metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 3| March 2011| Pages m369-m370

cis-Di­aqua­bis­­[di­methyl (phenyl­sulfonyl­imino)­phospho­nato]cobalt(II)

aNational Taras Shevchenko University, Department of Chemistry, Volodymyrska str. 64, 01033 Kyiv, Ukraine, and bSTC "Institute for Syngle Crystals", 60 Lenina ave., Khar'kov 61001, Ukraine
*Correspondence e-mail: elizaveta@univ.kiev.ua

(Received 22 November 2010; accepted 17 February 2011; online 23 February 2011)

In the title diaqua­cobalt complex, [Co(C8H11NO5PS)2(H2O)2], the CoII atom is surrounded by six O atoms belonging to the phosphoryl and sulfonyl groups of two deprotonated chelate ligands and two additional O atoms from water mol­ecules which are in cis positions with respect to one another. The coordination environment of cobalt can be described as a distorted octa­hedron. O—H⋯O hydrogen bonds between the water and sulfonyl O atoms of neighboring mol­ecules form chains running parallel to [010]. Two methoxy groups attached to one phosphorus are disordered over two sets of sites in a 0.6:0.4 ratio.

Related literature

For the coordination chemistry of β-diketone derivatives and their structural analogues, see Skopenko et al. (2004[Skopenko, V. V., Amirkhanov, V. M., Sliva, T. Yu., Vasilchenko, I. S., Anpilova, E. L. & Garnovskii, A. D. (2004). Usp. Khim. 73, 797-813.]). For details of the pharmacological and biological properties of sulfonyl­amide derivatives, see: Kishino & Saito (1979[Kishino, S. & Saito, S. (1979). US Patent No. 4 161 524.]); Xu & Angell (2000[Xu, K. & Angell, C. (2000). Inorg. Chim. Acta, 298, 16-23.]). For structural discussion, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Zefirov et al. (1990[Zefirov, N. S., Palyulin, V. A. & Dashevskaya, E. E. (1990). J. Phys. Org. Chem. 3, 147-154.]). For related structures, see: Moroz et al. (2009[Moroz, O. V., Trush, V. A., Konovalova, I. S., Shishkin, O. V., Moroz, Y. S., Demeshko, S. & Amirkhanov, V. M. (2009). Polyhedron, 28, 1331-1335.]); Shatrava et al. (2010[Shatrava, I. O., Sliva, T. Y., Ovchynnikov, V. A., Konovalova, I. S. & Amirkhanov, V. M. (2010). Acta Cryst. E66, m397-m398.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C8H11NO5PS)2(H2O)2]

  • Mr = 623.38

  • Triclinic, [P \overline 1]

  • a = 9.875 (1) Å

  • b = 10.207 (1) Å

  • c = 13.345 (2) Å

  • α = 91.60 (1)°

  • β = 110.59 (1)°

  • γ = 92.84 (1)°

  • V = 1256.2 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.04 mm−1

  • T = 294 K

  • 0.40 × 0.20 × 0.10 mm

Data collection
  • Oxford Diffraction Xcalibur3 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.681, Tmax = 0.903

  • 9231 measured reflections

  • 5612 independent reflections

  • 4025 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.066

  • S = 0.90

  • 5612 reflections

  • 354 parameters

  • 4 restraints

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O11—H11A⋯O3i 0.88 1.93 2.7898 (19) 167
O11—H11B⋯O6i 0.90 1.92 2.811 (2) 167
O12—H12A⋯O1ii 0.92 1.98 2.855 (2) 157
O12—H12B⋯O8ii 0.88 1.96 2.8035 (18) 163
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y, -z+1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Many efforts are devoted to the coordination chemistry of β- diketones derivatives and their structural analogues (Skopenko et al., 2004). The phosphorylated sulfonylamides, RSO2NHP(O)(R')2 (SAPh), present such type of heterosubstituted structural analogues with different substituents at sulfur and phosphorus atoms. In the past few decades SAPh have been intensively used as bactericidal agents in medicine and toxicology (Xu & Angell, 2000). Some of them are effective pesticides (Kishino & Saito, 1979). So a variety of new s-, d-, and f- metals based coordination compounds containing this type of phosphoramides have been synthesized. Structural investigation of compounds with phosphorylated sulfonylamide ligands have already been reported (Moroz et al., 2009, Shatrava et al., 2010). Herein we report the structure of the title compound containing one of the simplest representative of this class of ligands: the dimethyl(phenylsulfonyl)amidophosphate.

The crystal structure of CoL22H2O (I) is built up from non-centrosymmetric molecular species with the two water molecules in cis- position to each other. The CoO6 fragment is formed by two oxygen atoms of water molecules and four oxygen atoms of phosphoryl and sulfonyl groups from two ligands which are coordinated in bidentate chelating mode (Fig. 1). The coordination environment of cobalt can be described as a distorted octahedron.

The six-membered chelate rings have a twist–boat conformation (the puckering parameters (Cremer & Pople,1975) are θ=81.19,ψ=25.33, S=0.60 for CoO2SNPO3 fragment and θ=67.91, ψ=17.44, S=0.57 for the CoO7S2N2P2O8 (Zefirov et al., 1990). The O4 and O5 atoms of methoxy groups are disordered over two positions due to the rotation around P1—O4 and P1—O5 bonds with populations 40:60%.

O—H···O intermolecular hydrogen bonds between the water and non-coordinated sulfonyl oxygen atoms and coordinated phosphoryl groups of neighboring SAPh molecules (Table 1) build up chains parallel to the [0 1 0] direction (Fig.2).

Related literature top

For the coordination chemistry of β-diketones derivatives and their structural analogues, see Skopenko et al. (2004). For details of the pharmacological and biological properties of sulfonylamide derivatives, see: Kishino & Saito (1979); Xu & Angell (2000). For structural discussion, see: Cremer & Pople (1975); Zefirov et al. (1990). For related structures, see Moroz et al. (2009); Shatrava et al. (2010).

Experimental top

The sodium salt (NaL) was prepared by the reaction between equimolar amounts of sodium isopropylate (0,023 g, 1 mmol of Na was solved in 2-propanol) and HL (0,2652 g, 1 mmol) in an 2-propanol medium and was used for preparation of complexes without isolation from the reaction mixture.

The solution of NaL (1 mmol) was added to the solution of CoCl26H2O (0,124 2 g, 0,5 mmol) in 2-propanol (10 ml). The resulting mixture was filtrated off and mother liquor was left on air at room temperature for several days. Precipitated from the solution purple crystals were filtered and washed with cool 2-propanol. Single crystals of [Co(L)22H2O] were prepared by slow recrystallization in 2-propanol-chloroform (3:1) mixture (yield - 80–90%). This complex as prepared is less soluble in non-polar aprotic solvents and H2O. Analysis found: IR (KBr pellet, cm-1): 1220, 1060 (s, SO2) and 1190 (s, PO).

Refinement top

All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl) or 0.93 Å (aromatic) with Uiso(H) = 1.2Ueq(Caromatic) or Uiso(H) = 1.5Ueq(Cmethyl). H atoms of water molecule were located in difference Fourier maps and included in the subsequent refinement using restraints (O-H= 0.85 (1)Å and H···H= 1.39 (2)Å) with Uiso(H) = 1.5Ueq(O). In the last cycles of refinement, they were treated as riding on their parent oxygen atoms.

Two methoxy groups attached to one phosphorus are disordered over two positions. Two sets of positions were then defined for the atoms of these groups and the site occupation factors of each conformation were refined while restraining their sum to unity. The site occupation factor of the major conformation refined to 0.585 (5). Then the occupancy factors were fixed to 0.6 and 0.4 respectively for the two components. The O-C distances were restrained to have chemically reasonable bond values of 1.45(0.02)Å.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular view of (I) with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. Only the major component of the disorder is shown in the figure.
[Figure 2] Fig. 2. Partial packing view of compound ( I ), showing the formation of chains along [010] built from hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted for clarity.
cis-Diaquabis[dimethyl (phenylsulfonylimino)phosphonato]cobalt(II) top
Crystal data top
[Co(C8H11NO5PS)2(H2O)2]Z = 2
Mr = 623.38F(000) = 642
Triclinic, P1Dx = 1.648 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.875 (1) ÅCell parameters from 4537 reflections
b = 10.207 (1) Åθ = 3.0–34.8°
c = 13.345 (2) ŵ = 1.04 mm1
α = 91.60 (1)°T = 294 K
β = 110.59 (1)°Plate, purple
γ = 92.84 (1)°0.40 × 0.20 × 0.10 mm
V = 1256.2 (3) Å3
Data collection top
Oxford Diffraction Xcalibur3
diffractometer
5612 independent reflections
Radiation source: Enhance (Mo) X-ray Source4025 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
Detector resolution: 16.1827 pixels mm-1θmax = 27.5°, θmin = 3.0°
ω scansh = 1212
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 1312
Tmin = 0.681, Tmax = 0.903l = 1717
9231 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.066H-atom parameters constrained
S = 0.90 w = 1/[σ2(Fo2) + (0.0363P)2]
where P = (Fo2 + 2Fc2)/3
5612 reflections(Δ/σ)max = 0.001
354 parametersΔρmax = 0.34 e Å3
4 restraintsΔρmin = 0.22 e Å3
Crystal data top
[Co(C8H11NO5PS)2(H2O)2]γ = 92.84 (1)°
Mr = 623.38V = 1256.2 (3) Å3
Triclinic, P1Z = 2
a = 9.875 (1) ÅMo Kα radiation
b = 10.207 (1) ŵ = 1.04 mm1
c = 13.345 (2) ÅT = 294 K
α = 91.60 (1)°0.40 × 0.20 × 0.10 mm
β = 110.59 (1)°
Data collection top
Oxford Diffraction Xcalibur3
diffractometer
5612 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
4025 reflections with I > 2σ(I)
Tmin = 0.681, Tmax = 0.903Rint = 0.019
9231 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0294 restraints
wR(F2) = 0.066H-atom parameters constrained
S = 0.90Δρmax = 0.34 e Å3
5612 reflectionsΔρmin = 0.22 e Å3
354 parameters
Special details top

Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. CrysAlisPRO (Oxford Diffraction, 2009)

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.53757 (3)0.25048 (2)0.49629 (2)0.02561 (8)
S10.52838 (5)0.13796 (5)0.26446 (4)0.02895 (11)
S20.76726 (5)0.37652 (5)0.72245 (4)0.02815 (11)
O30.64121 (18)0.39270 (13)0.43552 (12)0.0433 (4)
P10.68038 (7)0.38043 (6)0.33995 (5)0.04364 (16)
O40.5573 (4)0.4744 (3)0.2591 (3)0.0543 (9)0.60
C70.5608 (12)0.5119 (16)0.1582 (8)0.076 (3)0.60
H7A0.65520.55060.16730.115*0.60
H7B0.48950.57470.12920.115*0.60
H7C0.53990.43590.11000.115*0.60
O50.8157 (3)0.4492 (2)0.3338 (2)0.0464 (7)0.60
C80.9520 (11)0.3888 (12)0.3764 (11)0.071 (3)0.60
H8A0.95250.33750.43580.106*0.60
H8B1.02980.45570.40010.106*0.60
H8C0.96430.33280.32160.106*0.60
O4A0.6779 (5)0.4913 (4)0.2748 (3)0.0520 (11)0.40
C7A0.5421 (13)0.4968 (18)0.1864 (11)0.074 (5)0.40
H7A10.54630.57240.14620.112*0.40
H7A20.46460.50290.21370.112*0.40
H7A30.52530.41880.14080.112*0.40
O5A0.8642 (5)0.3924 (4)0.4153 (3)0.0464 (10)0.40
C8A0.9676 (14)0.3964 (12)0.3623 (13)0.049 (4)0.40
H8A11.06390.40280.41470.073*0.40
H8A20.95400.47140.31870.073*0.40
H8A30.95430.31780.31780.073*0.40
P20.86187 (6)0.16991 (5)0.62440 (4)0.02887 (12)
O10.57367 (17)0.00623 (13)0.26086 (12)0.0414 (4)
O20.45315 (15)0.15860 (13)0.33970 (10)0.0321 (3)
O60.79818 (17)0.51694 (13)0.72756 (12)0.0384 (3)
O70.61859 (15)0.33380 (13)0.65460 (11)0.0341 (3)
O80.71640 (15)0.13434 (12)0.54199 (11)0.0334 (3)
O90.91160 (17)0.06168 (14)0.70876 (12)0.0436 (4)
O100.97392 (16)0.17385 (15)0.56604 (12)0.0413 (4)
O110.36115 (15)0.36550 (13)0.46253 (11)0.0370 (3)
H11A0.37550.44090.49970.055*
H11B0.31570.39440.39630.055*
O120.41962 (15)0.11126 (12)0.54596 (11)0.0331 (3)
H12A0.43690.09410.61690.050*
H12B0.38530.03770.50820.050*
N10.65693 (18)0.23960 (16)0.28018 (13)0.0342 (4)
N20.88326 (18)0.30347 (16)0.69393 (13)0.0335 (4)
C10.3978 (2)0.16127 (18)0.13660 (16)0.0307 (4)
C20.2605 (3)0.1922 (3)0.1249 (2)0.0519 (6)
H20.23300.20190.18440.062*
C30.1620 (3)0.2089 (3)0.0225 (2)0.0660 (8)
H30.06830.23070.01370.079*
C40.2014 (3)0.1938 (3)0.0644 (2)0.0599 (7)
H40.13410.20360.13250.072*
C50.3395 (3)0.1643 (3)0.05244 (19)0.0561 (7)
H50.36670.15560.11220.067*
C60.4385 (3)0.1473 (2)0.04848 (17)0.0458 (6)
H60.53240.12650.05690.055*
C100.7510 (3)0.2074 (2)0.87303 (19)0.0443 (6)
H100.72410.14250.81810.053*
C110.7603 (3)0.1775 (3)0.9745 (2)0.0555 (7)
H110.73950.09150.98840.067*
C120.7996 (3)0.2720 (3)1.0556 (2)0.0576 (7)
H120.80430.25031.12400.069*
C130.8322 (3)0.3988 (3)1.0366 (2)0.0566 (7)
H130.86030.46291.09220.068*
C140.8232 (3)0.4313 (2)0.93455 (18)0.0430 (5)
H140.84490.51730.92110.052*
C150.7821 (2)0.33569 (19)0.85348 (16)0.0306 (4)
C161.1267 (3)0.2070 (3)0.6236 (2)0.0603 (7)
H16A1.17550.21870.57340.090*
H16B1.16790.13730.66940.090*
H16C1.13800.28690.66630.090*
C170.9315 (3)0.0702 (2)0.6758 (2)0.0691 (9)
H17A0.98560.11610.73770.104*
H17B0.98360.06600.62720.104*
H17C0.83860.11590.64080.104*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.02756 (15)0.02457 (13)0.02328 (14)0.00186 (11)0.00724 (11)0.00077 (10)
S10.0328 (3)0.0307 (2)0.0227 (3)0.0018 (2)0.0091 (2)0.00059 (19)
S20.0289 (3)0.0294 (2)0.0243 (3)0.0013 (2)0.0073 (2)0.00163 (19)
O30.0625 (11)0.0311 (7)0.0414 (9)0.0096 (7)0.0267 (8)0.0037 (7)
P10.0558 (4)0.0341 (3)0.0529 (4)0.0083 (3)0.0358 (3)0.0035 (3)
O40.060 (2)0.056 (2)0.064 (2)0.0239 (17)0.037 (2)0.0253 (17)
C70.068 (6)0.091 (7)0.079 (4)0.022 (4)0.031 (4)0.053 (4)
O50.0392 (16)0.0383 (14)0.065 (2)0.0020 (12)0.0234 (15)0.0073 (14)
C80.039 (5)0.106 (7)0.070 (5)0.006 (4)0.021 (4)0.021 (5)
O4A0.055 (3)0.049 (2)0.054 (3)0.001 (2)0.020 (2)0.023 (2)
C7A0.053 (6)0.050 (6)0.128 (15)0.026 (5)0.036 (9)0.041 (10)
O5A0.035 (2)0.060 (3)0.039 (2)0.011 (2)0.010 (2)0.001 (2)
C8A0.038 (6)0.037 (5)0.068 (8)0.004 (4)0.015 (5)0.008 (5)
P20.0269 (3)0.0333 (3)0.0255 (3)0.0058 (2)0.0078 (2)0.0002 (2)
O10.0565 (10)0.0318 (7)0.0353 (9)0.0095 (7)0.0145 (8)0.0011 (6)
O20.0348 (8)0.0376 (7)0.0238 (7)0.0052 (6)0.0114 (6)0.0013 (6)
O60.0481 (9)0.0289 (7)0.0368 (8)0.0012 (7)0.0133 (7)0.0019 (6)
O70.0268 (7)0.0443 (8)0.0274 (8)0.0051 (6)0.0053 (6)0.0071 (6)
O80.0301 (8)0.0314 (7)0.0341 (8)0.0049 (6)0.0054 (6)0.0053 (6)
O90.0526 (10)0.0425 (8)0.0331 (9)0.0143 (8)0.0102 (7)0.0074 (7)
O100.0357 (9)0.0571 (9)0.0342 (8)0.0069 (7)0.0160 (7)0.0029 (7)
O110.0401 (8)0.0308 (7)0.0352 (8)0.0111 (6)0.0060 (7)0.0028 (6)
O120.0417 (8)0.0279 (7)0.0293 (8)0.0029 (6)0.0129 (7)0.0008 (6)
N10.0315 (10)0.0422 (9)0.0309 (10)0.0012 (8)0.0142 (8)0.0016 (8)
N20.0262 (9)0.0410 (9)0.0329 (10)0.0008 (8)0.0107 (8)0.0070 (8)
C10.0349 (12)0.0289 (10)0.0255 (10)0.0011 (9)0.0077 (9)0.0002 (8)
C20.0427 (14)0.0752 (17)0.0370 (14)0.0124 (13)0.0124 (11)0.0053 (12)
C30.0429 (15)0.093 (2)0.0497 (16)0.0200 (15)0.0000 (13)0.0050 (15)
C40.070 (2)0.0619 (16)0.0316 (14)0.0069 (15)0.0022 (13)0.0015 (12)
C50.0713 (19)0.0683 (16)0.0274 (13)0.0002 (15)0.0165 (13)0.0006 (12)
C60.0444 (14)0.0629 (14)0.0303 (12)0.0001 (12)0.0140 (11)0.0003 (11)
C100.0556 (15)0.0395 (12)0.0403 (14)0.0070 (11)0.0218 (12)0.0029 (10)
C110.0700 (18)0.0553 (15)0.0483 (16)0.0082 (14)0.0309 (14)0.0101 (13)
C120.0610 (18)0.0813 (19)0.0353 (14)0.0014 (15)0.0235 (13)0.0094 (14)
C130.0611 (17)0.0721 (17)0.0324 (13)0.0076 (14)0.0142 (12)0.0139 (12)
C140.0498 (14)0.0428 (12)0.0333 (12)0.0065 (11)0.0126 (11)0.0065 (10)
C150.0260 (10)0.0380 (11)0.0267 (11)0.0014 (9)0.0081 (9)0.0000 (9)
C160.0355 (14)0.087 (2)0.0619 (18)0.0025 (14)0.0220 (13)0.0037 (15)
C170.085 (2)0.0417 (14)0.075 (2)0.0230 (14)0.0182 (17)0.0126 (14)
Geometric parameters (Å, º) top
Co1—O122.0608 (13)P2—O101.5607 (16)
Co1—O112.0729 (13)P2—O91.5695 (15)
Co1—O32.0771 (14)P2—N21.5897 (17)
Co1—O82.0942 (13)O9—C171.448 (3)
Co1—O72.1143 (14)O10—C161.450 (3)
Co1—O22.1282 (14)O11—H11A0.8808
S1—O11.4427 (14)O11—H11B0.9049
S1—O21.4604 (14)O12—H12A0.9239
S1—N11.5497 (18)O12—H12B0.8753
S1—C11.771 (2)C1—C21.363 (3)
S2—O61.4452 (14)C1—C61.376 (3)
S2—O71.4646 (14)C2—C31.392 (3)
S2—N21.5454 (17)C2—H20.9300
S2—C151.766 (2)C3—C41.353 (4)
O3—P11.4610 (16)C3—H30.9300
P1—O4A1.442 (4)C4—C51.367 (4)
P1—O51.508 (3)C4—H40.9300
P1—N11.5903 (18)C5—C61.380 (3)
P1—O41.677 (4)C5—H50.9300
P1—O5A1.735 (4)C6—H60.9300
O4—C71.422 (7)C10—C111.369 (3)
C7—H7A0.9600C10—C151.383 (3)
C7—H7B0.9600C10—H100.9300
C7—H7C0.9600C11—C121.365 (4)
O5—C81.442 (8)C11—H110.9300
C8—H8A0.9600C12—C131.370 (4)
C8—H8B0.9600C12—H120.9300
C8—H8C0.9600C13—C141.384 (3)
O4A—C7A1.446 (9)C13—H130.9300
C7A—H7A10.9600C14—C151.371 (3)
C7A—H7A20.9600C14—H140.9300
C7A—H7A30.9600C16—H16A0.9600
O5A—C8A1.432 (10)C16—H16B0.9600
C8A—H8A10.9600C16—H16C0.9600
C8A—H8A20.9600C17—H17A0.9600
C8A—H8A30.9600C17—H17B0.9600
P2—O81.4899 (14)C17—H17C0.9600
O12—Co1—O1187.46 (6)H8A1—C8A—H8A3109.5
O12—Co1—O3175.32 (6)H8A2—C8A—H8A3109.5
O11—Co1—O389.17 (6)O8—P2—O10107.45 (8)
O12—Co1—O890.37 (5)O8—P2—O9112.00 (9)
O11—Co1—O8175.81 (6)O10—P2—O9105.32 (8)
O3—Co1—O893.20 (6)O8—P2—N2118.12 (8)
O12—Co1—O788.52 (6)O10—P2—N2108.42 (9)
O11—Co1—O789.44 (5)O9—P2—N2104.80 (9)
O3—Co1—O794.69 (6)S1—O2—Co1128.04 (8)
O8—Co1—O786.92 (5)S2—O7—Co1129.91 (9)
O12—Co1—O288.98 (5)P2—O8—Co1126.80 (8)
O11—Co1—O291.24 (6)C17—O9—P2120.67 (16)
O3—Co1—O287.86 (6)C16—O10—P2121.54 (14)
O8—Co1—O292.30 (5)Co1—O11—H11A116.3
O7—Co1—O2177.37 (5)Co1—O11—H11B122.1
O1—S1—O2113.80 (9)H11A—O11—H11B98.9
O1—S1—N1110.36 (10)Co1—O12—H12A124.1
O2—S1—N1113.78 (9)Co1—O12—H12B121.0
O1—S1—C1106.44 (9)H12A—O12—H12B107.1
O2—S1—C1105.01 (9)S1—N1—P1125.91 (11)
N1—S1—C1106.78 (9)S2—N2—P2127.90 (11)
O6—S2—O7113.82 (9)C2—C1—C6120.5 (2)
O6—S2—N2110.57 (9)C2—C1—S1121.42 (17)
O7—S2—N2113.34 (9)C6—C1—S1118.12 (17)
O6—S2—C15105.87 (9)C1—C2—C3119.0 (2)
O7—S2—C15105.32 (9)C1—C2—H2120.5
N2—S2—C15107.28 (9)C3—C2—H2120.5
P1—O3—Co1127.44 (9)C4—C3—C2120.6 (3)
O4A—P1—O3120.9 (2)C4—C3—H3119.7
O4A—P1—O556.9 (2)C2—C3—H3119.7
O3—P1—O5121.88 (14)C3—C4—C5120.3 (2)
O4A—P1—N1115.9 (2)C3—C4—H4119.8
O3—P1—N1117.82 (9)C5—C4—H4119.8
O5—P1—N1108.73 (12)C4—C5—C6119.8 (2)
O4A—P1—O441.9 (2)C4—C5—H5120.1
O3—P1—O499.20 (13)C6—C5—H5120.1
O5—P1—O498.84 (17)C1—C6—C5119.7 (2)
N1—P1—O4106.62 (15)C1—C6—H6120.1
O4A—P1—O5A98.0 (2)C5—C6—H6120.1
O3—P1—O5A92.25 (16)C11—C10—C15118.9 (2)
O5—P1—O5A42.78 (16)C11—C10—H10120.5
N1—P1—O5A103.27 (16)C15—C10—H10120.5
O4—P1—O5A137.9 (2)C12—C11—C10121.0 (2)
C7—O4—P1122.6 (6)C12—C11—H11119.5
O4—C7—H7A109.5C10—C11—H11119.5
O4—C7—H7B109.5C11—C12—C13120.1 (2)
H7A—C7—H7B109.5C11—C12—H12119.9
O4—C7—H7C109.5C13—C12—H12119.9
H7A—C7—H7C109.5C12—C13—C14119.9 (2)
H7B—C7—H7C109.5C12—C13—H13120.1
C8—O5—P1119.5 (5)C14—C13—H13120.1
O5—C8—H8A109.5C15—C14—C13119.4 (2)
O5—C8—H8B109.5C15—C14—H14120.3
H8A—C8—H8B109.5C13—C14—H14120.3
O5—C8—H8C109.5C14—C15—C10120.66 (19)
H8A—C8—H8C109.5C14—C15—S2119.84 (16)
H8B—C8—H8C109.5C10—C15—S2119.49 (16)
P1—O4A—C7A113.0 (7)O10—C16—H16A109.5
O4A—C7A—H7A1109.5O10—C16—H16B109.5
O4A—C7A—H7A2109.5H16A—C16—H16B109.5
H7A1—C7A—H7A2109.5O10—C16—H16C109.5
O4A—C7A—H7A3109.5H16A—C16—H16C109.5
H7A1—C7A—H7A3109.5H16B—C16—H16C109.5
H7A2—C7A—H7A3109.5O9—C17—H17A109.5
C8A—O5A—P1119.7 (7)O9—C17—H17B109.5
O5A—C8A—H8A1109.5H17A—C17—H17B109.5
O5A—C8A—H8A2109.5O9—C17—H17C109.5
H8A1—C8A—H8A2109.5H17A—C17—H17C109.5
O5A—C8A—H8A3109.5H17B—C17—H17C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H11A···O3i0.881.932.7898 (19)167
O11—H11B···O6i0.901.922.811 (2)167
O12—H12A···O1ii0.921.982.855 (2)157
O12—H12B···O8ii0.881.962.8035 (18)163
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Co(C8H11NO5PS)2(H2O)2]
Mr623.38
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)9.875 (1), 10.207 (1), 13.345 (2)
α, β, γ (°)91.60 (1), 110.59 (1), 92.84 (1)
V3)1256.2 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.04
Crystal size (mm)0.40 × 0.20 × 0.10
Data collection
DiffractometerOxford Diffraction Xcalibur3
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.681, 0.903
No. of measured, independent and
observed [I > 2σ(I)] reflections
9231, 5612, 4025
Rint0.019
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.066, 0.90
No. of reflections5612
No. of parameters354
No. of restraints4
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.22

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H11A···O3i0.881.932.7898 (19)167
O11—H11B···O6i0.901.922.811 (2)167
O12—H12A···O1ii0.921.982.855 (2)157
O12—H12B···O8ii0.881.962.8035 (18)163
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1.
 

Acknowledgements

The authors gratefully acknowledge the Ukrainian State Fund for Fundamental Researchers (SFFR) for financial support of the Research Program (Chemistry).

References

First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKishino, S. & Saito, S. (1979). US Patent No. 4 161 524.  Google Scholar
First citationMoroz, O. V., Trush, V. A., Konovalova, I. S., Shishkin, O. V., Moroz, Y. S., Demeshko, S. & Amirkhanov, V. M. (2009). Polyhedron, 28, 1331–1335.  Web of Science CSD CrossRef CAS Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationShatrava, I. O., Sliva, T. Y., Ovchynnikov, V. A., Konovalova, I. S. & Amirkhanov, V. M. (2010). Acta Cryst. E66, m397–m398.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSkopenko, V. V., Amirkhanov, V. M., Sliva, T. Yu., Vasilchenko, I. S., Anpilova, E. L. & Garnovskii, A. D. (2004). Usp. Khim. 73, 797–813.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, K. & Angell, C. (2000). Inorg. Chim. Acta, 298, 16–23.  Web of Science CrossRef CAS Google Scholar
First citationZefirov, N. S., Palyulin, V. A. & Dashevskaya, E. E. (1990). J. Phys. Org. Chem. 3, 147–154.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 3| March 2011| Pages m369-m370
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds