metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 3| March 2011| Pages m355-m356

Bis(2-amino-5-chloro­pyridinium) tetra­chloridozincate

aLaboratoire de Chimie des Matériaux, Faculté des sciences de Bizerte, 7021 Zarzouna, Tunisia, bUniverstié Lyon1, Centre de Diffractométrie Henri Longchambon, 43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne Cedex, France, and cLaboratoire de Chimie Organometallique de Surface (LCOMS), Ecole Superieure de Chimie Physique Electronique, 69622 Villeurbanne Cedex, France
*Correspondence e-mail: cherif_bennasr@yahoo.fr

(Received 5 February 2011; accepted 15 February 2011; online 23 February 2011)

The asymmetric unit of the title compound, (C5H6ClN2)2[ZnCl4], contains two 2-amino-5-chloro­pyridinium cations and one [ZnCl4]2− dianion which are held together by N—H⋯Cl and C—H⋯Cl hydrogen bonds. The [ZnCl4]2− anions have a distorted tetra­hedral geometry. Weak inter­molecular ππ stacking inter­actions exist between neighbouring aromatic rings of the cations with a centroid–centroid distance of 3.712 (7) Å.

Related literature

For common applications of organic–inorganic hybrid materials, see: Kobel & Hanack (1986[Kobel, W. & Hanack, M. (1986). Inorg. Chem. 25, 103-107.]); Pierpont & Jung (1994[Pierpont, C. G. & Jung, O. (1994). J. Am. Chem. Soc. 116, 2229-2230.]). For a related structure, see: Coomer et al. (2007[Coomer, F., Harrison, A. & Parsons, S. (2007). Private communication (deposition No. 660778). CCDC, Cambridge, England.]). For ππ inter­actions between pyridinium cations, see: Albrecht et al. (2003[Albrecht, A. S., Landee, C. P. & Turnbull, M. M. (2003). J. Chem. Crystallogr. 33, 269-276.]). For aminium–iminium tautomerism, see: Jin et al. (2001[Jin, Z. M., Pan, Y. J., Hu, M. L. & Liang, S. (2001). J. Chem. Crystallogr. 31, 191-195.]). For a discussion of C—N—C pyridinium angles, see: Jin et al. (2005[Jin, Z.-M., Shun, N., Lü, Y.-P., Hu, M.-L. & Shen, L. (2005). Acta Cryst. C61, m43-m45.]).

[Scheme 1]

Experimental

Crystal data
  • (C5H6ClN2)2[ZnCl4]

  • Mr = 466.33

  • Monoclinic, P 21 /c

  • a = 13.317 (1) Å

  • b = 14.817 (2) Å

  • c = 8.571 (1) Å

  • β = 92.923 (9)°

  • V = 1689.0 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.40 mm−1

  • T = 110 K

  • 0.23 × 0.15 × 0.10 mm

Data collection
  • Oxford Diffraction Xcalibur Atlas Gemini ultra diffractometer

  • Absorption correction: analytical CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]; Clark & Reid, 1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.]) Tmin = 0.711, Tmax = 0.835

  • 22410 measured reflections

  • 4360 independent reflections

  • 3553 reflections with I > 2σ(I)

  • Rint = 0.061

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.108

  • S = 1.02

  • 4356 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 1.27 e Å−3

  • Δρmin = −1.03 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N19—H191⋯Cl2i 0.85 2.76 3.496 (5) 146
N20—H201⋯Cl2i 0.85 2.41 3.231 (6) 163
N19—H192⋯Cl3ii 0.85 2.75 3.491 (5) 146
C17—H171⋯Cl3ii 0.92 2.65 3.442 (8) 144
N9—H91⋯Cl4iii 0.86 2.38 3.197 (4) 157
N11—H112⋯Cl4iii 0.87 2.58 3.356 (4) 148
N11—H111⋯Cl5iv 0.86 2.45 3.291 (6) 165
Symmetry codes: (i) -x, -y+1, -z+2; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{5\over 2}}]; (iii) -x+1, -y+1, -z+2; (iv) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Comment top

Organic-inorganic hybrid materials have been extensively studied in recent years due to their potential applications in various field (Kobel & Hanack, 1986; Pierpont & Jung, 1994). Herewith we report the crystal structure of the title compound, (I), formed in the reaction of 2-amino-5-chloropyridine with zinc chloride. The crystal structure of hydrated form of (I) (CCDC refcode JIPHAS) was reported recently by Coomer et al. (2007) .

In (I) (Fig.1), only the nitrogen atom of the aromatic ring of the title compound is protonated but not the amino group. Thus, to ensure charge equilibrium, the structure associates one tetrachlorozincate dianion with two 2-amino-5-chloropyridinium cations. The atomic arrangement of the title hybrid material can be described as inorganic [ZnCl4]2- units separated by the organic cations. The different entities are held together by columbic attraction and multiple hydrogen bonds to form a three dimensional network. The organic cations and inorganic dianion sare form N—H···Cl and C—H···Cl hydrogen bonds (Table 1). Intermolecular π-π interaction is present between identical antiparallel 2-amino-5-chloropyridinium cations with the centroid-to-centrpoid separation of 3.712 (7) Å. This π-stacking between pyridinium cations is weaker than that in bis(2-amino-5-methylpyridinium) tetrachlorozincate where the longest distance between the centroids is 3.54 Å (Albrecht et al., 2003). In the organic entity, the N11—C10 bond [1.332 (6) Å] is shorter than the N9—C10 [1.347 (6) Å] and N9—C8 [1.357 (6) Å] bonds, consistent with the iminuim tautomer (Jin et al., 2001). Moreover, the existence of the iminuim tautomer is supported by the fact that the C10—C12 [1.408 (6) Å] and C7—C13 [1.408 (7) Å] bonds are longer than the C12—C13 [1.372 (7) Å] and C7—C8 [1.344 (6) Å] bonds. Similar features are also observed in the other organic cations. However, previous study show that a pyridinium cation always possesses an expanded angle of C—N—C in comparison with the parent pyridine (Jin et al., 2005).

Related literature top

For common applications of organic–inorganic hybrid materials, see: Kobel & Hanack (1986); Pierpont & Jung (1994). For a related structure, see: Coomer et al. (2007). For ππ interactions between pyridinium cations, see: Albrecht et al. (2003). For aminium–iminium tautomerism, see: Jin et al. (2001). For a discussion of the C—N—C pyridinium angle, see: Jin et al. (2005).

Experimental top

A mixture of aqueous solution of 2-amino-5-chloropyridine (3 mmol, 0.385 g), zinc chloride (1.5 mmol, 0.297 g) and HCl (10 ml, 0.3 M) in a Petri dish was slowly evaporated at room temperature. Colourless single crystals of the title compound were isolated after several days (yield 54%).

Refinement top

All H atoms were initially located in a difference map, but placed in idealized positions (C—H 0.93–0.98 Å, N—H 0.86–0.89 Å) and refined as riding, with Uiso(H) = 1.2–1.5 Ueq of the parent atom.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).

Figures top
[Figure 1] Fig. 1. View of (I), showing 50% probability displacement ellipsoids and arbitrary spheres for the H atoms. Dashed lines denote hydrogen bonds.
Bis(2-amino-5-chloropyridinium) tetrachloridozincate top
Crystal data top
(C5H6ClN2)2[ZnCl4]F(000) = 928
Mr = 466.33Dx = 1.834 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.7107 Å
Hall symbol: -P 2ybcCell parameters from 8999 reflections
a = 13.317 (1) Åθ = 3.4–29.5°
b = 14.817 (2) ŵ = 2.40 mm1
c = 8.571 (1) ÅT = 110 K
β = 92.923 (9)°Block, colourless
V = 1689.0 (3) Å30.23 × 0.15 × 0.10 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Atlas Gemini ultra
diffractometer
4360 independent reflections
Radiation source: Enhance (Mo) X-ray Source3553 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
Detector resolution: 10.4685 pixels mm-1θmax = 29.6°, θmin = 3.4°
ω scansh = 1818
Absorption correction: analytical
CrysAlis PRO (Oxford Diffraction, 2009; Clark & Reid, 1995)
k = 2018
Tmin = 0.711, Tmax = 0.835l = 1111
22410 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.108 Method, part 1, Chebychev polynomial [Watkin, D. J. (1994). Acta Cryst. A50, 411–437; Prince, E. (1982). Mathematical Techniques in Crystallography and Materials Science Springer-Verlag, New York.] [weight] = 1.0/[A0*T0(x) + A1*T1(x) ··· + An-1]*Tn-1(x)]
where Ai are the Chebychev coefficients listed below and x = F /Fmax Method = Robust Weighting (Prince, 1982) W = [weight] * [1-(deltaF/6*sigmaF)2]2 Ai are: 425. 613. 311. 83.3
S = 1.02(Δ/σ)max = 0.001
4356 reflectionsΔρmax = 1.27 e Å3
190 parametersΔρmin = 1.03 e Å3
0 restraints
Crystal data top
(C5H6ClN2)2[ZnCl4]V = 1689.0 (3) Å3
Mr = 466.33Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.317 (1) ŵ = 2.40 mm1
b = 14.817 (2) ÅT = 110 K
c = 8.571 (1) Å0.23 × 0.15 × 0.10 mm
β = 92.923 (9)°
Data collection top
Oxford Diffraction Xcalibur Atlas Gemini ultra
diffractometer
4360 independent reflections
Absorption correction: analytical
CrysAlis PRO (Oxford Diffraction, 2009; Clark & Reid, 1995)
3553 reflections with I > 2σ(I)
Tmin = 0.711, Tmax = 0.835Rint = 0.061
22410 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.108H-atom parameters constrained
S = 1.02Δρmax = 1.27 e Å3
4356 reflectionsΔρmin = 1.03 e Å3
190 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.25192 (4)0.48608 (3)1.01057 (6)0.0183
Cl20.15870 (8)0.47893 (8)0.78203 (13)0.0220
Cl30.13940 (9)0.48449 (8)1.19926 (13)0.0255
Cl40.34397 (10)0.35524 (8)1.02302 (17)0.0298
Cl50.35902 (9)0.60259 (8)1.04980 (15)0.0249
Cl60.33629 (9)0.37113 (8)0.53253 (15)0.0266
C70.3767 (3)0.4786 (3)0.5834 (6)0.0213
C80.4484 (3)0.4888 (3)0.6981 (5)0.0204
N90.4826 (3)0.5725 (3)0.7372 (5)0.0201
C100.4457 (3)0.6486 (3)0.6703 (6)0.0194
N110.4816 (3)0.7281 (3)0.7197 (5)0.0263
C120.3706 (3)0.6396 (3)0.5495 (6)0.0218
C130.3361 (4)0.5555 (3)0.5071 (6)0.0242
H1310.28650.54920.42590.0299*
H1210.34490.69070.49910.0261*
H910.52540.57740.81600.0238*
H810.47480.43930.75110.0250*
Cl140.18546 (9)0.74583 (10)0.78663 (15)0.0313
C150.0852 (3)0.7508 (3)0.9057 (5)0.0221
C160.0460 (4)0.8350 (3)0.9491 (6)0.0253
C170.0331 (4)0.8381 (3)1.0446 (6)0.0247
C180.0742 (3)0.7580 (3)1.1000 (5)0.0201
N190.1504 (3)0.7566 (3)1.1978 (5)0.0249
N200.0342 (3)0.6791 (3)1.0543 (5)0.0211
C210.0433 (4)0.6741 (3)0.9572 (5)0.0211
H2110.06580.61810.92670.0262*
H2010.06110.63001.08240.0252*
H1710.05940.89321.07190.0302*
H1610.07340.88790.91350.0311*
H1910.17680.70631.22200.0299*
H1920.17590.80651.22650.0297*
H1110.46080.77690.67330.0310*
H1120.53100.73030.78990.0310*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0174 (2)0.0137 (2)0.0236 (3)0.00055 (19)0.00135 (19)0.0007 (2)
Cl20.0220 (5)0.0207 (5)0.0231 (5)0.0011 (4)0.0009 (4)0.0009 (4)
Cl30.0301 (6)0.0239 (5)0.0229 (5)0.0059 (5)0.0040 (4)0.0019 (4)
Cl40.0291 (6)0.0153 (5)0.0433 (7)0.0046 (4)0.0137 (5)0.0039 (5)
Cl50.0241 (5)0.0182 (5)0.0322 (6)0.0055 (4)0.0004 (4)0.0025 (4)
Cl60.0257 (6)0.0180 (5)0.0363 (6)0.0038 (4)0.0033 (5)0.0068 (5)
C70.021 (2)0.0142 (19)0.030 (2)0.0002 (17)0.0046 (18)0.0035 (18)
C80.026 (2)0.0135 (19)0.022 (2)0.0044 (17)0.0003 (17)0.0009 (16)
N90.0188 (18)0.0164 (18)0.025 (2)0.0020 (14)0.0030 (15)0.0001 (15)
C100.019 (2)0.0136 (19)0.026 (2)0.0032 (16)0.0013 (17)0.0001 (17)
N110.032 (2)0.0140 (18)0.032 (2)0.0001 (16)0.0068 (18)0.0007 (16)
C120.021 (2)0.018 (2)0.026 (2)0.0048 (17)0.0008 (18)0.0017 (18)
C130.023 (2)0.023 (2)0.025 (2)0.0020 (18)0.0043 (18)0.0022 (19)
Cl140.0248 (6)0.0439 (7)0.0252 (6)0.0010 (5)0.0001 (4)0.0005 (5)
C150.022 (2)0.026 (2)0.018 (2)0.0015 (18)0.0036 (17)0.0035 (18)
C160.033 (3)0.019 (2)0.024 (2)0.0047 (19)0.001 (2)0.0014 (18)
C170.037 (3)0.013 (2)0.024 (2)0.0019 (18)0.003 (2)0.0020 (17)
C180.019 (2)0.019 (2)0.022 (2)0.0006 (17)0.0038 (17)0.0028 (17)
N190.025 (2)0.023 (2)0.027 (2)0.0019 (16)0.0022 (16)0.0040 (17)
N200.024 (2)0.0138 (17)0.025 (2)0.0028 (15)0.0017 (16)0.0010 (15)
C210.025 (2)0.0147 (19)0.023 (2)0.0030 (17)0.0068 (18)0.0013 (17)
Geometric parameters (Å, º) top
Zn1—Cl22.2674 (12)C12—H1210.928
Zn1—Cl32.2602 (13)C13—H1310.939
Zn1—Cl42.2934 (13)Cl14—C151.723 (5)
Zn1—Cl52.2535 (12)C15—C161.410 (7)
Cl6—C71.730 (5)C15—C211.351 (7)
C7—C81.344 (6)C16—C171.367 (7)
C7—C131.408 (7)C16—H1610.923
C8—N91.357 (6)C17—C181.400 (7)
C8—H810.922C17—H1710.923
N9—C101.347 (6)C18—N191.349 (6)
N9—H910.864C18—N201.351 (6)
C10—N111.332 (6)N19—H1910.854
C10—C121.408 (6)N19—H1920.855
N11—H1110.863N20—C211.361 (6)
N11—H1120.869N20—H2010.852
C12—C131.372 (7)C21—H2110.924
Cl2—Zn1—Cl3105.30 (5)C7—C13—C12119.8 (4)
Cl2—Zn1—Cl4105.57 (5)C7—C13—H131120.1
Cl3—Zn1—Cl4109.28 (5)C12—C13—H131120.1
Cl2—Zn1—Cl5118.63 (5)Cl14—C15—C16120.2 (4)
Cl3—Zn1—Cl5109.81 (5)Cl14—C15—C21120.2 (4)
Cl4—Zn1—Cl5107.93 (5)C16—C15—C21119.5 (4)
Cl6—C7—C8119.2 (4)C15—C16—C17119.7 (4)
Cl6—C7—C13121.4 (4)C15—C16—H161120.4
C8—C7—C13119.4 (4)C17—C16—H161119.9
C7—C8—N9120.0 (4)C16—C17—C18120.1 (4)
C7—C8—H81120.7C16—C17—H171119.7
N9—C8—H81119.3C18—C17—H171120.3
C8—N9—C10123.4 (4)C17—C18—N19122.9 (4)
C8—N9—H91118.0C17—C18—N20117.9 (4)
C10—N9—H91118.3N19—C18—N20119.1 (4)
N9—C10—N11119.2 (4)C18—N19—H191119.7
N9—C10—C12117.6 (4)C18—N19—H192119.2
N11—C10—C12123.1 (4)H191—N19—H192120.7
C10—N11—H111119.5C18—N20—C21123.2 (4)
C10—N11—H112120.0C18—N20—H201118.8
H111—N11—H112120.1C21—N20—H201117.9
C10—C12—C13119.8 (4)N20—C21—C15119.6 (4)
C10—C12—H121119.8N20—C21—H211119.3
C13—C12—H121120.4C15—C21—H211121.1
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N19—H191···Cl2i0.852.763.496 (5)146
N20—H201···Cl2i0.852.413.231 (6)163
C21—H211···Cl20.922.733.635 (6)165
N19—H192···Cl3ii0.852.753.491 (5)146
C13—H131···Cl3iii0.942.853.772 (5)166
C16—H161···Cl3iv0.922.813.682 (7)158
C17—H171···Cl3ii0.922.653.442 (8)144
N9—H91···Cl4v0.862.383.197 (4)157
N11—H112···Cl4v0.872.583.356 (4)148
N11—H111···Cl5iv0.862.453.291 (6)165
C8—H81···Cl5v0.922.793.538 (4)138
Symmetry codes: (i) x, y+1, z+2; (ii) x, y+1/2, z+5/2; (iii) x, y, z1; (iv) x, y+3/2, z1/2; (v) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formula(C5H6ClN2)2[ZnCl4]
Mr466.33
Crystal system, space groupMonoclinic, P21/c
Temperature (K)110
a, b, c (Å)13.317 (1), 14.817 (2), 8.571 (1)
β (°) 92.923 (9)
V3)1689.0 (3)
Z4
Radiation typeMo Kα
µ (mm1)2.40
Crystal size (mm)0.23 × 0.15 × 0.10
Data collection
DiffractometerOxford Diffraction Xcalibur Atlas Gemini ultra
diffractometer
Absorption correctionAnalytical
CrysAlis PRO (Oxford Diffraction, 2009; Clark & Reid, 1995)
Tmin, Tmax0.711, 0.835
No. of measured, independent and
observed [I > 2σ(I)] reflections
22410, 4360, 3553
Rint0.061
(sin θ/λ)max1)0.695
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.108, 1.02
No. of reflections4356
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.27, 1.03

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SIR97 (Altomare et al., 1999), CRYSTALS (Betteridge et al., 2003), CAMERON (Watkin et al., 1996).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N19—H191···Cl2i0.852.7553.496 (5)146
N20—H201···Cl2i0.852.4103.231 (6)163
N19—H192···Cl3ii0.852.753.491 (5)146
C17—H171···Cl3ii0.922.653.442 (8)144
N9—H91···Cl4iii0.862.383.197 (4)157
N11—H112···Cl4iii0.8672.583.356 (4)148
N11—H111···Cl5iv0.862.453.291 (6)165
Symmetry codes: (i) x, y+1, z+2; (ii) x, y+1/2, z+5/2; (iii) x+1, y+1, z+2; (iv) x, y+3/2, z1/2.
 

Acknowledgements

We would like to acknowledge the support provided by the Secretary of State for Scientific Research and Technology of Tunisia.

References

First citationAlbrecht, A. S., Landee, C. P. & Turnbull, M. M. (2003). J. Chem. Crystallogr. 33, 269–276.  Web of Science CSD CrossRef CAS Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCoomer, F., Harrison, A. & Parsons, S. (2007). Private communication (deposition No. 660778). CCDC, Cambridge, England.  Google Scholar
First citationJin, Z. M., Pan, Y. J., Hu, M. L. & Liang, S. (2001). J. Chem. Crystallogr. 31, 191–195.  Web of Science CSD CrossRef CAS Google Scholar
First citationJin, Z.-M., Shun, N., Lü, Y.-P., Hu, M.-L. & Shen, L. (2005). Acta Cryst. C61, m43–m45.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKobel, W. & Hanack, M. (1986). Inorg. Chem. 25, 103–107.  CrossRef CAS Web of Science Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPierpont, C. G. & Jung, O. (1994). J. Am. Chem. Soc. 116, 2229–2230.  Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 3| March 2011| Pages m355-m356
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds