metal-organic compounds
Bis(2-amino-5-chloropyridinium) tetrachloridozincate
aLaboratoire de Chimie des Matériaux, Faculté des sciences de Bizerte, 7021 Zarzouna, Tunisia, bUniverstié Lyon1, Centre de Diffractométrie Henri Longchambon, 43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne Cedex, France, and cLaboratoire de Chimie Organometallique de Surface (LCOMS), Ecole Superieure de Chimie Physique Electronique, 69622 Villeurbanne Cedex, France
*Correspondence e-mail: cherif_bennasr@yahoo.fr
The 5H6ClN2)2[ZnCl4], contains two 2-amino-5-chloropyridinium cations and one [ZnCl4]2− dianion which are held together by N—H⋯Cl and C—H⋯Cl hydrogen bonds. The [ZnCl4]2− anions have a distorted tetrahedral geometry. Weak intermolecular π–π stacking interactions exist between neighbouring aromatic rings of the cations with a centroid–centroid distance of 3.712 (7) Å.
of the title compound, (CRelated literature
For common applications of organic–inorganic hybrid materials, see: Kobel & Hanack (1986); Pierpont & Jung (1994). For a related structure, see: Coomer et al. (2007). For π–π interactions between pyridinium cations, see: Albrecht et al. (2003). For aminium–iminium see: Jin et al. (2001). For a discussion of C—N—C pyridinium angles, see: Jin et al. (2005).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.
Supporting information
10.1107/S1600536811005691/cv5049sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811005691/cv5049Isup2.hkl
A mixture of aqueous solution of 2-amino-5-chloropyridine (3 mmol, 0.385 g), zinc chloride (1.5 mmol, 0.297 g) and HCl (10 ml, 0.3 M) in a Petri dish was slowly evaporated at room temperature. Colourless single crystals of the title compound were isolated after several days (yield 54%).
All H atoms were initially located in a difference map, but placed in idealized positions (C—H 0.93–0.98 Å, N—H 0.86–0.89 Å) and refined as riding, with Uiso(H) = 1.2–1.5 Ueq of the parent atom.
Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell
CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).Fig. 1. View of (I), showing 50% probability displacement ellipsoids and arbitrary spheres for the H atoms. Dashed lines denote hydrogen bonds. |
(C5H6ClN2)2[ZnCl4] | F(000) = 928 |
Mr = 466.33 | Dx = 1.834 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.7107 Å |
Hall symbol: -P 2ybc | Cell parameters from 8999 reflections |
a = 13.317 (1) Å | θ = 3.4–29.5° |
b = 14.817 (2) Å | µ = 2.40 mm−1 |
c = 8.571 (1) Å | T = 110 K |
β = 92.923 (9)° | Block, colourless |
V = 1689.0 (3) Å3 | 0.23 × 0.15 × 0.10 mm |
Z = 4 |
Oxford Diffraction Xcalibur Atlas Gemini ultra diffractometer | 4360 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 3553 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.061 |
Detector resolution: 10.4685 pixels mm-1 | θmax = 29.6°, θmin = 3.4° |
ω scans | h = −18→18 |
Absorption correction: analytical CrysAlis PRO (Oxford Diffraction, 2009; Clark & Reid, 1995) | k = −20→18 |
Tmin = 0.711, Tmax = 0.835 | l = −11→11 |
22410 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.051 | H-atom parameters constrained |
wR(F2) = 0.108 | Method, part 1, Chebychev polynomial [Watkin, D. J. (1994). Acta Cryst. A50, 411–437; Prince, E. (1982). Mathematical Techniques in Crystallography and Materials Science Springer-Verlag, New York.] [weight] = 1.0/[A0*T0(x) + A1*T1(x) ··· + An-1]*Tn-1(x)] where Ai are the Chebychev coefficients listed below and x = F /Fmax Method = Robust Weighting (Prince, 1982) W = [weight] * [1-(deltaF/6*sigmaF)2]2 Ai are: 425. 613. 311. 83.3 |
S = 1.02 | (Δ/σ)max = 0.001 |
4356 reflections | Δρmax = 1.27 e Å−3 |
190 parameters | Δρmin = −1.03 e Å−3 |
0 restraints |
(C5H6ClN2)2[ZnCl4] | V = 1689.0 (3) Å3 |
Mr = 466.33 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 13.317 (1) Å | µ = 2.40 mm−1 |
b = 14.817 (2) Å | T = 110 K |
c = 8.571 (1) Å | 0.23 × 0.15 × 0.10 mm |
β = 92.923 (9)° |
Oxford Diffraction Xcalibur Atlas Gemini ultra diffractometer | 4360 independent reflections |
Absorption correction: analytical CrysAlis PRO (Oxford Diffraction, 2009; Clark & Reid, 1995) | 3553 reflections with I > 2σ(I) |
Tmin = 0.711, Tmax = 0.835 | Rint = 0.061 |
22410 measured reflections |
R[F2 > 2σ(F2)] = 0.051 | 0 restraints |
wR(F2) = 0.108 | H-atom parameters constrained |
S = 1.02 | Δρmax = 1.27 e Å−3 |
4356 reflections | Δρmin = −1.03 e Å−3 |
190 parameters |
x | y | z | Uiso*/Ueq | ||
Zn1 | 0.25192 (4) | 0.48608 (3) | 1.01057 (6) | 0.0183 | |
Cl2 | 0.15870 (8) | 0.47893 (8) | 0.78203 (13) | 0.0220 | |
Cl3 | 0.13940 (9) | 0.48449 (8) | 1.19926 (13) | 0.0255 | |
Cl4 | 0.34397 (10) | 0.35524 (8) | 1.02302 (17) | 0.0298 | |
Cl5 | 0.35902 (9) | 0.60259 (8) | 1.04980 (15) | 0.0249 | |
Cl6 | 0.33629 (9) | 0.37113 (8) | 0.53253 (15) | 0.0266 | |
C7 | 0.3767 (3) | 0.4786 (3) | 0.5834 (6) | 0.0213 | |
C8 | 0.4484 (3) | 0.4888 (3) | 0.6981 (5) | 0.0204 | |
N9 | 0.4826 (3) | 0.5725 (3) | 0.7372 (5) | 0.0201 | |
C10 | 0.4457 (3) | 0.6486 (3) | 0.6703 (6) | 0.0194 | |
N11 | 0.4816 (3) | 0.7281 (3) | 0.7197 (5) | 0.0263 | |
C12 | 0.3706 (3) | 0.6396 (3) | 0.5495 (6) | 0.0218 | |
C13 | 0.3361 (4) | 0.5555 (3) | 0.5071 (6) | 0.0242 | |
H131 | 0.2865 | 0.5492 | 0.4259 | 0.0299* | |
H121 | 0.3449 | 0.6907 | 0.4991 | 0.0261* | |
H91 | 0.5254 | 0.5774 | 0.8160 | 0.0238* | |
H81 | 0.4748 | 0.4393 | 0.7511 | 0.0250* | |
Cl14 | 0.18546 (9) | 0.74583 (10) | 0.78663 (15) | 0.0313 | |
C15 | 0.0852 (3) | 0.7508 (3) | 0.9057 (5) | 0.0221 | |
C16 | 0.0460 (4) | 0.8350 (3) | 0.9491 (6) | 0.0253 | |
C17 | −0.0331 (4) | 0.8381 (3) | 1.0446 (6) | 0.0247 | |
C18 | −0.0742 (3) | 0.7580 (3) | 1.1000 (5) | 0.0201 | |
N19 | −0.1504 (3) | 0.7566 (3) | 1.1978 (5) | 0.0249 | |
N20 | −0.0342 (3) | 0.6791 (3) | 1.0543 (5) | 0.0211 | |
C21 | 0.0433 (4) | 0.6741 (3) | 0.9572 (5) | 0.0211 | |
H211 | 0.0658 | 0.6181 | 0.9267 | 0.0262* | |
H201 | −0.0611 | 0.6300 | 1.0824 | 0.0252* | |
H171 | −0.0594 | 0.8932 | 1.0719 | 0.0302* | |
H161 | 0.0734 | 0.8879 | 0.9135 | 0.0311* | |
H191 | −0.1768 | 0.7063 | 1.2220 | 0.0299* | |
H192 | −0.1759 | 0.8065 | 1.2265 | 0.0297* | |
H111 | 0.4608 | 0.7769 | 0.6733 | 0.0310* | |
H112 | 0.5310 | 0.7303 | 0.7899 | 0.0310* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.0174 (2) | 0.0137 (2) | 0.0236 (3) | −0.00055 (19) | −0.00135 (19) | −0.0007 (2) |
Cl2 | 0.0220 (5) | 0.0207 (5) | 0.0231 (5) | 0.0011 (4) | −0.0009 (4) | −0.0009 (4) |
Cl3 | 0.0301 (6) | 0.0239 (5) | 0.0229 (5) | −0.0059 (5) | 0.0040 (4) | −0.0019 (4) |
Cl4 | 0.0291 (6) | 0.0153 (5) | 0.0433 (7) | 0.0046 (4) | −0.0137 (5) | −0.0039 (5) |
Cl5 | 0.0241 (5) | 0.0182 (5) | 0.0322 (6) | −0.0055 (4) | −0.0004 (4) | −0.0025 (4) |
Cl6 | 0.0257 (6) | 0.0180 (5) | 0.0363 (6) | −0.0038 (4) | 0.0033 (5) | −0.0068 (5) |
C7 | 0.021 (2) | 0.0142 (19) | 0.030 (2) | 0.0002 (17) | 0.0046 (18) | −0.0035 (18) |
C8 | 0.026 (2) | 0.0135 (19) | 0.022 (2) | 0.0044 (17) | −0.0003 (17) | 0.0009 (16) |
N9 | 0.0188 (18) | 0.0164 (18) | 0.025 (2) | 0.0020 (14) | −0.0030 (15) | −0.0001 (15) |
C10 | 0.019 (2) | 0.0136 (19) | 0.026 (2) | 0.0032 (16) | 0.0013 (17) | 0.0001 (17) |
N11 | 0.032 (2) | 0.0140 (18) | 0.032 (2) | 0.0001 (16) | −0.0068 (18) | 0.0007 (16) |
C12 | 0.021 (2) | 0.018 (2) | 0.026 (2) | 0.0048 (17) | −0.0008 (18) | 0.0017 (18) |
C13 | 0.023 (2) | 0.023 (2) | 0.025 (2) | 0.0020 (18) | −0.0043 (18) | −0.0022 (19) |
Cl14 | 0.0248 (6) | 0.0439 (7) | 0.0252 (6) | −0.0010 (5) | 0.0001 (4) | −0.0005 (5) |
C15 | 0.022 (2) | 0.026 (2) | 0.018 (2) | −0.0015 (18) | −0.0036 (17) | −0.0035 (18) |
C16 | 0.033 (3) | 0.019 (2) | 0.024 (2) | −0.0047 (19) | −0.001 (2) | 0.0014 (18) |
C17 | 0.037 (3) | 0.013 (2) | 0.024 (2) | 0.0019 (18) | −0.003 (2) | −0.0020 (17) |
C18 | 0.019 (2) | 0.019 (2) | 0.022 (2) | 0.0006 (17) | −0.0038 (17) | −0.0028 (17) |
N19 | 0.025 (2) | 0.023 (2) | 0.027 (2) | 0.0019 (16) | −0.0022 (16) | −0.0040 (17) |
N20 | 0.024 (2) | 0.0138 (17) | 0.025 (2) | −0.0028 (15) | 0.0017 (16) | −0.0010 (15) |
C21 | 0.025 (2) | 0.0147 (19) | 0.023 (2) | 0.0030 (17) | −0.0068 (18) | −0.0013 (17) |
Zn1—Cl2 | 2.2674 (12) | C12—H121 | 0.928 |
Zn1—Cl3 | 2.2602 (13) | C13—H131 | 0.939 |
Zn1—Cl4 | 2.2934 (13) | Cl14—C15 | 1.723 (5) |
Zn1—Cl5 | 2.2535 (12) | C15—C16 | 1.410 (7) |
Cl6—C7 | 1.730 (5) | C15—C21 | 1.351 (7) |
C7—C8 | 1.344 (6) | C16—C17 | 1.367 (7) |
C7—C13 | 1.408 (7) | C16—H161 | 0.923 |
C8—N9 | 1.357 (6) | C17—C18 | 1.400 (7) |
C8—H81 | 0.922 | C17—H171 | 0.923 |
N9—C10 | 1.347 (6) | C18—N19 | 1.349 (6) |
N9—H91 | 0.864 | C18—N20 | 1.351 (6) |
C10—N11 | 1.332 (6) | N19—H191 | 0.854 |
C10—C12 | 1.408 (6) | N19—H192 | 0.855 |
N11—H111 | 0.863 | N20—C21 | 1.361 (6) |
N11—H112 | 0.869 | N20—H201 | 0.852 |
C12—C13 | 1.372 (7) | C21—H211 | 0.924 |
Cl2—Zn1—Cl3 | 105.30 (5) | C7—C13—C12 | 119.8 (4) |
Cl2—Zn1—Cl4 | 105.57 (5) | C7—C13—H131 | 120.1 |
Cl3—Zn1—Cl4 | 109.28 (5) | C12—C13—H131 | 120.1 |
Cl2—Zn1—Cl5 | 118.63 (5) | Cl14—C15—C16 | 120.2 (4) |
Cl3—Zn1—Cl5 | 109.81 (5) | Cl14—C15—C21 | 120.2 (4) |
Cl4—Zn1—Cl5 | 107.93 (5) | C16—C15—C21 | 119.5 (4) |
Cl6—C7—C8 | 119.2 (4) | C15—C16—C17 | 119.7 (4) |
Cl6—C7—C13 | 121.4 (4) | C15—C16—H161 | 120.4 |
C8—C7—C13 | 119.4 (4) | C17—C16—H161 | 119.9 |
C7—C8—N9 | 120.0 (4) | C16—C17—C18 | 120.1 (4) |
C7—C8—H81 | 120.7 | C16—C17—H171 | 119.7 |
N9—C8—H81 | 119.3 | C18—C17—H171 | 120.3 |
C8—N9—C10 | 123.4 (4) | C17—C18—N19 | 122.9 (4) |
C8—N9—H91 | 118.0 | C17—C18—N20 | 117.9 (4) |
C10—N9—H91 | 118.3 | N19—C18—N20 | 119.1 (4) |
N9—C10—N11 | 119.2 (4) | C18—N19—H191 | 119.7 |
N9—C10—C12 | 117.6 (4) | C18—N19—H192 | 119.2 |
N11—C10—C12 | 123.1 (4) | H191—N19—H192 | 120.7 |
C10—N11—H111 | 119.5 | C18—N20—C21 | 123.2 (4) |
C10—N11—H112 | 120.0 | C18—N20—H201 | 118.8 |
H111—N11—H112 | 120.1 | C21—N20—H201 | 117.9 |
C10—C12—C13 | 119.8 (4) | N20—C21—C15 | 119.6 (4) |
C10—C12—H121 | 119.8 | N20—C21—H211 | 119.3 |
C13—C12—H121 | 120.4 | C15—C21—H211 | 121.1 |
D—H···A | D—H | H···A | D···A | D—H···A |
N19—H191···Cl2i | 0.85 | 2.76 | 3.496 (5) | 146 |
N20—H201···Cl2i | 0.85 | 2.41 | 3.231 (6) | 163 |
C21—H211···Cl2 | 0.92 | 2.73 | 3.635 (6) | 165 |
N19—H192···Cl3ii | 0.85 | 2.75 | 3.491 (5) | 146 |
C13—H131···Cl3iii | 0.94 | 2.85 | 3.772 (5) | 166 |
C16—H161···Cl3iv | 0.92 | 2.81 | 3.682 (7) | 158 |
C17—H171···Cl3ii | 0.92 | 2.65 | 3.442 (8) | 144 |
N9—H91···Cl4v | 0.86 | 2.38 | 3.197 (4) | 157 |
N11—H112···Cl4v | 0.87 | 2.58 | 3.356 (4) | 148 |
N11—H111···Cl5iv | 0.86 | 2.45 | 3.291 (6) | 165 |
C8—H81···Cl5v | 0.92 | 2.79 | 3.538 (4) | 138 |
Symmetry codes: (i) −x, −y+1, −z+2; (ii) −x, y+1/2, −z+5/2; (iii) x, y, z−1; (iv) x, −y+3/2, z−1/2; (v) −x+1, −y+1, −z+2. |
Experimental details
Crystal data | |
Chemical formula | (C5H6ClN2)2[ZnCl4] |
Mr | 466.33 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 110 |
a, b, c (Å) | 13.317 (1), 14.817 (2), 8.571 (1) |
β (°) | 92.923 (9) |
V (Å3) | 1689.0 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 2.40 |
Crystal size (mm) | 0.23 × 0.15 × 0.10 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur Atlas Gemini ultra diffractometer |
Absorption correction | Analytical CrysAlis PRO (Oxford Diffraction, 2009; Clark & Reid, 1995) |
Tmin, Tmax | 0.711, 0.835 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 22410, 4360, 3553 |
Rint | 0.061 |
(sin θ/λ)max (Å−1) | 0.695 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.051, 0.108, 1.02 |
No. of reflections | 4356 |
No. of parameters | 190 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.27, −1.03 |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SIR97 (Altomare et al., 1999), CRYSTALS (Betteridge et al., 2003), CAMERON (Watkin et al., 1996).
D—H···A | D—H | H···A | D···A | D—H···A |
N19—H191···Cl2i | 0.85 | 2.755 | 3.496 (5) | 146 |
N20—H201···Cl2i | 0.85 | 2.410 | 3.231 (6) | 163 |
N19—H192···Cl3ii | 0.85 | 2.75 | 3.491 (5) | 146 |
C17—H171···Cl3ii | 0.92 | 2.65 | 3.442 (8) | 144 |
N9—H91···Cl4iii | 0.86 | 2.38 | 3.197 (4) | 157 |
N11—H112···Cl4iii | 0.867 | 2.58 | 3.356 (4) | 148 |
N11—H111···Cl5iv | 0.86 | 2.45 | 3.291 (6) | 165 |
Symmetry codes: (i) −x, −y+1, −z+2; (ii) −x, y+1/2, −z+5/2; (iii) −x+1, −y+1, −z+2; (iv) x, −y+3/2, z−1/2. |
Acknowledgements
We would like to acknowledge the support provided by the Secretary of State for Scientific Research and Technology of Tunisia.
References
Albrecht, A. S., Landee, C. P. & Turnbull, M. M. (2003). J. Chem. Crystallogr. 33, 269–276. Web of Science CSD CrossRef CAS Google Scholar
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487. Web of Science CrossRef IUCr Journals Google Scholar
Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897. CrossRef CAS Web of Science IUCr Journals Google Scholar
Coomer, F., Harrison, A. & Parsons, S. (2007). Private communication (deposition No. 660778). CCDC, Cambridge, England. Google Scholar
Jin, Z. M., Pan, Y. J., Hu, M. L. & Liang, S. (2001). J. Chem. Crystallogr. 31, 191–195. Web of Science CSD CrossRef CAS Google Scholar
Jin, Z.-M., Shun, N., Lü, Y.-P., Hu, M.-L. & Shen, L. (2005). Acta Cryst. C61, m43–m45. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Kobel, W. & Hanack, M. (1986). Inorg. Chem. 25, 103–107. CrossRef CAS Web of Science Google Scholar
Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Pierpont, C. G. & Jung, O. (1994). J. Am. Chem. Soc. 116, 2229–2230. Google Scholar
Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Organic-inorganic hybrid materials have been extensively studied in recent years due to their potential applications in various field (Kobel & Hanack, 1986; Pierpont & Jung, 1994). Herewith we report the crystal structure of the title compound, (I), formed in the reaction of 2-amino-5-chloropyridine with zinc chloride. The crystal structure of hydrated form of (I) (CCDC refcode JIPHAS) was reported recently by Coomer et al. (2007) .
In (I) (Fig.1), only the nitrogen atom of the aromatic ring of the title compound is protonated but not the amino group. Thus, to ensure charge equilibrium, the structure associates one tetrachlorozincate dianion with two 2-amino-5-chloropyridinium cations. The atomic arrangement of the title hybrid material can be described as inorganic [ZnCl4]2- units separated by the organic cations. The different entities are held together by columbic attraction and multiple hydrogen bonds to form a three dimensional network. The organic cations and inorganic dianion sare form N—H···Cl and C—H···Cl hydrogen bonds (Table 1). Intermolecular π-π interaction is present between identical antiparallel 2-amino-5-chloropyridinium cations with the centroid-to-centrpoid separation of 3.712 (7) Å. This π-stacking between pyridinium cations is weaker than that in bis(2-amino-5-methylpyridinium) tetrachlorozincate where the longest distance between the centroids is 3.54 Å (Albrecht et al., 2003). In the organic entity, the N11—C10 bond [1.332 (6) Å] is shorter than the N9—C10 [1.347 (6) Å] and N9—C8 [1.357 (6) Å] bonds, consistent with the iminuim tautomer (Jin et al., 2001). Moreover, the existence of the iminuim tautomer is supported by the fact that the C10—C12 [1.408 (6) Å] and C7—C13 [1.408 (7) Å] bonds are longer than the C12—C13 [1.372 (7) Å] and C7—C8 [1.344 (6) Å] bonds. Similar features are also observed in the other organic cations. However, previous study show that a pyridinium cation always possesses an expanded angle of C—N—C in comparison with the parent pyridine (Jin et al., 2005).