organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 3| March 2011| Pages o672-o673

Di­methyl 2-methyl-1,2-di­hydro­quinoline-2,4-di­carboxyl­ate

aDepartment of Chemistry, Çankırı Karatekin University, TR-18100 Çankırı, Turkey, bUniversitat Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany, cDepartment of Physics, Karabük University, 78050 Karabük, Turkey, and dDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

(Received 13 January 2011; accepted 15 February 2011; online 19 February 2011)

In the crystal of the title compound, C14H15NO4, pairs of inter­molecular N—H⋯O hydrogen bonds link the mol­ecules into centrosymmetric R22(10) dimers. These dimers are further connected via inter­molecular C—H⋯O hydrogen bonds, forming a three-dimensional network. The heterocyclic ring adopts a twisted conformation.

Related literature

For the preparation of 1,2-dihydro­quinoline, see: Edwards et al. (1998[Edwards, J. P., Ringgenberg, J. D. & Jones, T. K. (1998). Tetrahedron Lett. 39, 5139-5142.]); Yan et al. (2004[Yan, M. C., Tu, Z. J., Lin, C. C., Ko, S. K., Hsu, J. M. & Yao, C. F. (2004). J. Org. Chem. 69, 1565-1570.]); Petasis & Butkevich (2009[Petasis, N. A. & Butkevich, A. N. (2009). J. Organomet. Chem. 694, 1747-1753.]); Johnson et al. (1989[Johnson, J. V., Rauckman, B. S., Baccanari, D. P. & Roth, B. (1989). J. Med. Chem. 32, 1942-1949.]); Gültekin et al. (2010[Gültekin, Z., Frey, W., Tercan, B. & Hökelek, T. (2010). Acta Cryst. E66, o2891-o2892.]); Waldmann et al. (2008[Waldmann, H., Karunakar, G. V. & Kumar, K. (2008). Org. Lett. 10, 2159-2162.]). For the biological activity of dihydro­quinolines, see: Elmore et al. (2001[Elmore, S. W., Coghlan, M. J., Anderson, D. D., Pratt, J. K., Green, B. E., Wang, A. X., Stashko, M. A., Lin, C. W., Tyree, C. M., Miner, J. N., Jacobson, P. B., Wilcox, D. M. & Lane, B. C. (2001). J. Med. Chem. 44, 4481-4491.]); Dillard et al. (1973[Dillard, R. D., Pavey, D. E. & Benslay, D. N. (1973). J. Med. Chem. 16, 251-253.]); Muren & Weissman (1971[Muren, J. F. & Weissman, A. (1971). J. Med. Chem. 14, 49-53.]). For the preparation of quinolines, see: Dauphinee & Forrest (1978[Dauphinee, G. A. & Forrest, T. P. (1978). Can. J. Chem. 56, 632-634.]); Yan et al. (2004[Yan, M. C., Tu, Z. J., Lin, C. C., Ko, S. K., Hsu, J. M. & Yao, C. F. (2004). J. Org. Chem. 69, 1565-1570.]); Tom & Ruel (2001[Tom, N. J. & Ruel, E. M. (2001). Synthesis, pp. 1351-1355.]); Tokuyama et al. (2001[Tokuyama, H., Sato, M., Ueda, T. & Fukuyama, T. (2001). Heterocycles, 54, 105-108.]); Sarma & Prajapati (2008[Sarma, R. & Prajapati, D. (2008). Synlett, pp. 3001-3005.]); Martinez et al. (2008[Martinez, R., Ramon, D. J. & Yus, M. (2008). J. Org. Chem. 73, 9778-9780.]); Huang et al. (2009[Huang, H., Jiang, H., Chen, K. & Liu, H. (2009). J. Org. Chem. 74, 5476-5480.]); Katritzky et al. (1996[Katritzky, A. R., Rachwal, S. & Rachwal, B. (1996). Tetrahedron. 52, 15031-15070.]). For the biological activity of quinolines, see: Hamann et al. (1998[Hamann, L. G., Higuchi, R. I., Zhi, L., Edwards, J. P., Wang, X. N., Marschke, K. B., Kong, J. W., Farmer, L. J. & Jones, T. K. (1998). J. Med. Chem. 41, 623-639.]); He et al. (2003[He, L., Chang, H. X., Chou, T. C., Savaraj, N. & Cheng, C. C. (2003). Eur. J. Med. Chem. 38, 101-107.]); LaMontagne et al. (1989[LaMontagne, M. P., Blumbergs, B. & Smith, D. C. (1989). J. Med. Chem. 32, 1728-1732.]). For hydorgen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davies, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For ring puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For the melting point, see: Rueping & Gültekin (2009[Rueping, M. & Gültekin, Z. (2009). Unpublished results. University of Aachen, Germany.]).

[Scheme 1]

Experimental

Crystal data
  • C14H15NO4

  • Mr = 261.27

  • Monoclinic, P 21 /n

  • a = 7.9917 (12) Å

  • b = 8.8886 (11) Å

  • c = 18.9855 (18) Å

  • β = 99.194 (9)°

  • V = 1331.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 294 K

  • 0.6 × 0.6 × 0.5 mm

Data collection
  • Nicolet P3 diffractometer

  • 4144 measured reflections

  • 3890 independent reflections

  • 3097 reflections with I > 2σ(I)

  • Rint = 0.053

  • 3 standard reflections every 50 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.159

  • S = 1.05

  • 3890 reflections

  • 180 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.91 (2) 2.22 (2) 3.1241 (18) 174 (2)
C12—H12A⋯O3ii 0.96 2.57 3.377 (3) 142
C12—H12C⋯O3iii 0.96 2.49 3.336 (2) 148
Symmetry codes: (i) -x, -y+1, -z+2; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: XSCANS (Siemens, 1996[Siemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Dihydroquinolines have been widely studied and found to be an important structural unit in synthetic organic and medicinal chemistry (Elmore et al., 2001; Dillard et al., 1973; Muren & Weissman, 1971). Many dihydroquinoline derivatives have been reported in the literature (Edwards et al., 1998; Yan et al., 2004; Petasis & Butkevich, 2009; Gültekin et al., 2010) and some of them have biological effects. For example, 2,2,4-substituted 1,2-dihydroquinolines have been shown to possess antibacterial activities (Johnson et al., 1989). They are also important intermediates for the preparation of quinolines (Dauphinee & Forrest, 1978; Yan et al., 2004; Tom & Ruel, 2001; Tokuyama et al., 2001) and 1,2,3,4-tetrahydroquinolines (Katritzky et al., 1996). Many synthetic methods have been developed for the preparation of quinolines (Sarma & Prajapati, 2008; Martinez et al., 2008; Huang et al., 2009; Waldmann et al., 2008) and many quinolines display biological effects (Hamann et al., 1998; He et al., 2003; LaMontagne et al., 1989; Muren & Weissman, 1971).

In the title compound, (I), (Fig. 1), the ring A (C1-C4/C9/N1) is not planar with the puckering parameters (Cremer & Pople, 1975) QT = 0.364 (2) Å, ϕ = -143.4 (3)° and θ = 113.9 (2)°.

In the crystal structure, intermolecular N-H···O hydrogen bonds (Table 1) link the molecules into centrosymmetric R22(10) dimers (Bernstein et al., 1995). These dimers are further connected via intermolecular C-H···O hydrogen bonds (Table 1) to form a three-dimensional network (Fig. 2).

Related literature top

For the preparation of 1,2-dihydroquinoline, see: Edwards et al. (1998); Yan et al. (2004); Petasis & Butkevich (2009); Johnson et al. (1989); Gültekin et al. (2010); Waldmann et al. (2008). For the biological activity of dihydroquinolines, see: Elmore et al. (2001); Dillard et al. (1973); Muren & Weissman (1971). For the preparation of quinolines, see: Dauphinee & Forrest (1978); Yan et al. (2004); Tom & Ruel (2001); Tokuyama et al. (2001); Sarma & Prajapati (2008); Martinez et al. (2008); Huang et al. (2009); Katritzky et al. (1996). For the biological activity of quinolines, see: Hamann et al. (1998); He et al. (2003); LaMontagne et al. (1989). For hydorgen-bond motifs, see: Bernstein et al. (1995). For ring puckering parameters, see: Cremer & Pople (1975). For the melting point [OK?], see: Rueping & Gültekin (2009).

Experimental top

The title compound was synthesized by the literature method (Waldmann et al., 2008). Aniline (100 mg, 1 eq) was dissolved in chloroform (1.5 ml) in a screw-capped test tube and Bi(OTf)3 (5 mol%, 0.05 eq) was added to the mixture. The mixture was stirred at room temperature for 4h until the starting material was completely consumed as monitored by TLC. The resultant residue was directly purified by flash chromatography on silica (EtOAc:Cylohexane 2:98) gave in 63% yield as a yellow solid. Recrystallized over pentane and ethyl acetate (70:30) gave yellow crystalline solid Rf 0.53 (2:1 Cyclohexane/EtOAc) mp 346 K (Rueping & Gültekin, 2009).

Computing details top

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS (Siemens, 1996); data reduction: SHELXTL (Sheldrick, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A partial packing diagram viewed down the b-axis. Hydrogen bonds are shown as dashed lines.
Dimethyl 2-methyl-1,2-dihydroquinoline-2,4-dicarboxylate top
Crystal data top
C14H15NO4F(000) = 552
Mr = 261.27Dx = 1.304 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 49 reflections
a = 7.9917 (12) Åθ = 17–18°
b = 8.8886 (11) ŵ = 0.10 mm1
c = 18.9855 (18) ÅT = 294 K
β = 99.194 (9)°Block, colourless
V = 1331.3 (3) Å30.6 × 0.6 × 0.5 mm
Z = 4
Data collection top
Nicolet P3
diffractometer
Rint = 0.053
Radiation source: fine-focus sealed tubeθmax = 30.0°, θmin = 2.2°
Graphite monochromatorh = 011
Wyckoff–Scan scansk = 012
4144 measured reflectionsl = 2626
3890 independent reflections3 standard reflections every 50 reflections
3097 reflections with I > 2σ(I) intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.159 w = 1/[σ2(Fo2) + (0.0757P)2 + 0.2951P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3890 reflectionsΔρmax = 0.24 e Å3
180 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.076 (5)
Crystal data top
C14H15NO4V = 1331.3 (3) Å3
Mr = 261.27Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.9917 (12) ŵ = 0.10 mm1
b = 8.8886 (11) ÅT = 294 K
c = 18.9855 (18) Å0.6 × 0.6 × 0.5 mm
β = 99.194 (9)°
Data collection top
Nicolet P3
diffractometer
Rint = 0.053
4144 measured reflections3 standard reflections every 50 reflections
3890 independent reflections intensity decay: 1%
3097 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.159H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.24 e Å3
3890 reflectionsΔρmin = 0.18 e Å3
180 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.16885 (15)0.61815 (14)0.96958 (6)0.0632 (3)
O20.15641 (17)0.84306 (14)0.91740 (6)0.0671 (4)
O30.04420 (19)0.60887 (14)0.63398 (6)0.0688 (4)
O40.00900 (15)0.83447 (13)0.68455 (5)0.0538 (3)
N10.12790 (17)0.52602 (16)0.88407 (7)0.0527 (3)
H10.137 (3)0.491 (3)0.9282 (12)0.080 (6)*
C10.08128 (18)0.68333 (17)0.88397 (7)0.0447 (3)
C20.07661 (18)0.73116 (16)0.80816 (7)0.0441 (3)
H20.10360.82990.79460.053*
C30.03445 (17)0.63452 (15)0.76014 (7)0.0411 (3)
C40.00240 (17)0.47523 (15)0.77879 (7)0.0439 (3)
C50.0730 (2)0.37209 (18)0.73815 (9)0.0551 (4)
H50.11040.40420.69670.066*
C60.0929 (2)0.22295 (19)0.75842 (11)0.0675 (5)
H60.14400.15570.73090.081*
C70.0370 (3)0.17430 (19)0.81939 (12)0.0723 (5)
H70.04790.07340.83230.087*
C80.0351 (2)0.27357 (19)0.86154 (10)0.0630 (4)
H80.07180.23930.90280.076*
C90.05340 (17)0.42528 (16)0.84272 (8)0.0468 (3)
C100.2084 (2)0.7764 (2)0.91791 (10)0.0689 (5)
H10A0.21120.74080.96540.103*
H10B0.31910.76670.88990.103*
H10C0.17490.88020.91970.103*
C110.09548 (18)0.70811 (16)0.92869 (6)0.0432 (3)
C120.3182 (3)0.8827 (3)0.95860 (10)0.0782 (6)
H12A0.35190.98010.94410.117*
H12B0.40150.80940.95070.117*
H12C0.30870.88481.00840.117*
C130.02495 (18)0.68793 (17)0.68624 (7)0.0455 (3)
C140.0372 (3)0.8942 (2)0.61686 (9)0.0639 (4)
H14A0.05451.00090.62090.096*
H14B0.05980.87390.58130.096*
H14C0.13550.84770.60320.096*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0643 (7)0.0639 (7)0.0556 (6)0.0034 (5)0.0082 (5)0.0187 (5)
O20.0860 (9)0.0569 (7)0.0495 (6)0.0208 (6)0.0163 (6)0.0115 (5)
O30.1070 (10)0.0603 (7)0.0347 (5)0.0046 (7)0.0018 (6)0.0064 (5)
O40.0706 (7)0.0516 (6)0.0369 (5)0.0038 (5)0.0014 (4)0.0041 (4)
N10.0563 (7)0.0561 (7)0.0457 (6)0.0088 (6)0.0077 (5)0.0054 (5)
C10.0484 (7)0.0491 (7)0.0360 (6)0.0029 (6)0.0048 (5)0.0012 (5)
C20.0518 (7)0.0421 (6)0.0356 (6)0.0049 (5)0.0014 (5)0.0021 (5)
C30.0438 (6)0.0423 (6)0.0340 (5)0.0002 (5)0.0033 (5)0.0004 (5)
C40.0449 (6)0.0411 (6)0.0415 (6)0.0011 (5)0.0056 (5)0.0011 (5)
C50.0600 (9)0.0502 (8)0.0507 (8)0.0060 (7)0.0046 (6)0.0072 (6)
C60.0735 (11)0.0476 (8)0.0732 (11)0.0094 (8)0.0133 (9)0.0119 (8)
C70.0816 (12)0.0385 (8)0.0861 (13)0.0058 (8)0.0198 (10)0.0041 (8)
C80.0688 (10)0.0475 (8)0.0666 (10)0.0150 (7)0.0081 (8)0.0117 (7)
C90.0450 (7)0.0444 (7)0.0470 (7)0.0092 (5)0.0054 (5)0.0037 (5)
C100.0674 (10)0.0854 (13)0.0559 (9)0.0197 (9)0.0157 (8)0.0024 (9)
C110.0522 (7)0.0478 (7)0.0296 (5)0.0014 (5)0.0063 (5)0.0015 (5)
C120.0917 (13)0.0891 (14)0.0472 (9)0.0413 (12)0.0086 (8)0.0045 (9)
C130.0498 (7)0.0487 (7)0.0343 (6)0.0046 (6)0.0042 (5)0.0008 (5)
C140.0774 (11)0.0698 (11)0.0430 (8)0.0016 (8)0.0053 (7)0.0141 (7)
Geometric parameters (Å, º) top
O1—C111.2001 (17)C5—C61.382 (2)
O2—C111.3249 (18)C5—H50.9300
O2—C121.443 (2)C6—C71.376 (3)
O3—C131.2055 (17)C6—H60.9300
O4—C131.3319 (19)C7—C81.377 (3)
O4—C141.4410 (18)C7—H70.9300
N1—C11.447 (2)C8—C91.397 (2)
N1—C91.386 (2)C8—H80.9300
N1—H10.91 (2)C10—H10A0.9600
C1—C21.5070 (18)C10—H10B0.9600
C1—C101.530 (2)C10—H10C0.9600
C1—C111.5432 (19)C12—H12A0.9600
C2—C31.3344 (19)C12—H12B0.9600
C2—H20.9300C12—H12C0.9600
C3—C41.4720 (19)C14—H14A0.9600
C3—C131.4944 (18)C14—H14B0.9600
C4—C51.395 (2)C14—H14C0.9600
C4—C91.412 (2)
C11—O2—C12116.97 (13)C7—C8—H8119.8
C13—O4—C14116.33 (13)C9—C8—H8119.8
C1—N1—H1112.9 (15)N1—C9—C4119.52 (13)
C9—N1—C1119.30 (12)N1—C9—C8121.05 (15)
C9—N1—H1114.2 (14)C8—C9—C4119.37 (15)
N1—C1—C2108.63 (12)C1—C10—H10A109.5
N1—C1—C10109.48 (14)C1—C10—H10B109.5
N1—C1—C11110.51 (12)C1—C10—H10C109.5
C2—C1—C10111.66 (13)H10A—C10—H10B109.5
C2—C1—C11108.97 (11)H10A—C10—H10C109.5
C10—C1—C11107.59 (13)H10B—C10—H10C109.5
C1—C2—H2119.4O1—C11—O2123.62 (14)
C3—C2—C1121.23 (12)O1—C11—C1124.78 (13)
C3—C2—H2119.4O2—C11—C1111.59 (12)
C2—C3—C4120.53 (12)O2—C12—H12A109.5
C2—C3—C13119.55 (12)O2—C12—H12B109.5
C4—C3—C13119.90 (12)O2—C12—H12C109.5
C5—C4—C3124.94 (13)H12A—C12—H12B109.5
C5—C4—C9118.56 (14)H12A—C12—H12C109.5
C9—C4—C3116.50 (13)H12B—C12—H12C109.5
C4—C5—H5119.4O3—C13—O4123.36 (14)
C6—C5—C4121.12 (17)O3—C13—C3124.65 (14)
C6—C5—H5119.4O4—C13—C3111.99 (11)
C5—C6—H6120.1O4—C14—H14A109.5
C7—C6—C5119.82 (18)O4—C14—H14B109.5
C7—C6—H6120.1O4—C14—H14C109.5
C6—C7—C8120.64 (16)H14A—C14—H14B109.5
C6—C7—H7119.7H14A—C14—H14C109.5
C8—C7—H7119.7H14B—C14—H14C109.5
C7—C8—C9120.43 (18)
C12—O2—C11—O11.7 (2)C2—C3—C4—C5167.06 (14)
C12—O2—C11—C1177.32 (15)C2—C3—C4—C913.20 (19)
C14—O4—C13—O35.3 (2)C13—C3—C4—C514.8 (2)
C14—O4—C13—C3174.17 (13)C13—C3—C4—C9164.94 (12)
C9—N1—C1—C244.10 (17)C2—C3—C13—O3154.18 (16)
C9—N1—C1—C10166.27 (14)C2—C3—C13—O426.33 (18)
C9—N1—C1—C1175.40 (16)C4—C3—C13—O324.0 (2)
C1—N1—C9—C430.23 (19)C4—C3—C13—O4155.51 (12)
C1—N1—C9—C8152.77 (14)C3—C4—C5—C6177.69 (14)
N1—C1—C2—C331.14 (18)C9—C4—C5—C62.0 (2)
C10—C1—C2—C3151.98 (15)C3—C4—C9—N10.52 (18)
C11—C1—C2—C389.32 (16)C3—C4—C9—C8176.53 (13)
N1—C1—C11—O114.36 (19)C5—C4—C9—N1179.73 (13)
N1—C1—C11—O2166.68 (12)C5—C4—C9—C83.2 (2)
C2—C1—C11—O1133.65 (15)C4—C5—C6—C70.4 (3)
C2—C1—C11—O247.38 (16)C5—C6—C7—C81.6 (3)
C10—C1—C11—O1105.13 (18)C6—C7—C8—C90.4 (3)
C10—C1—C11—O273.84 (16)C7—C8—C9—N1179.06 (15)
C1—C2—C3—C44.2 (2)C7—C8—C9—C42.1 (2)
C1—C2—C3—C13177.68 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.91 (2)2.22 (2)3.1241 (18)174 (2)
C12—H12A···O3ii0.962.573.377 (3)142
C12—H12C···O3iii0.962.493.336 (2)148
Symmetry codes: (i) x, y+1, z+2; (ii) x+1/2, y+1/2, z+3/2; (iii) x+1/2, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H15NO4
Mr261.27
Crystal system, space groupMonoclinic, P21/n
Temperature (K)294
a, b, c (Å)7.9917 (12), 8.8886 (11), 18.9855 (18)
β (°) 99.194 (9)
V3)1331.3 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.6 × 0.6 × 0.5
Data collection
DiffractometerNicolet P3
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4144, 3890, 3097
Rint0.053
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.159, 1.05
No. of reflections3890
No. of parameters180
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.18

Computer programs: XSCANS (Siemens, 1996), SHELXTL (Sheldrick, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.91 (2)2.22 (2)3.1241 (18)174 (2)
C12—H12A···O3ii0.962.573.377 (3)142
C12—H12C···O3iii0.962.493.336 (2)148
Symmetry codes: (i) x, y+1, z+2; (ii) x+1/2, y+1/2, z+3/2; (iii) x+1/2, y+3/2, z+1/2.
 

Acknowledgements

This research was carried out at RWTH Aachen University. The authors thank Professor Magnus Rueping of RWTH Aachen University, Germany, for helpful discussions.

References

First citationBernstein, J., Davies, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDauphinee, G. A. & Forrest, T. P. (1978). Can. J. Chem. 56, 632–634.  CrossRef CAS Web of Science Google Scholar
First citationDillard, R. D., Pavey, D. E. & Benslay, D. N. (1973). J. Med. Chem. 16, 251–253.  CrossRef CAS PubMed Web of Science Google Scholar
First citationEdwards, J. P., Ringgenberg, J. D. & Jones, T. K. (1998). Tetrahedron Lett. 39, 5139–5142.  Web of Science CrossRef CAS Google Scholar
First citationElmore, S. W., Coghlan, M. J., Anderson, D. D., Pratt, J. K., Green, B. E., Wang, A. X., Stashko, M. A., Lin, C. W., Tyree, C. M., Miner, J. N., Jacobson, P. B., Wilcox, D. M. & Lane, B. C. (2001). J. Med. Chem. 44, 4481–4491.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGültekin, Z., Frey, W., Tercan, B. & Hökelek, T. (2010). Acta Cryst. E66, o2891–o2892.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHamann, L. G., Higuchi, R. I., Zhi, L., Edwards, J. P., Wang, X. N., Marschke, K. B., Kong, J. W., Farmer, L. J. & Jones, T. K. (1998). J. Med. Chem. 41, 623–639.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHe, L., Chang, H. X., Chou, T. C., Savaraj, N. & Cheng, C. C. (2003). Eur. J. Med. Chem. 38, 101–107.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHuang, H., Jiang, H., Chen, K. & Liu, H. (2009). J. Org. Chem. 74, 5476–5480.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJohnson, J. V., Rauckman, B. S., Baccanari, D. P. & Roth, B. (1989). J. Med. Chem. 32, 1942–1949.  CrossRef CAS PubMed Web of Science Google Scholar
First citationKatritzky, A. R., Rachwal, S. & Rachwal, B. (1996). Tetrahedron. 52, 15031–15070.  CrossRef CAS Web of Science Google Scholar
First citationLaMontagne, M. P., Blumbergs, B. & Smith, D. C. (1989). J. Med. Chem. 32, 1728–1732.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMartinez, R., Ramon, D. J. & Yus, M. (2008). J. Org. Chem. 73, 9778–9780.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMuren, J. F. & Weissman, A. (1971). J. Med. Chem. 14, 49–53.  CAS PubMed Web of Science Google Scholar
First citationPetasis, N. A. & Butkevich, A. N. (2009). J. Organomet. Chem. 694, 1747–1753.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRueping, M. & Gültekin, Z. (2009). Unpublished results. University of Aachen, Germany.  Google Scholar
First citationSarma, R. & Prajapati, D. (2008). Synlett, pp. 3001–3005.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationTokuyama, H., Sato, M., Ueda, T. & Fukuyama, T. (2001). Heterocycles, 54, 105–108.  CAS Google Scholar
First citationTom, N. J. & Ruel, E. M. (2001). Synthesis, pp. 1351–1355.  CrossRef Google Scholar
First citationWaldmann, H., Karunakar, G. V. & Kumar, K. (2008). Org. Lett. 10, 2159–2162.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYan, M. C., Tu, Z. J., Lin, C. C., Ko, S. K., Hsu, J. M. & Yao, C. F. (2004). J. Org. Chem. 69, 1565–1570.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 3| March 2011| Pages o672-o673
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds