organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 2-{[4-(pyridin-4-yl)pyrimidin-2-yl]sulfan­yl}acetate

aDepartment of Applied Chemistry and Environmental Engineering, Bengbu College, Bengbu, 233030, People's Republic of China
*Correspondence e-mail: wangchuanhu2003@yahoo.com.cn

(Received 31 January 2011; accepted 4 February 2011; online 23 February 2011)

In the title mol­ecule, C13H13N3O2S, the pyridine and pyrimidine rings form a dihedral angle of 3.8 (1)°. The crystal packing exhibits weak inter­molecular C—H⋯O hydrogen bonds.

Related literature

For details of the synthesis and general background to the rational design and assembly of coordination polymers with thio­ethers, see: Dong et al. (2008[Dong, H. Z., Zhu, H. B., Tong, T. F. & Gou, S. H. (2008). J. Mol. Struct. 891, 266-271.], 2009[Dong, H. Z., Zhao, J., Zhu, H. B. & Gou, S. H. (2009). Polyhedron, 28, 1040-1048.]). For the crystal structures of coordination complexes with related ligands, see: Du et al. (2004[Du, M., Zhao, X. J. & Wang, Y. (2004). Dalton Trans. pp. 2065-2072.]); Zhu et al. (2009[Zhu, H.-B., Xu, G. & Sun, Y.-Y. (2009). Acta Cryst. E65, m1126.]).

[Scheme 1]

Experimental

Crystal data
  • C13H13N3O2S

  • Mr = 275.33

  • Triclinic, [P \overline 1]

  • a = 8.6579 (8) Å

  • b = 9.7394 (9) Å

  • c = 9.9188 (8) Å

  • α = 62.661 (6)°

  • β = 71.416 (5)°

  • γ = 65.024 (6)°

  • V = 665.35 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 291 K

  • 0.32 × 0.24 × 0.18 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.917, Tmax = 0.966

  • 11760 measured reflections

  • 3021 independent reflections

  • 2387 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.115

  • S = 1.04

  • 3021 reflections

  • 173 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O1i 0.93 2.52 3.383 (2) 154
C7—H7⋯O1ii 0.93 2.61 3.373 (2) 140
Symmetry codes: (i) -x+1, -y, -z+2; (ii) x, y, z+1.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Remarkable attention has been paid to the rational design and assembly of new coordination polymers with thioethers (Dong et al., 2008; 2009; Du et al., 2004; Zhu et al., 2009). Herewith we report the synthesis and crystal structure of the title compound (I)- a new derivative of 4-(4-pyridinyl)pyrimidine-2-thiol.

In (I) (Fig. 1), the pyridine and pyrimidine rings form a dihedral angle of 3.8 (1)°. The crystal packing exhibits weak intermolecular C—H···O hydrogen bonds (Table 1).

Related literature top

For details of the synthesis and general background to the rational design and assembly of coordination polymers with thioethers, see: Dong et al. (2008, 2009). For the crystal structures of coordination complexes with related ligands, see: Du et al. (2004); Zhu et al. (2009).

Experimental top

All solvents and chemicals were of analytical grade and were used without further purification. The title compound was prepared by similar procedure reported in the literature (Dong et al., 2008; 2009), To a solution of 4-(4-pyridinyl)pyrimidine-2-thiol (3.78 g, 20 mmol) and sodium hydroxide (0.80 g, 20 mmol) in dry ethanol (100 ml), ethyl 2-bromoacetate (3.34 g, 20 mmol) in CCl4 (30 ml) was added. The mixture was stirred and refluxed for 8 h. After cooling, precipitates were filtered, washed by water and ethanol, and dried in vacuum. Single crystals suitable for X-ray diffraction were grown from methanol solution by slow evaporation in air at room temperature.

Refinement top

All H atoms were geometrically positioned (C—H 0.93–0.97 Å) and refined as riding, with Uiso(H)=1.2–1.5 Ueq of the parent atom.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing 30% probability displacement ellipsoids and the atomic numbering.
Ethyl 2-{[4-(pyridin-4-yl)pyrimidin-2-yl]sulfanyl}acetate top
Crystal data top
C13H13N3O2SZ = 2
Mr = 275.33F(000) = 288.0
Triclinic, P1Dx = 1.374 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.6579 (8) ÅCell parameters from 3021 reflections
b = 9.7394 (9) Åθ = 2.3–27.5°
c = 9.9188 (8) ŵ = 0.25 mm1
α = 62.661 (6)°T = 291 K
β = 71.416 (5)°Block, colorless
γ = 65.024 (6)°0.32 × 0.24 × 0.18 mm
V = 665.35 (10) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
3021 independent reflections
Radiation source: fine-focus sealed tube2387 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ϕ and ω scansθmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1110
Tmin = 0.917, Tmax = 0.966k = 1212
11760 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0658P)2 + 0.067P]
where P = (Fo2 + 2Fc2)/3
3021 reflections(Δ/σ)max < 0.001
173 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C13H13N3O2Sγ = 65.024 (6)°
Mr = 275.33V = 665.35 (10) Å3
Triclinic, P1Z = 2
a = 8.6579 (8) ÅMo Kα radiation
b = 9.7394 (9) ŵ = 0.25 mm1
c = 9.9188 (8) ÅT = 291 K
α = 62.661 (6)°0.32 × 0.24 × 0.18 mm
β = 71.416 (5)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3021 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2387 reflections with I > 2σ(I)
Tmin = 0.917, Tmax = 0.966Rint = 0.032
11760 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 1.04Δρmax = 0.24 e Å3
3021 reflectionsΔρmin = 0.20 e Å3
173 parameters
Special details top

Experimental. The structure was solved by direct methods (Bruker, 2000) and successive difference Fourier syntheses.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.21141 (18)0.00339 (18)0.89933 (17)0.0411 (3)
C20.3174 (2)0.21822 (19)1.10105 (19)0.0496 (4)
H20.35170.33081.15550.060*
C30.3336 (2)0.12042 (18)1.15846 (18)0.0459 (4)
H30.37930.16521.24840.055*
C40.27871 (17)0.04721 (17)1.07653 (16)0.0376 (3)
C50.28647 (18)0.16653 (17)1.12645 (16)0.0388 (3)
C60.3582 (2)0.1176 (2)1.25464 (18)0.0478 (4)
H60.40180.00701.31410.057*
C70.3641 (2)0.2347 (2)1.2930 (2)0.0568 (4)
H70.41260.19911.37940.068*
C80.2241 (2)0.3332 (2)1.04370 (19)0.0525 (4)
H80.17400.37250.95730.063*
C90.2372 (3)0.4407 (2)1.0913 (2)0.0660 (5)
H90.19600.55211.03350.079*
C100.0836 (2)0.2913 (2)0.6641 (2)0.0515 (4)
H10A0.03150.34390.57180.062*
H10B0.00420.32270.74390.062*
C110.2273 (2)0.35667 (18)0.63290 (16)0.0422 (3)
C120.2788 (2)0.5879 (2)0.6083 (2)0.0620 (5)
H12A0.34260.60120.50560.074*
H12B0.36030.52580.68050.074*
C130.1774 (3)0.7498 (3)0.6187 (3)0.0927 (8)
H13A0.10140.81240.54320.139*
H13B0.25420.80660.60020.139*
H13C0.11080.73540.71930.139*
N10.3051 (2)0.39441 (19)1.21466 (18)0.0644 (4)
N20.21695 (15)0.11055 (14)0.94434 (14)0.0392 (3)
N30.25523 (17)0.15909 (16)0.97173 (16)0.0482 (3)
O10.37818 (15)0.29263 (14)0.59842 (13)0.0516 (3)
O20.15904 (14)0.50272 (13)0.64426 (13)0.0512 (3)
S10.14603 (6)0.07492 (5)0.72151 (5)0.05259 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0408 (8)0.0366 (8)0.0520 (8)0.0153 (6)0.0068 (6)0.0197 (6)
C20.0542 (9)0.0320 (8)0.0601 (10)0.0176 (7)0.0095 (7)0.0119 (7)
C30.0514 (9)0.0366 (8)0.0489 (8)0.0168 (7)0.0111 (7)0.0113 (7)
C40.0365 (7)0.0348 (7)0.0428 (7)0.0142 (6)0.0023 (6)0.0159 (6)
C50.0402 (8)0.0373 (8)0.0415 (7)0.0142 (6)0.0015 (6)0.0188 (6)
C60.0573 (9)0.0410 (8)0.0463 (8)0.0143 (7)0.0124 (7)0.0162 (7)
C70.0713 (11)0.0575 (11)0.0533 (9)0.0186 (9)0.0167 (8)0.0282 (8)
C80.0712 (11)0.0398 (9)0.0521 (9)0.0135 (8)0.0201 (8)0.0192 (7)
C90.1000 (15)0.0390 (9)0.0678 (11)0.0152 (9)0.0285 (10)0.0238 (8)
C100.0549 (9)0.0403 (8)0.0677 (10)0.0094 (7)0.0271 (8)0.0213 (8)
C110.0533 (9)0.0353 (8)0.0405 (7)0.0108 (7)0.0175 (6)0.0130 (6)
C120.0637 (11)0.0517 (10)0.0791 (12)0.0294 (9)0.0024 (9)0.0277 (9)
C130.0989 (17)0.0653 (14)0.133 (2)0.0416 (13)0.0127 (15)0.0589 (15)
N10.0889 (11)0.0530 (9)0.0664 (9)0.0200 (8)0.0205 (8)0.0321 (8)
N20.0434 (7)0.0334 (6)0.0460 (7)0.0143 (5)0.0076 (5)0.0172 (5)
N30.0534 (8)0.0346 (7)0.0629 (8)0.0176 (6)0.0102 (6)0.0199 (6)
O10.0513 (7)0.0473 (7)0.0572 (7)0.0104 (5)0.0108 (5)0.0241 (5)
O20.0521 (6)0.0386 (6)0.0680 (7)0.0148 (5)0.0100 (5)0.0237 (5)
S10.0670 (3)0.0416 (2)0.0651 (3)0.0161 (2)0.0253 (2)0.0246 (2)
Geometric parameters (Å, º) top
C1—N21.3323 (17)C8—H80.9300
C1—N31.3367 (19)C9—N11.332 (2)
C1—S11.7582 (16)C9—H90.9300
C2—N31.329 (2)C10—C111.514 (2)
C2—C31.383 (2)C10—S11.7858 (16)
C2—H20.9300C10—H10A0.9700
C3—C41.387 (2)C10—H10B0.9700
C3—H30.9300C11—O11.1984 (18)
C4—N21.3456 (18)C11—O21.3342 (17)
C4—C51.4886 (19)C12—O21.4529 (19)
C5—C81.385 (2)C12—C131.479 (3)
C5—C61.388 (2)C12—H12A0.9700
C6—C71.381 (2)C12—H12B0.9700
C6—H60.9300C13—H13A0.9600
C7—N11.325 (2)C13—H13B0.9600
C7—H70.9300C13—H13C0.9600
C8—C91.385 (2)
N2—C1—N3127.86 (14)C11—C10—S1115.61 (11)
N2—C1—S1118.93 (11)C11—C10—H10A108.4
N3—C1—S1113.18 (10)S1—C10—H10A108.4
N3—C2—C3123.15 (14)C11—C10—H10B108.4
N3—C2—H2118.4S1—C10—H10B108.4
C3—C2—H2118.4H10A—C10—H10B107.4
C2—C3—C4117.32 (15)O1—C11—O2124.33 (14)
C2—C3—H3121.3O1—C11—C10126.61 (14)
C4—C3—H3121.3O2—C11—C10109.02 (13)
N2—C4—C3120.88 (13)O2—C12—C13107.85 (15)
N2—C4—C5116.22 (12)O2—C12—H12A110.1
C3—C4—C5122.90 (13)C13—C12—H12A110.1
C8—C5—C6116.98 (13)O2—C12—H12B110.1
C8—C5—C4120.72 (13)C13—C12—H12B110.1
C6—C5—C4122.29 (13)H12A—C12—H12B108.5
C7—C6—C5119.32 (15)C12—C13—H13A109.5
C7—C6—H6120.3C12—C13—H13B109.5
C5—C6—H6120.3H13A—C13—H13B109.5
N1—C7—C6124.28 (16)C12—C13—H13C109.5
N1—C7—H7117.9H13A—C13—H13C109.5
C6—C7—H7117.9H13B—C13—H13C109.5
C9—C8—C5119.20 (15)C7—N1—C9116.14 (14)
C9—C8—H8120.4C1—N2—C4116.09 (12)
C5—C8—H8120.4C2—N3—C1114.65 (12)
N1—C9—C8124.07 (17)C11—O2—C12116.28 (12)
N1—C9—H9118.0C1—S1—C10101.64 (7)
C8—C9—H9118.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O1i0.932.523.383 (2)154
C7—H7···O1ii0.932.613.373 (2)140
Symmetry codes: (i) x+1, y, z+2; (ii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC13H13N3O2S
Mr275.33
Crystal system, space groupTriclinic, P1
Temperature (K)291
a, b, c (Å)8.6579 (8), 9.7394 (9), 9.9188 (8)
α, β, γ (°)62.661 (6), 71.416 (5), 65.024 (6)
V3)665.35 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.32 × 0.24 × 0.18
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.917, 0.966
No. of measured, independent and
observed [I > 2σ(I)] reflections
11760, 3021, 2387
Rint0.032
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.115, 1.04
No. of reflections3021
No. of parameters173
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.20

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O1i0.932.523.383 (2)154
C7—H7···O1ii0.932.613.373 (2)140
Symmetry codes: (i) x+1, y, z+2; (ii) x, y, z+1.
 

Acknowledgements

The author is indebted to the National Natural Science Foundation of China (grant No. 20871039) for financial support.

References

First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDong, H. Z., Zhao, J., Zhu, H. B. & Gou, S. H. (2009). Polyhedron, 28, 1040–1048.  Web of Science CSD CrossRef CAS Google Scholar
First citationDong, H. Z., Zhu, H. B., Tong, T. F. & Gou, S. H. (2008). J. Mol. Struct. 891, 266–271.  Web of Science CSD CrossRef CAS Google Scholar
First citationDu, M., Zhao, X. J. & Wang, Y. (2004). Dalton Trans. pp. 2065–2072.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhu, H.-B., Xu, G. & Sun, Y.-Y. (2009). Acta Cryst. E65, m1126.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds