.311 (3)H1A···O21.8900
O8···C3viii3.365 (3)H1A···O42.6100
O9···O6ix2.890 (2)H1A···C82.8700
O9···O5ix2.9263 (17)H1B···C5i2.9400
O9···N1ii3.017 (2)H1B···C6i2.9500
O9···O22.6703 (19)H1B···O42.7600
O1···H1A2.7600H1B···O12.3500
O1···H1B2.3500H1C···H62.3800
O2···H1Cii1.8700H1C···O9i2.5800
O2···H1A1.8900H1C···C8i2.7800
O2···H6ii2.7600H1C···O2i1.8700
O3···H7Bv2.9100H3···H7A2.3700
O3···H4x2.8000H3···H7C2.3800
O4···H1B2.7600H3···O8xii2.7000
O4···H7Bv2.7000H3···C72.5800
O4···H1A2.6100H4···O3xiii2.8000
O6···H6vi2.8800H5···N32.5400
O6···H51.9500H5···O9vi2.2900
O7···H7Cvii2.7900H5···O61.9500
O7···H122.3900H5A···O7ix2.8900
O7···H6vi2.8400H6···H1C2.3800
O7···H5Avi2.8900H6···O6ix2.8800
O8···H3vii2.7000H6···O7ix2.8400
O8···H122.3400H6···O2i2.7600
O9···H1Aii2.7000H6···C8i3.0300
O9···H5ix2.2900H7A···H32.3700
O9···H1Cii2.5800H7A···C32.7900
N1···O9i3.017 (2)H7B···O4v2.7000
N1···O22.7408 (16)H7B···O3v2.9100
N1···O12.6221 (18)H7C···O7xii2.7900
N1···O43.0974 (19)H7C···H32.3800
N1···O2i2.7569 (16)H7C···C5ii2.9700
N2···O52.6733 (17)H7C···C32.7900
N2···O22.7068 (15)H12···O72.3900
N3···O4iv2.8670 (18)H12···O82.3400
N3···O52.9560 (18)
C2—O1—C7117.97 (14)C5—C4—H4119.00
C10—O5—H5109.00C6—C5—H5A120.00
H1B—N1—H1C109.00C4—C5—H5A120.00
C1—N1—H1B109.00C5—C6—H6120.00
C1—N1—H1A109.00C1—C6—H6120.00
H1A—N1—H1C110.00O1—C7—H7C109.00
C1—N1—H1C109.00O1—C7—H7B109.00
H1A—N1—H1B109.00H7B—C7—H7C109.00
O4—N2—C9117.47 (13)H7A—C7—H7B110.00
O3—N2—C9118.49 (13)H7A—C7—H7C110.00
O3—N2—O4124.01 (14)O1—C7—H7A109.00
O6—N3—C11117.97 (12)O2—C8—C9120.43 (12)
O7—N3—C11119.17 (12)C9—C8—C13112.71 (11)
O6—N3—O7122.86 (13)O2—C8—C13126.84 (12)
O8—N4—O9121.62 (15)N2—C9—C10117.74 (12)
O9—N4—C13119.50 (14)C8—C9—C10126.76 (13)
O8—N4—C13118.86 (13)N2—C9—C8115.50 (11)
C2—C1—C6121.49 (14)O5—C10—C11126.23 (13)
N1—C1—C6121.27 (13)C9—C10—C11116.42 (12)
N1—C1—C2117.21 (13)O5—C10—C9117.35 (13)
C1—C2—C3118.89 (15)N3—C11—C12118.13 (12)
O1—C2—C1114.58 (13)C10—C11—C12120.54 (13)
O1—C2—C3126.53 (15)N3—C11—C10121.33 (12)
C2—C3—C4119.60 (17)C11—C12—C13121.00 (13)
C3—C4—C5121.20 (19)N4—C13—C12116.74 (12)
C4—C5—C6119.71 (18)C8—C13—C12122.57 (12)
C1—C6—C5119.10 (16)N4—C13—C8120.69 (12)
C4—C3—H3120.00C11—C12—H12119.00
C2—C3—H3120.00C13—C12—H12120.00
C3—C4—H4119.00
C7—O1—C2—C1179.98 (15)C3—C4—C5—C61.4 (3)
C7—O1—C2—C30.4 (2)C4—C5—C6—C10.8 (3)
O4—N2—C9—C10105.00 (16)O2—C8—C9—C10178.89 (14)
O3—N2—C9—C8102.38 (16)C13—C8—C9—C100.3 (2)
O4—N2—C9—C875.60 (17)O2—C8—C13—N40.7 (2)
O3—N2—C9—C1077.02 (18)C9—C8—C13—N4179.16 (13)
O7—N3—C11—C10173.12 (14)C13—C8—C9—N2179.01 (12)
O6—N3—C11—C12171.69 (14)O2—C8—C13—C12178.89 (14)
O7—N3—C11—C127.5 (2)C9—C8—C13—C120.44 (19)
O6—N3—C11—C107.7 (2)O2—C8—C9—N20.45 (19)
O8—N4—C13—C8178.25 (17)N2—C9—C10—O51.3 (2)
O9—N4—C13—C83.1 (2)C8—C9—C10—C110.1 (2)
O8—N4—C13—C122.1 (2)N2—C9—C10—C11179.24 (12)
O9—N4—C13—C12176.54 (18)C8—C9—C10—O5179.33 (14)
N1—C1—C6—C5178.46 (16)C9—C10—C11—N3179.46 (13)
C2—C1—C6—C50.6 (2)C9—C10—C11—C120.1 (2)
N1—C1—C2—C3179.29 (13)O5—C10—C11—C12179.44 (15)
C6—C1—C2—O1178.32 (14)O5—C10—C11—N31.2 (2)
N1—C1—C2—O10.41 (19)C10—C11—C12—C130.0 (2)
C6—C1—C2—C31.4 (2)N3—C11—C12—C13179.36 (13)
C1—C2—C3—C40.8 (2)C11—C12—C13—N4179.30 (13)
O1—C2—C3—C4178.90 (17)C11—C12—C13—C80.3 (2)
C2—C3—C4—C50.6 (3)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1/2, z1/2; (iii) x+1, y, z; (iv) x+1, y, z+1; (v) x, y, z+1; (vi) x+1, y1/2, z+1/2; (vii) x+1, y, z; (viii) x+1, y+1/2, z1/2; (ix) x+1, y+1/2, z+1/2; (x) x, y1/2, z+1/2; (xi) x1, y+1/2, z+1/2; (xii) x1, y, z; (xiii) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O20.891.892.7408 (16)158
N1—H1C···O2i0.891.872.7569 (16)177
N1—H1C···O9i0.892.583.017 (2)111
O5—H5···O60.821.952.6311 (18)140
O5—H5···N30.822.542.9560 (18)112
O5—H5···O9vi0.822.292.9263 (17)135
C12—H12···O80.932.342.663 (2)100
Symmetry codes: (i) x, y+1/2, z+1/2; (vi) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC7H10NO+·C6H2N3O8
Mr368.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)10.6957 (4), 17.8368 (5), 8.0527 (3)
β (°) 91.991 (2)
V3)1535.34 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.22 × 0.18 × 0.12
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.978, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
19208, 4930, 3539
Rint0.028
(sin θ/λ)max1)0.742
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.142, 1.04
No. of reflections4930
No. of parameters238
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.40

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O20.891.892.7408 (16)158
N1—H1C···O2i0.891.872.7569 (16)177
O5—H5···O60.821.952.6311 (18)140
O5—H5···O9ii0.822.292.9263 (17)135
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2.
 

Acknowledgements

The authors thank the DST-India (FIST programme) for the use of the Bruker SMART APEXII diffractometer at the School of Chemistry, Bharathidasan University.

References

First citationAbashev, G. G., Kazheva, O. N., Dyachenko, O. A., Gritsenko, V. V., Tanishev, A. G., Nishimura, K. & Saito, G. (2001). Mendeleev Commun. 4, 1225–1227.  Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCui, Y., Zhang, T. L., Zhang, J. G. & Yang, L. (2008a). Chin. J. Chem. 26, 2021–2028.  Web of Science CSD CrossRef CAS Google Scholar
First citationCui, Y., Zhang, T. L., Zhang, J. G., Yang, L., Hu, X. C. & Zhang, J. (2008b). J. Mol. Struct. 889, 177–185.  Web of Science CSD CrossRef CAS Google Scholar
First citationKalaivani, D. & Malarvizhi, R. (2010). Acta Cryst. E66, o2698.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, Z. H., Ao, G. J., Zhang, T. L., Yang, L., Zhang, J. G. & Zang, Y. (2008). Wuji Huaxue Xuebao, 24, 1155–1159.  CAS Google Scholar
First citationOrbovic, N. & Codoceo, C. L. (2008). Prop. Explos. Pyrotech. 33, 459–466.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTenishev, A. G., Dyachenko, O. A. & Physica, E. (2002). Physica E, 13, 1268–1270.  Google Scholar
First citationVogel, A. I. (1978). Textbook of Practical Organic Chemistry, 4th ed., p. 1093. London: Longman.  Google Scholar
First citationZheng, H., Zhang, T. L., Zhang, J. G., Qiao, X. L., Yang, L. & Sun, Y. H. (2006a). Wuji Huaxue Xuebao, 22, 346–350.  CAS Google Scholar
First citationZheng, H., Zhang, T. L., Zhang, J. G., Qiao, X. L., Yang, L. & Yu, K. B. (2006b). Chin. J. Chem. 24, 845–848.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhu, W. & Xiao, H. (2009). J. Phys. Chem. B, 113, 10315–10321.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds