organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 3| March 2011| Pages o625-o626

2,2′,2′′-(Nitrilo­tri­methyl­ene)tris­­(1H-benzimidazol-3-ium) trinitrate

aSchool of Mechanical Engineering, Qingdao Technological University, Qingdao 266033, People's Republic of China
*Correspondence e-mail: yicui163@163.com

(Received 22 January 2011; accepted 31 January 2011; online 12 February 2011)

In the title compound, C24H24N73+·3NO3, the cation exhibits a distorted propeller-like conformation in which the benzimid­azolium fragments form dihedral angles of 9.4 (1), 10.7 (1) and 19.1 (1)° with each other. In the crystal, inter­molecular N—H⋯O hydrogen bonds link cations and anions into double ribbons propagated in [100]. Weak inter­molecular C—H⋯O inter­actions further consolidate the packing.

Related literature

A blue-emitting LED device fabricated with the tris­(2-amino­eth­yl)amine cerium complex was reported by Zheng et al. (2007[Zheng, X. L., Liu, Y., Pan, M., Lu, X. Q., Zhang, J. Y., Zhao, C. Y., Tong, Y. X. & Su, C. Y. (2007). Angew. Chem. Int. Ed. 46, 7399-7403.]). For the crystal structures of related tris(1H-benzimidazol-2-ylmethyl)amine adducts with H2O and 1.5H2O·0.5MeOH·MeCN, see: Zhang et al. (2005[Zhang, X.-L., Zheng, S.-R., Liu, Y.-R., Zheng, X.-L. & Su, C.-Y. (2005). Acta Cryst. C61, o533-o536.]).

[Scheme 1]

Experimental

Crystal data
  • C24H24N73+·3NO3

  • Mr = 596.53

  • Triclinic, [P \overline 1]

  • a = 8.9493 (3) Å

  • b = 9.2209 (3) Å

  • c = 15.8027 (6) Å

  • α = 98.438 (1)°

  • β = 91.910 (1)°

  • γ = 101.156 (1)°

  • V = 1263.00 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 153 K

  • 0.10 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART 1K CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.972, Tmax = 0.985

  • 12387 measured reflections

  • 5703 independent reflections

  • 4738 reflections with I > 2σ(I)

  • Rint = 0.014

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.103

  • S = 1.09

  • 5703 reflections

  • 413 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O4i 0.87 (2) 1.95 (2) 2.8147 (15) 176 (2)
N2—H2N⋯O8 0.87 (2) 1.94 (2) 2.7891 (15) 167 (2)
N3—H3N⋯O4i 0.88 (1) 1.87 (1) 2.7382 (15) 172 (2)
N2—H2N⋯O9 0.87 (2) 2.56 (2) 3.2396 (16) 136 (2)
N5—H5N⋯O3 0.88 (2) 1.77 (2) 2.6477 (15) 175 (2)
N4—H4N⋯O5 0.86 (1) 2.10 (2) 2.8793 (16) 150 (2)
N4—H4N⋯O6 0.86 (1) 2.52 (1) 3.3127 (18) 153 (2)
C5—H5A⋯O9 0.95 2.54 3.2922 (18) 136
C8—H8A⋯O2ii 0.99 2.32 3.2585 (17) 159
C9—H9B⋯O2ii 0.99 2.47 3.2500 (16) 135
C13—H13A⋯O3iii 0.95 2.52 3.2240 (18) 131
Symmetry codes: (i) x-1, y, z; (ii) x, y-1, z; (iii) -x+1, -y+2, -z+1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

Supporting information


Comment top

The tripodal ligands derived from the Schiff-base condensation with tris(2-aminoethyl)amine (H3ntb) are of particular interest since the benzimidazole ring in a terpyridine-like ligand allows easy derivation and incorporation in segmental di- and trileptic ligands used as building blocks in self-assembling processes (Zheng et al., 2007). A blue-emitting LED device was fabricated using one ntb cerium complex (Zheng et al., 2007). In the corresponding ntb adduct [ntb.H2O and ntb.1.5H2O.0.5MeOH.MeCN] (Zhang et al., 2005).the ntb adopts a tripodal 'mode to form hydrogen bonds with a solvent water molecule via N—H···O and O—H···N hydrogen bond. As a part of our study of the assembly of supramolecular aggregates with ntb-related compounds, we report here the synthesis and crystal structure of the title compound (I).

In (I) (Fig. 1), the three free N atoms were all pronated, and ntb adopts a tripodal mode to form strong N—H···O hydrogen bonds (Table 1) with O atoms of three nitrate anions building the 1-D chains along the a axis. In the cation, three benzimidazole rings form in pairs the dihedral angles in the region 9.4 (1) to 19.1 (1)°. There are also some weak C—H···O inter- and intramolecular interactions, which further stabilize the structure of (I).

Related literature top

A blue-emitting LED device fabricated with the tris(2-aminoethyl)amine cerium complex was reported by Zheng et al. (2007). For the crystal structures of related adducts with H2O and 1.5H2O.0.5MeOH.MeCN, see: Zhang et al. (2005).

Experimental top

Tris(2-aminoethyl)amine was prepared from the condensation reaction between nitrilotriacetate and 1,2-diaminobenzene in diethylene glycol (yield 73%). Single crystals of (I) suitable for X-ray analysis were obtained by slow evaporation from a 50% nitric acid solution at room temperature.

Refinement top

C-bound H atoms were geometrically positioned with C—H distances of 0.93–0.97 Å. and refined as riding, with Uiso(H) = 1.2 Ueq(C). N-bound H atoms were located in difference Fourier maps and refined isotropically, with N—H bond length restrained to 0.87 (2) Å.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and local programs.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme. N—H···O hydrogen bonds are shown by dashed lines.
2,2',2''-(Nitrilotrimethylene)tris(1H-benzimidazol-3-ium) trinitrate top
Crystal data top
C24H24N73+·3NO3Z = 2
Mr = 596.53F(000) = 620
Triclinic, P1Dx = 1.569 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.9493 (3) ÅCell parameters from 520 reflections
b = 9.2209 (3) Åθ = 10–14°
c = 15.8027 (6) ŵ = 0.12 mm1
α = 98.438 (1)°T = 153 K
β = 91.910 (1)°Block, colorless
γ = 101.156 (1)°0.10 × 0.10 × 0.10 mm
V = 1263.00 (8) Å3
Data collection top
Bruker SMART 1K CCD
diffractometer
5703 independent reflections
Radiation source: fine-focus sealed tube4738 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
Thin–slice ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1111
Tmin = 0.972, Tmax = 0.985k = 1111
12387 measured reflectionsl = 2020
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.103 w = 1/[σ2(Fo2) + (0.052P)2 + 0.4262P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
5703 reflectionsΔρmax = 0.36 e Å3
413 parametersΔρmin = 0.22 e Å3
6 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0084 (12)
Crystal data top
C24H24N73+·3NO3γ = 101.156 (1)°
Mr = 596.53V = 1263.00 (8) Å3
Triclinic, P1Z = 2
a = 8.9493 (3) ÅMo Kα radiation
b = 9.2209 (3) ŵ = 0.12 mm1
c = 15.8027 (6) ÅT = 153 K
α = 98.438 (1)°0.10 × 0.10 × 0.10 mm
β = 91.910 (1)°
Data collection top
Bruker SMART 1K CCD
diffractometer
5703 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
4738 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.985Rint = 0.014
12387 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0346 restraints
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.36 e Å3
5703 reflectionsΔρmin = 0.22 e Å3
413 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.09657 (13)0.85873 (13)0.28627 (8)0.0368 (3)
O20.22174 (12)1.06093 (11)0.36368 (7)0.0297 (2)
O30.32723 (11)0.86872 (11)0.33719 (6)0.0250 (2)
O40.80054 (11)0.48938 (11)0.36252 (7)0.0264 (2)
O50.55693 (11)0.47164 (14)0.36810 (8)0.0370 (3)
O60.70944 (15)0.65439 (13)0.44643 (8)0.0395 (3)
N10.23863 (12)0.23077 (12)0.23824 (7)0.0189 (2)
N20.17444 (12)0.05714 (13)0.14645 (7)0.0211 (2)
N30.09014 (12)0.61176 (12)0.43150 (7)0.0176 (2)
N40.33476 (12)0.62438 (12)0.44885 (7)0.0174 (2)
N50.36487 (13)0.63293 (12)0.22864 (7)0.0195 (2)
N60.31324 (13)0.43181 (13)0.13275 (7)0.0198 (2)
N70.07227 (12)0.38082 (12)0.28051 (7)0.0170 (2)
N80.21321 (13)0.93021 (13)0.32878 (7)0.0203 (2)
N90.68763 (13)0.53995 (13)0.39242 (7)0.0225 (2)
C10.37391 (15)0.14343 (14)0.19857 (8)0.0182 (3)
C20.52618 (15)0.14841 (16)0.21100 (9)0.0228 (3)
H2A0.55490.22260.25200.027*
C30.63329 (15)0.03933 (16)0.16042 (9)0.0237 (3)
H3A0.73860.03850.16700.028*
C40.59187 (16)0.06976 (16)0.09986 (9)0.0248 (3)
H4A0.66950.14180.06600.030*
C50.44094 (16)0.07550 (16)0.08808 (9)0.0251 (3)
H5A0.41230.14990.04720.030*
C60.33291 (14)0.03357 (15)0.13940 (8)0.0188 (3)
C70.12222 (15)0.17477 (14)0.20604 (8)0.0179 (3)
C80.04170 (14)0.22638 (14)0.23621 (9)0.0189 (3)
H8A0.06970.16030.27560.023*
H8B0.10570.21900.18650.023*
C90.19329 (14)0.40230 (14)0.34832 (8)0.0184 (3)
H9A0.29190.40080.32200.022*
H9B0.17290.31830.38150.022*
C100.20520 (14)0.54612 (14)0.40762 (8)0.0167 (2)
C110.30374 (14)0.74700 (14)0.50206 (8)0.0176 (3)
C120.39816 (15)0.86314 (15)0.55629 (9)0.0218 (3)
H12A0.50490.86850.56400.026*
C130.32688 (17)0.97029 (16)0.59821 (9)0.0257 (3)
H13A0.38691.05230.63580.031*
C140.16882 (16)0.96283 (16)0.58755 (9)0.0244 (3)
H14A0.12531.03920.61830.029*
C150.07526 (15)0.84738 (15)0.53349 (8)0.0208 (3)
H15A0.03150.84210.52590.025*
C160.14675 (14)0.73898 (14)0.49072 (8)0.0173 (3)
C170.09618 (14)0.49279 (14)0.22158 (8)0.0185 (3)
H17A0.07460.58820.25110.022*
H17B0.02270.45780.17110.022*
C180.25514 (15)0.52073 (14)0.19152 (8)0.0181 (3)
C190.46906 (15)0.48775 (15)0.13232 (8)0.0192 (3)
C200.58288 (16)0.43787 (16)0.08460 (9)0.0237 (3)
H20A0.56050.35130.04190.028*
C210.72911 (16)0.52014 (17)0.10235 (9)0.0250 (3)
H21A0.80940.48990.07080.030*
C220.76262 (16)0.64709 (16)0.16559 (9)0.0247 (3)
H22A0.86530.69990.17650.030*
C230.65013 (16)0.69746 (15)0.21250 (9)0.0228 (3)
H23A0.67280.78370.25540.027*
C240.50187 (15)0.61558 (14)0.19387 (8)0.0190 (3)
H4N0.4215 (13)0.6001 (19)0.4400 (11)0.032 (5)*
H1N0.227 (2)0.3081 (15)0.2784 (10)0.041 (5)*
H2N0.121 (2)0.0014 (19)0.1165 (11)0.043 (5)*
H3N0.0046 (12)0.580 (2)0.4113 (12)0.041 (5)*
H5N0.346 (2)0.7090 (16)0.2639 (11)0.047 (6)*
H6N0.263 (2)0.3528 (16)0.0987 (11)0.043 (5)*
O70.02490 (14)0.30337 (14)0.02717 (8)0.0398 (3)
O80.02242 (11)0.12078 (12)0.07496 (7)0.0311 (3)
O90.16701 (12)0.19196 (12)0.01998 (7)0.0287 (2)
N100.03802 (13)0.20607 (13)0.00941 (7)0.0221 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0259 (5)0.0319 (6)0.0470 (7)0.0034 (5)0.0091 (5)0.0065 (5)
O20.0341 (6)0.0190 (5)0.0359 (6)0.0113 (4)0.0015 (5)0.0041 (4)
O30.0276 (5)0.0216 (5)0.0270 (5)0.0127 (4)0.0016 (4)0.0011 (4)
O40.0135 (4)0.0282 (5)0.0353 (6)0.0080 (4)0.0015 (4)0.0072 (4)
O50.0134 (5)0.0479 (7)0.0496 (7)0.0061 (5)0.0002 (4)0.0077 (6)
O60.0485 (7)0.0303 (6)0.0397 (7)0.0162 (5)0.0092 (5)0.0071 (5)
N10.0154 (5)0.0180 (5)0.0216 (5)0.0031 (4)0.0003 (4)0.0015 (4)
N20.0153 (5)0.0207 (6)0.0248 (6)0.0033 (4)0.0014 (4)0.0043 (5)
N30.0137 (5)0.0188 (5)0.0194 (5)0.0035 (4)0.0002 (4)0.0001 (4)
N40.0140 (5)0.0185 (5)0.0198 (5)0.0056 (4)0.0007 (4)0.0000 (4)
N50.0198 (5)0.0162 (5)0.0208 (5)0.0030 (4)0.0018 (4)0.0015 (4)
N60.0175 (5)0.0204 (6)0.0196 (5)0.0036 (5)0.0005 (4)0.0028 (4)
N70.0136 (5)0.0157 (5)0.0205 (5)0.0034 (4)0.0003 (4)0.0014 (4)
N80.0216 (6)0.0196 (5)0.0202 (5)0.0060 (5)0.0023 (4)0.0022 (4)
N90.0190 (5)0.0256 (6)0.0250 (6)0.0085 (5)0.0036 (4)0.0044 (5)
C10.0172 (6)0.0166 (6)0.0203 (6)0.0026 (5)0.0005 (5)0.0022 (5)
C20.0192 (6)0.0239 (7)0.0257 (7)0.0076 (5)0.0017 (5)0.0010 (5)
C30.0150 (6)0.0273 (7)0.0296 (7)0.0050 (5)0.0009 (5)0.0063 (6)
C40.0189 (6)0.0263 (7)0.0260 (7)0.0000 (6)0.0046 (5)0.0008 (6)
C50.0205 (6)0.0248 (7)0.0259 (7)0.0019 (6)0.0010 (5)0.0050 (5)
C60.0151 (6)0.0196 (6)0.0215 (6)0.0034 (5)0.0005 (5)0.0030 (5)
C70.0171 (6)0.0159 (6)0.0199 (6)0.0029 (5)0.0020 (5)0.0010 (5)
C80.0140 (6)0.0173 (6)0.0236 (6)0.0034 (5)0.0000 (5)0.0026 (5)
C90.0169 (6)0.0167 (6)0.0210 (6)0.0054 (5)0.0005 (5)0.0010 (5)
C100.0160 (6)0.0179 (6)0.0168 (6)0.0049 (5)0.0006 (5)0.0026 (5)
C110.0175 (6)0.0191 (6)0.0163 (6)0.0043 (5)0.0019 (5)0.0021 (5)
C120.0177 (6)0.0235 (7)0.0218 (6)0.0019 (5)0.0005 (5)0.0008 (5)
C130.0253 (7)0.0232 (7)0.0246 (7)0.0026 (6)0.0013 (5)0.0056 (5)
C140.0267 (7)0.0230 (7)0.0232 (7)0.0092 (6)0.0035 (5)0.0027 (5)
C150.0188 (6)0.0230 (7)0.0218 (6)0.0073 (5)0.0041 (5)0.0025 (5)
C160.0167 (6)0.0179 (6)0.0170 (6)0.0031 (5)0.0015 (5)0.0019 (5)
C170.0161 (6)0.0179 (6)0.0210 (6)0.0052 (5)0.0000 (5)0.0007 (5)
C180.0184 (6)0.0174 (6)0.0185 (6)0.0043 (5)0.0000 (5)0.0018 (5)
C190.0176 (6)0.0203 (6)0.0193 (6)0.0031 (5)0.0006 (5)0.0023 (5)
C200.0240 (7)0.0245 (7)0.0219 (6)0.0073 (6)0.0027 (5)0.0020 (5)
C210.0212 (7)0.0308 (7)0.0252 (7)0.0093 (6)0.0046 (5)0.0056 (6)
C220.0172 (6)0.0270 (7)0.0297 (7)0.0023 (6)0.0007 (5)0.0062 (6)
C230.0209 (6)0.0199 (6)0.0263 (7)0.0027 (5)0.0007 (5)0.0008 (5)
C240.0203 (6)0.0185 (6)0.0186 (6)0.0052 (5)0.0019 (5)0.0027 (5)
O70.0381 (6)0.0415 (7)0.0384 (6)0.0190 (5)0.0028 (5)0.0135 (5)
O80.0211 (5)0.0365 (6)0.0292 (5)0.0039 (4)0.0023 (4)0.0127 (4)
O90.0237 (5)0.0295 (5)0.0298 (5)0.0071 (4)0.0061 (4)0.0058 (4)
N100.0201 (5)0.0225 (6)0.0213 (6)0.0022 (5)0.0042 (4)0.0026 (4)
Geometric parameters (Å, º) top
O1—N81.2380 (16)C5—C61.3914 (18)
O2—N81.2367 (15)C5—H5A0.9500
O3—N81.2717 (15)C7—C81.4908 (17)
O4—N91.2694 (14)C8—H8A0.9900
O5—N91.2355 (16)C8—H8B0.9900
O6—N91.2349 (16)C9—C101.4907 (17)
N1—C71.3332 (16)C9—H9A0.9900
N1—C11.3897 (16)C9—H9B0.9900
N1—H1N0.869 (9)C11—C121.3883 (18)
N2—C71.3254 (17)C11—C161.3966 (18)
N2—C61.3907 (16)C12—C131.379 (2)
N2—H2N0.869 (9)C12—H12A0.9500
N3—C101.3301 (16)C13—C141.406 (2)
N3—C161.3874 (16)C13—H13A0.9500
N3—H3N0.874 (9)C14—C151.3801 (19)
N4—C101.3333 (16)C14—H14A0.9500
N4—C111.3859 (16)C15—C161.3940 (18)
N4—H4N0.859 (9)C15—H15A0.9500
N5—C181.3301 (17)C17—C181.5016 (17)
N5—C241.3877 (17)C17—H17A0.9900
N5—H5N0.876 (9)C17—H17B0.9900
N6—C181.3338 (17)C19—C241.3900 (18)
N6—C191.3906 (17)C19—C201.3959 (18)
N6—H6N0.873 (9)C20—C211.377 (2)
N7—C81.4618 (16)C20—H20A0.9500
N7—C91.4621 (16)C21—C221.400 (2)
N7—C171.4795 (16)C21—H21A0.9500
C1—C61.3870 (18)C22—C231.381 (2)
C1—C21.3918 (18)C22—H22A0.9500
C2—C31.382 (2)C23—C241.3923 (19)
C2—H2A0.9500C23—H23A0.9500
C3—C41.397 (2)O7—N101.2334 (16)
C3—H3A0.9500O8—N101.2422 (15)
C4—C51.3796 (19)O9—N101.2671 (15)
C4—H4A0.9500
C7—N1—C1108.62 (11)C10—C9—H9A109.1
C7—N1—H1N123.1 (13)N7—C9—H9B109.1
C1—N1—H1N128.3 (13)C10—C9—H9B109.1
C7—N2—C6108.74 (11)H9A—C9—H9B107.9
C7—N2—H2N127.1 (13)N3—C10—N4109.55 (11)
C6—N2—H2N124.1 (13)N3—C10—C9126.25 (11)
C10—N3—C16108.76 (11)N4—C10—C9124.10 (11)
C10—N3—H3N124.8 (13)N4—C11—C12131.68 (12)
C16—N3—H3N126.5 (13)N4—C11—C16106.07 (11)
C10—N4—C11109.06 (11)C12—C11—C16122.23 (12)
C10—N4—H4N122.4 (12)C13—C12—C11115.64 (13)
C11—N4—H4N128.5 (12)C13—C12—H12A122.2
C18—N5—C24108.72 (11)C11—C12—H12A122.2
C18—N5—H5N122.6 (14)C12—C13—C14122.55 (13)
C24—N5—H5N128.2 (14)C12—C13—H13A118.7
C18—N6—C19108.57 (11)C14—C13—H13A118.7
C18—N6—H6N126.8 (13)C15—C14—C13121.68 (13)
C19—N6—H6N124.7 (13)C15—C14—H14A119.2
C8—N7—C9110.26 (10)C13—C14—H14A119.2
C8—N7—C17113.30 (10)C14—C15—C16116.02 (12)
C9—N7—C17114.46 (10)C14—C15—H15A122.0
O2—N8—O1121.43 (12)C16—C15—H15A122.0
O2—N8—O3118.84 (11)N3—C16—C15131.56 (12)
O1—N8—O3119.73 (11)N3—C16—C11106.56 (11)
O6—N9—O5120.93 (12)C15—C16—C11121.87 (12)
O6—N9—O4119.88 (12)N7—C17—C18113.13 (10)
O5—N9—O4119.17 (12)N7—C17—H17A109.0
C6—C1—N1106.39 (11)C18—C17—H17A109.0
C6—C1—C2121.54 (12)N7—C17—H17B109.0
N1—C1—C2132.03 (12)C18—C17—H17B109.0
C3—C2—C1116.25 (13)H17A—C17—H17B107.8
C3—C2—H2A121.9N5—C18—N6109.73 (11)
C1—C2—H2A121.9N5—C18—C17123.04 (12)
C2—C3—C4122.15 (13)N6—C18—C17126.80 (12)
C2—C3—H3A118.9C24—C19—N6106.41 (11)
C4—C3—H3A118.9C24—C19—C20121.45 (12)
C5—C4—C3121.58 (13)N6—C19—C20132.15 (12)
C5—C4—H4A119.2C21—C20—C19116.78 (13)
C3—C4—H4A119.2C21—C20—H20A121.6
C4—C5—C6116.35 (13)C19—C20—H20A121.6
C4—C5—H5A121.8C20—C21—C22121.76 (13)
C6—C5—H5A121.8C20—C21—H21A119.1
C1—C6—N2106.50 (11)C22—C21—H21A119.1
C1—C6—C5122.10 (12)C23—C22—C21121.64 (13)
N2—C6—C5131.38 (13)C23—C22—H22A119.2
N2—C7—N1109.74 (11)C21—C22—H22A119.2
N2—C7—C8124.00 (11)C22—C23—C24116.70 (13)
N1—C7—C8126.08 (11)C22—C23—H23A121.7
N7—C8—C7111.44 (10)C24—C23—H23A121.7
N7—C8—H8A109.3N5—C24—C19106.57 (11)
C7—C8—H8A109.3N5—C24—C23131.74 (12)
N7—C8—H8B109.3C19—C24—C23121.66 (12)
C7—C8—H8B109.3O7—N10—O8121.37 (12)
H8A—C8—H8B108.0O7—N10—O9119.80 (12)
N7—C9—C10112.30 (10)O8—N10—O9118.84 (11)
N7—C9—H9A109.1
C7—N1—C1—C61.23 (14)C11—C12—C13—C140.4 (2)
C7—N1—C1—C2176.57 (14)C12—C13—C14—C150.5 (2)
C6—C1—C2—C30.8 (2)C13—C14—C15—C160.3 (2)
N1—C1—C2—C3178.35 (13)C10—N3—C16—C15178.43 (13)
C1—C2—C3—C40.2 (2)C10—N3—C16—C110.29 (14)
C2—C3—C4—C50.8 (2)C14—C15—C16—N3178.53 (13)
C3—C4—C5—C60.3 (2)C14—C15—C16—C110.03 (19)
N1—C1—C6—N20.92 (14)N4—C11—C16—N30.22 (13)
C2—C1—C6—N2177.16 (12)C12—C11—C16—N3178.73 (12)
N1—C1—C6—C5179.44 (12)N4—C11—C16—C15178.66 (12)
C2—C1—C6—C51.4 (2)C12—C11—C16—C150.1 (2)
C7—N2—C6—C10.30 (15)C8—N7—C17—C1881.34 (13)
C7—N2—C6—C5178.63 (14)C9—N7—C17—C1846.25 (14)
C4—C5—C6—C10.7 (2)C24—N5—C18—N61.14 (15)
C4—C5—C6—N2177.38 (14)C24—N5—C18—C17171.75 (12)
C6—N2—C7—N10.48 (15)C19—N6—C18—N50.82 (15)
C6—N2—C7—C8174.92 (12)C19—N6—C18—C17171.74 (12)
C1—N1—C7—N21.07 (15)N7—C17—C18—N595.69 (14)
C1—N1—C7—C8174.21 (12)N7—C17—C18—N675.95 (17)
C9—N7—C8—C7147.42 (11)C18—N6—C19—C240.18 (14)
C17—N7—C8—C782.83 (13)C18—N6—C19—C20179.29 (14)
N2—C7—C8—N7162.01 (12)C24—C19—C20—C210.9 (2)
N1—C7—C8—N723.35 (18)N6—C19—C20—C21178.50 (14)
C8—N7—C9—C10167.25 (10)C19—C20—C21—C220.5 (2)
C17—N7—C9—C1063.62 (13)C20—C21—C22—C231.0 (2)
C16—N3—C10—N40.25 (14)C21—C22—C23—C240.1 (2)
C16—N3—C10—C9176.69 (12)C18—N5—C24—C191.00 (15)
C11—N4—C10—N30.11 (14)C18—N5—C24—C23176.96 (14)
C11—N4—C10—C9176.64 (11)N6—C19—C24—N50.49 (14)
N7—C9—C10—N334.37 (17)C20—C19—C24—N5179.97 (12)
N7—C9—C10—N4149.68 (12)N6—C19—C24—C23177.72 (12)
C10—N4—C11—C12178.39 (13)C20—C19—C24—C231.8 (2)
C10—N4—C11—C160.07 (14)C22—C23—C24—N5178.97 (14)
N4—C11—C12—C13178.02 (13)C22—C23—C24—C191.3 (2)
C16—C11—C12—C130.07 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O4i0.87 (2)1.95 (2)2.8147 (15)176 (2)
N2—H2N···O80.87 (2)1.94 (2)2.7891 (15)167 (2)
N3—H3N···O4i0.88 (1)1.87 (1)2.7382 (15)172 (2)
N2—H2N···O90.87 (2)2.56 (2)3.2396 (16)136 (2)
N5—H5N···O30.88 (2)1.77 (2)2.6477 (15)175 (2)
N4—H4N···O50.86 (1)2.10 (2)2.8793 (16)150 (2)
N4—H4N···O60.86 (1)2.52 (1)3.3127 (18)153 (2)
C5—H5A···O90.952.543.2922 (18)136
C8—H8A···O2ii0.992.323.2585 (17)159
C9—H9B···O2ii0.992.473.2500 (16)135
C13—H13A···O3iii0.952.523.2240 (18)131
Symmetry codes: (i) x1, y, z; (ii) x, y1, z; (iii) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC24H24N73+·3NO3
Mr596.53
Crystal system, space groupTriclinic, P1
Temperature (K)153
a, b, c (Å)8.9493 (3), 9.2209 (3), 15.8027 (6)
α, β, γ (°)98.438 (1), 91.910 (1), 101.156 (1)
V3)1263.00 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.10 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART 1K CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.972, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
12387, 5703, 4738
Rint0.014
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.103, 1.09
No. of reflections5703
No. of parameters413
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.36, 0.22

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXTL (Sheldrick, 2008) and local programs.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O4i0.870 (15)1.946 (15)2.8147 (15)176.0 (17)
N2—H2N···O80.869 (18)1.936 (18)2.7891 (15)166.8 (17)
N3—H3N···O4i0.875 (13)1.868 (14)2.7382 (15)172.1 (15)
N2—H2N···O90.869 (18)2.555 (17)3.2396 (16)136.3 (15)
N5—H5N···O30.877 (16)1.774 (16)2.6477 (15)174.5 (17)
N4—H4N···O50.859 (13)2.101 (15)2.8793 (16)150.4 (15)
N4—H4N···O60.859 (13)2.524 (12)3.3127 (18)153.1 (15)
C5—H5A···O90.952.543.2922 (18)136
C8—H8A···O2ii0.992.323.2585 (17)159
C9—H9B···O2ii0.992.473.2500 (16)135
C13—H13A···O3iii0.952.523.2240 (18)131
Symmetry codes: (i) x1, y, z; (ii) x, y1, z; (iii) x+1, y+2, z+1.
 

Acknowledgements

This work was supported by the NSF of Shandong Province (grant No. 2009ZRA02071), the Doctoral Science Foundation of Shandong Province (grant No. 2007BS04023) and the Project of Shandong Province Higher Educational Science and Technology Program (No. J09LB53).

References

First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, X.-L., Zheng, S.-R., Liu, Y.-R., Zheng, X.-L. & Su, C.-Y. (2005). Acta Cryst. C61, o533–o536.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationZheng, X. L., Liu, Y., Pan, M., Lu, X. Q., Zhang, J. Y., Zhao, C. Y., Tong, Y. X. & Su, C. Y. (2007). Angew. Chem. Int. Ed. 46, 7399–7403.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 3| March 2011| Pages o625-o626
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds