metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­kis[(4-meth­­oxy­carbon­yl)anilinium] hexa­chloridostannate(IV) dichloride

aDepartment of Physics and Mathematics, Hunan Institute of Engineering, Xiangtan 411104, People's Republic of China, and bInstitute of Material Science and Engineering, Ocean University of China, Qingdao, Shandong 266100, People's Republic of China
*Correspondence e-mail: yys2004@ouc.edu.cn

(Received 4 January 2011; accepted 28 January 2011; online 2 February 2011)

The asymmetric unit of the title compound, (C8H10NO2)4[SnCl6]Cl2, contains two (4-meth­oxy­carbon­yl)anilinium cations, one chloride anion and one half of a hexa­chlorido­stannate(IV) dianion situated on a twofold rotation axis. All aminium H atoms are involved in N—H⋯Cl hydrogen bonding, which consolidate the crystal packing along with weak C—H⋯O inter­actions.

Related literature

For general background to inorganic–organic hybrid compounds, see: Zhang et al. (2009[Zhang, S. J., Lanty, G., Lauret, J. S., Deleporte, E., Audebert, P. & Galmiche, L. (2009). Acta Mater. 57, 3301-3309.]); Descalzo et al. (2006[Descalzo, A. B., Martinez-Manez, R., Sancenón, F., Hoffmann, K. & Rurack, K. (2006). Angew. Chem. Int. Ed. 45, 5924-5948.]); Li et al. (2007[Li, Y. Y., Zheng, G. L., Lin, C. K. & Lin, J. (2007). Solid State Sci. 9, 855-861.]), Sanchez et al. (2005[Sanchez, C., Julián, B., Belleville, P. & Popall, M. (2005). J. Mater. Chem. 15, 3559-3592.]).

[Scheme 1]

Experimental

Crystal data
  • (C8H10NO2)4[SnCl6]Cl2

  • Mr = 1010.97

  • Monoclinic, C 2/c

  • a = 30.748 (3) Å

  • b = 7.1172 (8) Å

  • c = 22.113 (2) Å

  • β = 119.424 (2)°

  • V = 4215.0 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.16 mm−1

  • T = 298 K

  • 0.50 × 0.46 × 0.46 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.594, Tmax = 0.617

  • 10221 measured reflections

  • 3719 independent reflections

  • 2969 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.090

  • S = 1.01

  • 3719 reflections

  • 245 parameters

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl3 0.89 2.78 3.659 (4) 170
N2—H2B⋯Cl3 0.89 2.71 3.479 (3) 145
N2—H2C⋯Cl4 0.89 2.21 3.098 (4) 177
N1—H1B⋯Cl4i 0.89 2.29 3.155 (4) 165
N1—H1C⋯Cl4ii 0.89 2.22 3.092 (4) 166
N2—H2A⋯Cl1iii 0.89 3.01 3.482 (3) 115
C3—H3⋯O4iv 0.93 2.39 3.148 (6) 139
C15—H15⋯O2v 0.93 2.38 3.130 (5) 138
Symmetry codes: (i) -x, -y+1, -z; (ii) x, y+1, z; (iii) x, y-1, z; (iv) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (v) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Considerable attention has been devoted to inorganic-organic hybrid materials over recent years (Zhang et al., 2009). These hybrid materials have potential applications in many areas including gas storage, separation, catalysis, magnetism, optics as well as electrical conductivity (Descalzo et al., 2006; Li et al., 2007; Sanchez et al., 2005]. Herein we report the structure of the title compound (Fig.1.),

This title compound contains SnCl6 inorganic anions, organic cations and dissociated chloride anions. The SnCl6 inorganic anion adopts a regular octahedron geometry, with average Sn—Cl distance of 2.4262 Å. In the organic cation, the dihedral angle between the ester group and the phenyl ring is 14.86(0.19)°.

In the crystal structure, intermolecular N—H···Cl and C—H···O hydrogen bonds (Table 1) link cations and anions into layers with alternating inorganic and organic species.

Related literature top

For general background to inorganic–organic hybrid compounds, see: Zhang et al. (2009); Descalzo et al. (2006); Li et al. (2007), Sanchez et al. (2005).

Experimental top

4-Aminobenzoic acid (10 mmol) was dissolved to acid methanol solution (10 ml). Ten minutes later, a methanol solution (10 ml) of tin tetrachloride(5 mmol) was added with stirring. The mixture was stirred for 4 h. Crystals of the title compound suitable for X-ray analysis were grown from the saturation ethanol solution after about two weeks.

Refinement top

All H-atoms were positioned geometrically and refined using a riding model, with C—H = 0.96 Å (methyl), 0.93 Å (aromatic), N—H =0.89 Å (ammonium) and Uiso(H) =1.5Ueq(C), Uiso(H) =1.2Ueq(C),Uiso(H) =1.5Ueq(N)

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A portion of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme in asymmetric unit [symmetry code (A): -x, y, -z + 1/2]. Dashed lines denote N—H···Cl hydrogen bonds.
Tetrakis[(4-methoxycarbonyl)anilinium] hexachloridostannate(IV) dichloride top
Crystal data top
(C8H10NO2)4[SnCl6]Cl2F(000) = 2040
Mr = 1010.97Dx = 1.593 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 30.748 (3) ÅCell parameters from 4623 reflections
b = 7.1172 (8) Åθ = 2.7–27.7°
c = 22.113 (2) ŵ = 1.16 mm1
β = 119.424 (2)°T = 298 K
V = 4215.0 (7) Å3Block, yellow
Z = 40.50 × 0.46 × 0.46 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3719 independent reflections
Radiation source: fine-focus sealed tube2969 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ϕ and ω scansθmax = 25.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2936
Tmin = 0.594, Tmax = 0.617k = 78
10221 measured reflectionsl = 2625
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.090 w = 1/[σ2(Fo2) + (0.045P)2 + 5.2918P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
3719 reflectionsΔρmax = 0.51 e Å3
245 parametersΔρmin = 0.44 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00204 (13)
Crystal data top
(C8H10NO2)4[SnCl6]Cl2V = 4215.0 (7) Å3
Mr = 1010.97Z = 4
Monoclinic, C2/cMo Kα radiation
a = 30.748 (3) ŵ = 1.16 mm1
b = 7.1172 (8) ÅT = 298 K
c = 22.113 (2) Å0.50 × 0.46 × 0.46 mm
β = 119.424 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3719 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2969 reflections with I > 2σ(I)
Tmin = 0.594, Tmax = 0.617Rint = 0.035
10221 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.090H-atom parameters constrained
S = 1.01Δρmax = 0.51 e Å3
3719 reflectionsΔρmin = 0.44 e Å3
245 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.00000.88525 (4)0.25000.03147 (14)
Cl10.05414 (3)1.12542 (12)0.24657 (5)0.0448 (2)
Cl20.04668 (3)0.88401 (13)0.37614 (4)0.0446 (2)
Cl30.05329 (3)0.64043 (12)0.24497 (5)0.0452 (2)
Cl40.01937 (4)0.27991 (19)0.05504 (6)0.0745 (4)
N10.05296 (13)0.8682 (5)0.09640 (19)0.0681 (11)
H1A0.04880.81450.12950.102*
H1B0.03540.80580.05680.102*
H1C0.04250.98680.09080.102*
O10.28945 (11)0.8266 (5)0.23899 (19)0.0801 (9)
O20.27319 (15)0.8654 (6)0.1308 (2)0.1100 (15)
C10.25910 (17)0.8534 (6)0.1724 (3)0.0614 (12)
C20.20539 (15)0.8609 (5)0.1534 (2)0.0488 (9)
C30.19023 (15)0.8011 (7)0.1997 (2)0.0596 (11)
H30.21380.75960.24370.071*
C40.14066 (15)0.8028 (7)0.1808 (2)0.0627 (12)
H40.13050.76210.21190.075*
C50.10627 (15)0.8642 (5)0.1165 (2)0.0510 (10)
C60.12064 (16)0.9276 (6)0.0699 (2)0.0563 (10)
H60.09710.97210.02650.068*
C70.17023 (16)0.9236 (6)0.0889 (2)0.0571 (11)
H70.18030.96400.05770.069*
C80.34155 (17)0.8066 (9)0.2610 (3)0.0977 (18)
H8A0.34660.69590.24040.146*
H8B0.36010.79580.31070.146*
H8C0.35280.91480.24670.146*
N20.04641 (12)0.3799 (4)0.12080 (17)0.0549 (8)
H2A0.04690.28350.14610.082*
H2B0.03290.47940.14810.082*
H2C0.02840.34950.10080.082*
O30.27704 (11)0.5652 (5)0.06223 (17)0.0754 (9)
O40.25318 (15)0.6482 (7)0.1379 (2)0.1235 (17)
C90.24390 (17)0.5845 (7)0.0834 (2)0.0649 (12)
C100.19295 (13)0.5235 (6)0.03008 (18)0.0475 (9)
C110.15324 (15)0.5639 (6)0.0409 (2)0.0530 (10)
H110.15910.62440.08140.064*
C120.10518 (13)0.5155 (5)0.00777 (19)0.0460 (9)
H120.07850.54350.00070.055*
C130.09772 (13)0.4248 (5)0.06700 (18)0.0412 (8)
C140.13659 (14)0.3806 (5)0.07820 (19)0.0484 (9)
H140.13060.31790.11850.058*
C150.18453 (14)0.4296 (6)0.0293 (2)0.0538 (10)
H150.21120.39950.03630.065*
C160.32747 (17)0.6233 (8)0.1111 (3)0.100 (2)
H16A0.34020.54670.15210.150*
H16B0.32740.75260.12340.150*
H16C0.34830.60910.09030.150*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.0315 (2)0.0292 (2)0.0350 (2)0.0000.01734 (15)0.000
Cl10.0388 (5)0.0417 (5)0.0498 (5)0.0108 (4)0.0187 (4)0.0027 (4)
Cl20.0430 (5)0.0531 (6)0.0319 (5)0.0061 (4)0.0138 (4)0.0043 (4)
Cl30.0441 (5)0.0385 (5)0.0611 (6)0.0090 (4)0.0322 (5)0.0006 (4)
Cl40.0609 (7)0.0948 (9)0.0812 (8)0.0232 (6)0.0452 (6)0.0309 (7)
N10.054 (2)0.094 (3)0.063 (2)0.0182 (18)0.0344 (19)0.021 (2)
O10.0490 (18)0.115 (3)0.080 (2)0.0101 (17)0.0348 (18)0.003 (2)
O20.084 (3)0.174 (4)0.107 (3)0.001 (2)0.074 (3)0.016 (3)
C10.063 (3)0.055 (3)0.086 (4)0.006 (2)0.052 (3)0.008 (2)
C20.056 (2)0.045 (2)0.060 (3)0.0003 (17)0.040 (2)0.0021 (18)
C30.051 (2)0.083 (3)0.052 (2)0.013 (2)0.031 (2)0.017 (2)
C40.056 (3)0.091 (3)0.056 (3)0.019 (2)0.038 (2)0.028 (2)
C50.052 (2)0.056 (3)0.055 (2)0.0110 (18)0.034 (2)0.0093 (19)
C60.063 (3)0.065 (3)0.047 (2)0.009 (2)0.032 (2)0.0141 (19)
C70.072 (3)0.062 (3)0.056 (3)0.003 (2)0.046 (2)0.008 (2)
C80.053 (3)0.114 (4)0.128 (5)0.012 (3)0.046 (3)0.002 (4)
N20.0470 (19)0.057 (2)0.052 (2)0.0027 (15)0.0173 (16)0.0006 (16)
O30.0418 (16)0.094 (2)0.075 (2)0.0087 (16)0.0164 (16)0.0012 (18)
O40.081 (3)0.201 (5)0.063 (2)0.034 (3)0.015 (2)0.051 (3)
C90.055 (3)0.073 (3)0.047 (3)0.008 (2)0.010 (2)0.002 (2)
C100.046 (2)0.053 (2)0.039 (2)0.0024 (17)0.0163 (18)0.0014 (18)
C110.063 (3)0.055 (2)0.041 (2)0.0008 (19)0.025 (2)0.0055 (18)
C120.046 (2)0.046 (2)0.051 (2)0.0042 (17)0.0277 (19)0.0003 (18)
C130.040 (2)0.042 (2)0.038 (2)0.0015 (15)0.0161 (16)0.0023 (16)
C140.048 (2)0.056 (2)0.040 (2)0.0017 (18)0.0207 (18)0.0097 (17)
C150.042 (2)0.070 (3)0.048 (2)0.0043 (19)0.0216 (19)0.004 (2)
C160.039 (3)0.114 (5)0.103 (4)0.013 (3)0.002 (3)0.023 (3)
Geometric parameters (Å, º) top
Sn1—Cl12.4131 (8)C8—H8A0.9600
Sn1—Cl1i2.4131 (8)C8—H8B0.9600
Sn1—Cl2i2.4305 (9)C8—H8C0.9600
Sn1—Cl22.4305 (9)N2—C131.471 (4)
Sn1—Cl32.4315 (8)N2—H2A0.8900
Sn1—Cl3i2.4315 (8)N2—H2B0.8900
N1—C51.473 (5)N2—H2C0.8900
N1—H1A0.8900O3—C91.320 (5)
N1—H1B0.8900O3—C161.448 (5)
N1—H1C0.8900O4—C91.185 (5)
O1—C11.314 (6)C9—C101.489 (5)
O1—C81.434 (5)C10—C151.380 (5)
O2—C11.197 (5)C10—C111.384 (5)
C1—C21.492 (5)C11—C121.377 (5)
C2—C71.373 (6)C11—H110.9300
C2—C31.384 (5)C12—C131.375 (5)
C3—C41.368 (5)C12—H120.9300
C3—H30.9300C13—C141.371 (5)
C4—C51.362 (5)C14—C151.378 (5)
C4—H40.9300C14—H140.9300
C5—C61.380 (5)C15—H150.9300
C6—C71.369 (5)C16—H16A0.9600
C6—H60.9300C16—H16B0.9600
C7—H70.9300C16—H16C0.9600
Cl1—Sn1—Cl1i89.79 (5)C2—C7—H7119.5
Cl1—Sn1—Cl2i89.66 (3)O1—C8—H8A109.5
Cl1i—Sn1—Cl2i90.63 (3)O1—C8—H8B109.5
Cl1—Sn1—Cl290.63 (3)H8A—C8—H8B109.5
Cl1i—Sn1—Cl289.66 (3)O1—C8—H8C109.5
Cl2i—Sn1—Cl2179.58 (4)H8A—C8—H8C109.5
Cl1—Sn1—Cl390.88 (3)H8B—C8—H8C109.5
Cl1i—Sn1—Cl3179.00 (3)C13—N2—H2A109.5
Cl2i—Sn1—Cl388.64 (3)C13—N2—H2B109.5
Cl2—Sn1—Cl391.06 (3)H2A—N2—H2B109.5
Cl1—Sn1—Cl3i179.00 (3)C13—N2—H2C109.5
Cl1i—Sn1—Cl3i90.88 (3)H2A—N2—H2C109.5
Cl2i—Sn1—Cl3i91.06 (3)H2B—N2—H2C109.5
Cl2—Sn1—Cl3i88.64 (3)C9—O3—C16115.8 (4)
Cl3—Sn1—Cl3i88.45 (4)O4—C9—O3124.0 (4)
C5—N1—H1A109.5O4—C9—C10123.4 (5)
C5—N1—H1B109.5O3—C9—C10112.6 (4)
H1A—N1—H1B109.5C15—C10—C11119.7 (3)
C5—N1—H1C109.5C15—C10—C9121.8 (4)
H1A—N1—H1C109.5C11—C10—C9118.5 (4)
H1B—N1—H1C109.5C12—C11—C10120.8 (4)
C1—O1—C8117.0 (4)C12—C11—H11119.6
O2—C1—O1123.1 (4)C10—C11—H11119.6
O2—C1—C2123.4 (5)C13—C12—C11118.3 (3)
O1—C1—C2113.5 (4)C13—C12—H12120.9
C7—C2—C3119.2 (4)C11—C12—H12120.9
C7—C2—C1120.1 (4)C14—C13—C12121.8 (3)
C3—C2—C1120.6 (4)C14—C13—N2119.2 (3)
C4—C3—C2120.1 (4)C12—C13—N2118.9 (3)
C4—C3—H3120.0C13—C14—C15119.5 (4)
C2—C3—H3120.0C13—C14—H14120.3
C5—C4—C3119.9 (4)C15—C14—H14120.3
C5—C4—H4120.0C14—C15—C10119.8 (4)
C3—C4—H4120.0C14—C15—H15120.1
C4—C5—C6121.0 (4)C10—C15—H15120.1
C4—C5—N1119.9 (3)O3—C16—H16A109.5
C6—C5—N1119.0 (4)O3—C16—H16B109.5
C7—C6—C5118.8 (4)H16A—C16—H16B109.5
C7—C6—H6120.6O3—C16—H16C109.5
C5—C6—H6120.6H16A—C16—H16C109.5
C6—C7—C2121.0 (3)H16B—C16—H16C109.5
C6—C7—H7119.5
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl30.892.783.659 (4)170
N2—H2B···Cl30.892.713.479 (3)145
N2—H2C···Cl40.892.213.098 (4)177
N1—H1B···Cl4ii0.892.293.155 (4)165
N1—H1C···Cl4iii0.892.223.092 (4)166
N2—H2A···Cl1iv0.893.013.482 (3)115
C3—H3···O4v0.932.393.148 (6)139
C15—H15···O2vi0.932.383.130 (5)138
Symmetry codes: (ii) x, y+1, z; (iii) x, y+1, z; (iv) x, y1, z; (v) x+1/2, y+3/2, z+1/2; (vi) x1/2, y1/2, z.

Experimental details

Crystal data
Chemical formula(C8H10NO2)4[SnCl6]Cl2
Mr1010.97
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)30.748 (3), 7.1172 (8), 22.113 (2)
β (°) 119.424 (2)
V3)4215.0 (7)
Z4
Radiation typeMo Kα
µ (mm1)1.16
Crystal size (mm)0.50 × 0.46 × 0.46
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.594, 0.617
No. of measured, independent and
observed [I > 2σ(I)] reflections
10221, 3719, 2969
Rint0.035
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.090, 1.01
No. of reflections3719
No. of parameters245
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 0.44

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl30.892.783.659 (4)170
N2—H2B···Cl30.892.713.479 (3)145
N2—H2C···Cl40.892.213.098 (4)177
N1—H1B···Cl4i0.892.293.155 (4)165
N1—H1C···Cl4ii0.892.223.092 (4)166
N2—H2A···Cl1iii0.893.013.482 (3)115
C3—H3···O4iv0.932.393.148 (6)139
C15—H15···O2v0.932.383.130 (5)138
Symmetry codes: (i) x, y+1, z; (ii) x, y+1, z; (iii) x, y1, z; (iv) x+1/2, y+3/2, z+1/2; (v) x1/2, y1/2, z.
 

Acknowledgements

The authors acknowledge the financial support of the National Science Foundation of China (grant Nos. 50672090 and 50702053).

References

First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDescalzo, A. B., Martinez-Manez, R., Sancenón, F., Hoffmann, K. & Rurack, K. (2006). Angew. Chem. Int. Ed. 45, 5924–5948.  Web of Science CrossRef CAS Google Scholar
First citationLi, Y. Y., Zheng, G. L., Lin, C. K. & Lin, J. (2007). Solid State Sci. 9, 855–861.  Web of Science CSD CrossRef Google Scholar
First citationSanchez, C., Julián, B., Belleville, P. & Popall, M. (2005). J. Mater. Chem. 15, 3559–3592.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, S. J., Lanty, G., Lauret, J. S., Deleporte, E., Audebert, P. & Galmiche, L. (2009). Acta Mater. 57, 3301–3309.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds