organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 3| March 2011| Pages o677-o678

Bis(2-amino-3-carb­­oxy­pyrazin-1-ium) sulfate dihydrate

aLaboratoire de Chimie Appliquée et Technologie des Matériaux LCATM, Université Larbi Ben M'Hidi, 04000 Oum El Bouaghi, Algeria, bDépartement Sciences de la Matière, Faculté des Sciences Exactes et Sciences de la Nature et de la Vie, Université Larbi Ben M'hidi, 04000 Oum El Bouaghi, Algeria, cUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Faculté des Sciences Exactes, Université Mentouri Constantine 25000, Algeria, and dCentre de Difractométrie X, UMR 6226 CNRS Unité Sciences Chimiques de Rennes, Université de Rennes I, 263 Avenue du Général Leclerc, 35042 Rennes, France
*Correspondence e-mail: fadilaber@yahoo.fr

(Received 7 February 2011; accepted 16 February 2011; online 23 February 2011)

The crystal structure of the title compound, 2C5H6N3O2+·SO42−·2H2O, displays a variety of N—H⋯O and O—H⋯O hydrogen bonds in which all potential donors and acceptors are involved. In the crystal, cations and anions are inter­connected, forming R33(10) and R22(8) ring motifs whereas the anions and water mol­ecules form R23(10) rings, which develop in chains running along [100]. The resulting three-dimensional network exhibits undulating sheets parallel to (011), marked by the presence of R66(26) rings in which six cations are involved.

Related literature

For related compounds, see: Berrah et al. (2005a[Berrah, F., Lamraoui, H. & Benali-Cherif, N. (2005a). Acta Cryst. E61, o210-o212.],b[Berrah, F., Benali-Cherif, N. & Lamraoui, H. (2005b). Acta Cryst. E61, o1517-o1519.], 2011[Berrah, F., Ouakkaf, A., Bouacida, S. & Roisnel, T. (2011). Acta Cryst. E67, o525-o526.]); Bouacida et al. (2005[Bouacida, S., Merazig, H., Beghidja, A. & Beghidja, C. (2005). Acta Cryst. E61, m1153-m1155.], 2009[Bouacida, S., Belhouas, R., Kechout, H., Merazig, H. & Bénard-Rocherullé, P. (2009). Acta Cryst. E65, o628-o629.]); Dobson & Gerkin (1996[Dobson, A. J. & Gerkin, R. E. (1996). Acta Cryst. C52, 1512-1514.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]). For similar inter­molecular inter­actions, see: Dorn et al. (2005[Dorn, T., Janiak, C. & Abu-Shandi, K. (2005). CrystEngComm, 7, 633-641.]), Janiak (2000[Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.]); Desiraju (2003[Desiraju, G. R. (2003). Editor. Crystal Design: Structure and Function. In Perspectives in Supramolecular Chemistry, Vol. 7. Chichester: John Wiley & Sons, Ltd.]).

[Scheme 1]

Experimental

Crystal data
  • 2C5H6N3O2+·SO42−·2H2O

  • Mr = 412.36

  • Monoclinic, P 21 /a

  • a = 7.7214 (4) Å

  • b = 20.7043 (14) Å

  • c = 10.6398 (7) Å

  • β = 109.299 (2)°

  • V = 1605.36 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 150 K

  • 0.55 × 0.36 × 0.15 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002[Sheldrick, G. M. (2002). SADABS Bruker AXS Inc., Madison, Wisconsin, USA]) Tmin = 0.708, Tmax = 0.960

  • 13466 measured reflections

  • 3675 independent reflections

  • 3146 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.096

  • S = 1.03

  • 3675 reflections

  • 246 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1A1⋯O4 0.88 1.92 2.7970 (18) 175
N1A—H1A2⋯O6A 0.88 2.04 2.6741 (18) 128
N1A—H1A2⋯O6Bi 0.88 2.30 3.0158 (18) 138
N2A—H2A⋯O1 0.88 1.83 2.6915 (18) 167
N1B—H1B1⋯O2 0.88 2.34 3.0827 (18) 142
N1B—H1B2⋯O6B 0.88 2.08 2.7144 (19) 129
N1B—H1B2⋯O6Aii 0.88 2.10 2.8237 (18) 139
N2B—H2B⋯O1W 0.88 1.81 2.6705 (18) 167
O5B—H5B⋯O2W 0.84 1.67 2.5046 (17) 174
O5A—H5A⋯O2i 0.84 1.78 2.6192 (16) 175
O1W—H1W⋯O3 0.85 1.95 2.7934 (19) 175
O1W—H2W⋯O2iii 0.85 2.06 2.8996 (18) 167
O1W—H2W⋯O4iii 0.85 2.65 3.2856 (17) 133
O2W—H3W⋯O4ii 0.85 1.88 2.7351 (17) 177
O2W—H4W⋯O3iv 0.86 1.91 2.7633 (17) 171
Symmetry codes: (i) x, y, z-1; (ii) x, y, z+1; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z]; (iv) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+1].

Data collection: APEX2 (Bruker, 2001[Bruker (2001). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg & Berndt, 2001[Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Hydrogen bonds are object of several studies, that aim at elucidate their influence on crystal construction and compounds properties (Desiraju, 2003). N-heterocyclic compounds such as pyrazine and its derivatives may be interesting units to built new edifices involving original hydrogen-bonding scheme since they include a variety of potential hydrogen donors and acceptors. In this perspective and as a part of our search for new hybrid compounds based on protonated amines and imines (Berrah et al. 2011, 2005a,b; Bouacida et al. 2005,2009), we present here the structure of Bis (2-Amino-3-carboxypyrazin-1-ium) sulfate dihydrate.

The asymmetric units of (I) includes two symmetry- independent cations and water molecules, and one sulfate anion. Cations and anions are interconnected to form R33(10) and R22(8) ring motifs (Etter et al., 1990; Bernstein et al., 1995) (Fig 1). Bond lengths and angles are as expected (Berrah et al. 2011; Dobson & Gerkin, 1996).

The three-dimensional structure of (I), results from undulating sheets of cations dimmers parallel to (011) plane(Fig.2 and Fig.3 )and sulfate-water chains extending along [100](Fig.3). An interesting hydrogen bonds network, in which all potential donors and acceptors are involved, and especially marked by the presence of R66(26)and R23(10) set-graph motifs (Etter et al., 1990; Bernstein et al., 1995), ensures the coherence of the structure(Fig.2 and Fig.3, table 1). This later is reinforced by the contribution of π-π, S—O··· π and C—O··· π interactions (Dorn et al. 2005; Janiak, 2000) (table 2,3).

Related literature top

For related compounds, see: Berrah et al. (2005a,b, 2011); Bouacida et al. (2005, 2009); Dobson & Gerkin (1996). For hydrogen-bond motifs, see: Bernstein et al. (1995); Etter et al. (1990). For similar intermolecular interactions, see: Dorn et al. (2005), Janiak (2000); Desiraju (2003).

Experimental top

The title compound was synthesized by reacting 3-amino-pyrazine 2- carboxylic acid with some excess of sulphiric acid in aqueous solution. Slow evaporation leads to well crystallized yellow needles.

Refinement top

All non-H atoms were refined with anisotropic atomic displacement parameters. H atoms of water molecule were located in difference Fourier maps and treated as riding on their parent oxygen atoms with O—H = 0.85, H···H = 1.40 and Uiso(H) = 1.5Ueq(O). The remaining H atoms were localized on Fourier maps but introduced in calculated positions and treated as riding on their parent atoms (C, N or O) with C—H = 0.95 Å, O—H = 0.84 Å and N—H = 0.88 Å with Uiso(H) = 1.2Ueq(C or N) and Uiso(H = 1.5 Ueq(O).

Computing details top

Data collection: APEX2 (Bruker,2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick,2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with the atomic labelling scheme.Displacement are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. Partial packing view showing undulating sheets parallel to (011) plane and R66(26) rings set motif. Hydrogen bonds are shown as dashed lines. Hydrogen atoms not involved in H-bonds have been omitted for clarity
[Figure 3] Fig. 3. Partial packing view showing sulfate-water chains extending along [100] direction and undulating sheets. Hydrogen bonds are shown as dashed lines.Hydrogen atoms not involved in H-bonds have been omitted for clarity.
Bis(2-amino-3-carboxypyrazin-1-ium) sulfate dihydrate top
Crystal data top
2C5H6N3O2+·SO42·2H2OF(000) = 856
Mr = 412.36Dx = 1.706 Mg m3
Monoclinic, P21/aMo Kα radiation, λ = 0.71073 Å
a = 7.7214 (4) ÅCell parameters from 5179 reflections
b = 20.7043 (14) Åθ = 2.8–27.5°
c = 10.6398 (7) ŵ = 0.27 mm1
β = 109.299 (2)°T = 150 K
V = 1605.36 (17) Å3Prism, yellow
Z = 40.55 × 0.36 × 0.15 mm
Data collection top
Bruker APEXII
diffractometer
3146 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
CCD rotation images, thin slices scansθmax = 27.6°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 89
Tmin = 0.708, Tmax = 0.960k = 2626
13466 measured reflectionsl = 1313
3675 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0491P)2 + 0.7394P]
where P = (Fo2 + 2Fc2)/3
3675 reflections(Δ/σ)max = 0.001
246 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.48 e Å3
Crystal data top
2C5H6N3O2+·SO42·2H2OV = 1605.36 (17) Å3
Mr = 412.36Z = 4
Monoclinic, P21/aMo Kα radiation
a = 7.7214 (4) ŵ = 0.27 mm1
b = 20.7043 (14) ÅT = 150 K
c = 10.6398 (7) Å0.55 × 0.36 × 0.15 mm
β = 109.299 (2)°
Data collection top
Bruker APEXII
diffractometer
3675 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
3146 reflections with I > 2σ(I)
Tmin = 0.708, Tmax = 0.960Rint = 0.039
13466 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.096H-atom parameters constrained
S = 1.03Δρmax = 0.47 e Å3
3675 reflectionsΔρmin = 0.48 e Å3
246 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O5A0.17659 (16)0.04617 (6)0.03501 (11)0.0221 (3)
H5A0.15150.07320.02730.033*
O6A0.03846 (18)0.11842 (6)0.12557 (11)0.0258 (3)
N1A0.0567 (2)0.10587 (7)0.37979 (13)0.0231 (3)
H1A10.03990.11670.45490.028*
H1A20.01220.13030.30870.028*
N2A0.21592 (19)0.01604 (6)0.48490 (13)0.0195 (3)
H2A0.19890.02880.55880.023*
N3A0.27826 (19)0.02410 (6)0.25952 (13)0.0194 (3)
C1A0.1266 (2)0.06905 (7)0.13275 (15)0.0185 (3)
C2A0.1875 (2)0.02980 (7)0.25829 (15)0.0177 (3)
C3A0.1485 (2)0.05305 (7)0.37379 (15)0.0183 (3)
C4A0.3079 (2)0.03946 (8)0.48622 (16)0.0207 (3)
H4A0.35180.06440.56540.025*
C5A0.3374 (2)0.05941 (8)0.37264 (16)0.0214 (3)
H5C0.40060.09880.37310.026*
O5B0.03794 (19)0.32977 (6)1.37046 (12)0.0273 (3)
H5B0.07680.30551.41850.041*
O6B0.03786 (17)0.23824 (5)1.25812 (11)0.0241 (3)
N1B0.0619 (2)0.24559 (7)1.03668 (14)0.0238 (3)
H1B10.08210.23130.96490.029*
H1B20.03150.21841.08950.029*
N2B0.12393 (19)0.34886 (7)0.98346 (13)0.0205 (3)
H2B0.14220.33320.9120.025*
N3B0.07073 (19)0.39911 (6)1.20349 (13)0.0206 (3)
C1B0.0126 (2)0.29617 (8)1.27448 (15)0.0196 (3)
C2B0.0482 (2)0.33663 (7)1.17934 (14)0.0178 (3)
C3B0.0773 (2)0.30786 (8)1.06522 (15)0.0187 (3)
C4B0.1438 (2)0.41269 (8)1.00633 (16)0.0227 (3)
H4B0.17520.44030.94580.027*
C5B0.1180 (2)0.43737 (8)1.11810 (16)0.0233 (3)
H5D0.13380.48241.13570.028*
S10.15317 (5)0.131125 (18)0.73117 (4)0.01813 (11)
O10.2146 (2)0.06509 (6)0.71883 (12)0.0337 (3)
O20.09536 (18)0.13565 (6)0.85065 (12)0.0262 (3)
O30.30149 (17)0.17773 (7)0.74478 (12)0.0306 (3)
O40.00482 (16)0.14708 (6)0.61180 (11)0.0236 (3)
O1W0.23309 (17)0.30737 (6)0.78406 (12)0.0262 (3)
H1W0.24650.26760.76970.039*
H2W0.33520.32530.79030.039*
O2W0.15818 (19)0.26453 (6)1.52193 (12)0.0296 (3)
H3W0.10680.22851.55110.044*
H4W0.16530.28631.58860.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O5A0.0332 (7)0.0213 (6)0.0140 (5)0.0044 (5)0.0109 (5)0.0030 (4)
O6A0.0400 (7)0.0206 (6)0.0184 (6)0.0076 (5)0.0115 (5)0.0036 (4)
N1A0.0340 (8)0.0227 (7)0.0140 (6)0.0063 (6)0.0100 (6)0.0012 (5)
N2A0.0269 (7)0.0193 (6)0.0128 (6)0.0002 (5)0.0072 (5)0.0001 (5)
N3A0.0253 (7)0.0168 (6)0.0158 (6)0.0013 (5)0.0063 (5)0.0003 (5)
C1A0.0232 (8)0.0172 (7)0.0153 (7)0.0026 (6)0.0065 (6)0.0007 (6)
C2A0.0225 (8)0.0159 (7)0.0154 (7)0.0020 (6)0.0072 (6)0.0008 (6)
C3A0.0229 (8)0.0175 (7)0.0144 (7)0.0027 (6)0.0062 (6)0.0007 (6)
C4A0.0259 (8)0.0177 (7)0.0168 (7)0.0016 (6)0.0048 (6)0.0035 (6)
C5A0.0279 (9)0.0163 (7)0.0186 (7)0.0011 (6)0.0056 (6)0.0000 (6)
O5B0.0480 (8)0.0198 (6)0.0201 (6)0.0009 (5)0.0194 (5)0.0004 (5)
O6B0.0355 (7)0.0185 (6)0.0193 (6)0.0015 (5)0.0104 (5)0.0003 (4)
N1B0.0372 (8)0.0188 (7)0.0167 (6)0.0035 (6)0.0105 (6)0.0037 (5)
N2B0.0267 (7)0.0221 (7)0.0128 (6)0.0027 (5)0.0069 (5)0.0024 (5)
N3B0.0267 (7)0.0172 (6)0.0167 (6)0.0005 (5)0.0056 (5)0.0008 (5)
C1B0.0231 (8)0.0198 (8)0.0141 (7)0.0019 (6)0.0039 (6)0.0008 (6)
C2B0.0216 (8)0.0173 (7)0.0127 (7)0.0005 (6)0.0033 (6)0.0001 (5)
C3B0.0203 (8)0.0194 (7)0.0142 (7)0.0010 (6)0.0029 (6)0.0014 (6)
C4B0.0276 (9)0.0201 (8)0.0195 (7)0.0035 (6)0.0068 (6)0.0020 (6)
C5B0.0324 (9)0.0177 (7)0.0193 (7)0.0019 (6)0.0077 (7)0.0004 (6)
S10.0259 (2)0.01758 (19)0.01276 (18)0.00290 (14)0.00883 (15)0.00224 (13)
O10.0605 (9)0.0245 (6)0.0186 (6)0.0188 (6)0.0163 (6)0.0047 (5)
O20.0429 (7)0.0230 (6)0.0193 (6)0.0051 (5)0.0192 (5)0.0035 (5)
O30.0291 (7)0.0384 (7)0.0238 (6)0.0067 (5)0.0080 (5)0.0029 (5)
O40.0266 (6)0.0246 (6)0.0179 (6)0.0031 (5)0.0049 (5)0.0017 (4)
O1W0.0294 (6)0.0273 (6)0.0252 (6)0.0009 (5)0.0136 (5)0.0005 (5)
O2W0.0460 (8)0.0244 (6)0.0229 (6)0.0086 (5)0.0174 (6)0.0061 (5)
Geometric parameters (Å, º) top
O5A—C1A1.3116 (19)N1B—H1B10.88
O5A—H5A0.84N1B—H1B20.88
O6A—C1A1.216 (2)N2B—C4B1.343 (2)
N1A—C3A1.316 (2)N2B—C3B1.347 (2)
N1A—H1A10.88N2B—H2B0.88
N1A—H1A20.88N3B—C2B1.319 (2)
N2A—C4A1.349 (2)N3B—C5B1.344 (2)
N2A—C3A1.360 (2)C1B—C2B1.503 (2)
N2A—H2A0.88C2B—C3B1.435 (2)
N3A—C2A1.315 (2)C4B—C5B1.368 (2)
N3A—C5A1.352 (2)C4B—H4B0.95
C1A—C2A1.500 (2)C5B—H5D0.95
C2A—C3A1.442 (2)S1—O11.4670 (12)
C4A—C5A1.365 (2)S1—O31.4677 (13)
C4A—H4A0.95S1—O41.4786 (12)
C5A—H5C0.95S1—O21.4831 (12)
O5B—C1B1.3028 (19)O1W—H1W0.8491
O5B—H5B0.84O1W—H2W0.8542
O6B—C1B1.218 (2)O2W—H3W0.8543
N1B—C3B1.321 (2)O2W—H4W0.8582
C1A—O5A—H5A109.5C4B—N2B—C3B122.81 (14)
C3A—N1A—H1A1120C4B—N2B—H2B118.6
C3A—N1A—H1A2120C3B—N2B—H2B118.6
H1A1—N1A—H1A2120C2B—N3B—C5B119.63 (14)
C4A—N2A—C3A122.57 (14)O6B—C1B—O5B125.38 (15)
C4A—N2A—H2A118.7O6B—C1B—C2B121.55 (14)
C3A—N2A—H2A118.7O5B—C1B—C2B113.05 (14)
C2A—N3A—C5A119.32 (14)N3B—C2B—C3B121.62 (14)
O6A—C1A—O5A123.99 (14)N3B—C2B—C1B117.76 (14)
O6A—C1A—C2A121.03 (14)C3B—C2B—C1B120.62 (14)
O5A—C1A—C2A114.98 (13)N1B—C3B—N2B119.31 (15)
N3A—C2A—C3A122.39 (14)N1B—C3B—C2B124.91 (15)
N3A—C2A—C1A118.54 (14)N2B—C3B—C2B115.78 (14)
C3A—C2A—C1A119.06 (14)N2B—C4B—C5B118.98 (15)
N1A—C3A—N2A118.94 (14)N2B—C4B—H4B120.5
N1A—C3A—C2A125.91 (14)C5B—C4B—H4B120.5
N2A—C3A—C2A115.15 (14)N3B—C5B—C4B121.17 (15)
N2A—C4A—C5A119.33 (14)N3B—C5B—H5D119.4
N2A—C4A—H4A120.3C4B—C5B—H5D119.4
C5A—C4A—H4A120.3O1—S1—O3110.91 (9)
N3A—C5A—C4A121.21 (15)O1—S1—O4109.31 (7)
N3A—C5A—H5C119.4O3—S1—O4109.46 (7)
C4A—C5A—H5C119.4O1—S1—O2109.47 (7)
C1B—O5B—H5B109.5O3—S1—O2108.66 (7)
C3B—N1B—H1B1120O4—S1—O2109.00 (7)
C3B—N1B—H1B2120H1W—O1W—H2W105.7
H1B1—N1B—H1B2120H3W—O2W—H4W108
C5A—N3A—C2A—C3A0.1 (2)C5B—N3B—C2B—C3B1.6 (2)
C5A—N3A—C2A—C1A178.70 (14)C5B—N3B—C2B—C1B177.43 (14)
O6A—C1A—C2A—N3A178.18 (15)O6B—C1B—C2B—N3B179.35 (15)
O5A—C1A—C2A—N3A2.2 (2)O5B—C1B—C2B—N3B0.9 (2)
O6A—C1A—C2A—C3A3.2 (2)O6B—C1B—C2B—C3B0.3 (2)
O5A—C1A—C2A—C3A176.41 (14)O5B—C1B—C2B—C3B178.12 (14)
C4A—N2A—C3A—N1A178.56 (15)C4B—N2B—C3B—N1B179.42 (15)
C4A—N2A—C3A—C2A1.9 (2)C4B—N2B—C3B—C2B0.5 (2)
N3A—C2A—C3A—N1A179.04 (16)N3B—C2B—C3B—N1B178.17 (15)
C1A—C2A—C3A—N1A2.4 (2)C1B—C2B—C3B—N1B2.9 (2)
N3A—C2A—C3A—N2A1.5 (2)N3B—C2B—C3B—N2B1.7 (2)
C1A—C2A—C3A—N2A177.09 (13)C1B—C2B—C3B—N2B177.27 (14)
C3A—N2A—C4A—C5A0.8 (2)C3B—N2B—C4B—C5B0.8 (2)
C2A—N3A—C5A—C4A1.4 (2)C2B—N3B—C5B—C4B0.2 (3)
N2A—C4A—C5A—N3A0.9 (2)N2B—C4B—C5B—N3B1.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A1···O40.881.922.7970 (18)175
N1A—H1A2···O6A0.882.042.6741 (18)128
N1A—H1A2···O6Bi0.882.303.0158 (18)138
N2A—H2A···O10.881.832.6915 (18)167
N1B—H1B1···O20.882.343.0827 (18)142
N1B—H1B2···O6B0.882.082.7144 (19)129
N1B—H1B2···O6Aii0.882.102.8237 (18)139
N2B—H2B···O1W0.881.812.6705 (18)167
O5B—H5B···O2W0.841.672.5046 (17)174
O5A—H5A···O2i0.841.782.6192 (16)175
O1W—H1W···O30.851.952.7934 (19)175
O1W—H2W···O2iii0.852.062.8996 (18)167
O1W—H2W···O4iii0.852.653.2856 (17)133
O2W—H3W···O4ii0.851.882.7351 (17)177
O2W—H4W···O3iv0.861.912.7633 (17)171
C4A—H4A···O5Bv0.952.583.320 (2)134
C4A—H4A···N3Bv0.952.453.369 (2)163
C4B—H4B···O5Avi0.952.453.187 (2)134
C4B—H4B···N3Avi0.952.443.347 (2)159
C5A—H5C···O1Wvii0.952.553.175 (2)124
C5B—H5D···O1viii0.952.353.192 (2)148
Symmetry codes: (i) x, y, z1; (ii) x, y, z+1; (iii) x+1/2, y+1/2, z; (iv) x1/2, y+1/2, z+1; (v) x+1/2, y1/2, z+2; (vi) x+1/2, y+1/2, z+1; (vii) x+1/2, y1/2, z+1; (viii) x+1/2, y+1/2, z+2.

Experimental details

Crystal data
Chemical formula2C5H6N3O2+·SO42·2H2O
Mr412.36
Crystal system, space groupMonoclinic, P21/a
Temperature (K)150
a, b, c (Å)7.7214 (4), 20.7043 (14), 10.6398 (7)
β (°) 109.299 (2)
V3)1605.36 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.55 × 0.36 × 0.15
Data collection
DiffractometerBruker APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2002)
Tmin, Tmax0.708, 0.960
No. of measured, independent and
observed [I > 2σ(I)] reflections
13466, 3675, 3146
Rint0.039
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.096, 1.03
No. of reflections3675
No. of parameters246
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.48

Computer programs: APEX2 (Bruker,2001), SAINT (Bruker, 2001), SIR2002 (Burla et al., 2003), SHELXL97 (Sheldrick,2008), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A1···O40.881.922.7970 (18)175.3
N1A—H1A2···O6A0.882.042.6741 (18)128.1
N1A—H1A2···O6Bi0.882.303.0158 (18)138.4
N2A—H2A···O10.881.832.6915 (18)166.5
N1B—H1B1···O20.882.343.0827 (18)141.8
N1B—H1B2···O6B0.882.082.7144 (19)128.7
N1B—H1B2···O6Aii0.882.102.8237 (18)138.6
N2B—H2B···O1W0.881.812.6705 (18)166.8
O5B—H5B···O2W0.841.672.5046 (17)173.7
O5A—H5A···O2i0.841.782.6192 (16)174.9
O1W—H1W···O30.851.952.7934 (19)174.7
O1W—H2W···O2iii0.852.062.8996 (18)167
O1W—H2W···O4iii0.852.653.2856 (17)132.5
O2W—H3W···O4ii0.851.882.7351 (17)177.2
O2W—H4W···O3iv0.861.912.7633 (17)170.5
Symmetry codes: (i) x, y, z1; (ii) x, y, z+1; (iii) x+1/2, y+1/2, z; (iv) x1/2, y+1/2, z+1.
ππ stacking interactions (Å, °) top
Cg1 is the centroid of the N2A–C4A ring.
CgICgJCgI···CgJaαβγCgI···P(J)bCgJ···P(I)cSlippage
Cg1Cg1i3.9678 (9)034.9434.943.2528 (6)3.2527 (6)2.272
Symmetry codes: (i)1-x,-y,1-z Notes: a : Distance between centroids b : Perpendicular distance of CgI on ring plan J c : Perpendicular distance of CgJ on ring plan I α = Dihedral Angle between the ring planes β = Angle between the centroid vector CgI···CgJ and the normal to the plane I. γ = Angle between the centroid vector CgI···CgJ and the normal to the plane J. Slippage = vertical displacement between ring centroids.
S—O···π and C—O···π interactions (Å, °). top
Cg1 and Cg2 are the centroids of the N2A–C4A and N2B–C4B rings, respectively.
XIJI···JX–I···JX···J
S1O1Cg1i3.5922 (17)91.83 (7)3.9233 (8)
S1O2Cg1i3.9845 (14)76.88 (5)3.9233 (8)
S1O2Cg2ii3.8831 (15)92.77 (6)4.2231 (8)
C1AO6ACg2iii3.3136 (16)125.62 (11)4.1418 (18)
Symmetry codes: (i) -x, -y, 1-z; (ii) x, y, 1+z; (iii) x-1, y, z.
 

Acknowledgements

We are grateful to the LCATM laboratory, Université Larbi Ben M'Hidi, Oum El Bouaghi, Algeria, for financial support.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBerrah, F., Benali-Cherif, N. & Lamraoui, H. (2005b). Acta Cryst. E61, o1517–o1519.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBerrah, F., Lamraoui, H. & Benali-Cherif, N. (2005a). Acta Cryst. E61, o210–o212.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBerrah, F., Ouakkaf, A., Bouacida, S. & Roisnel, T. (2011). Acta Cryst. E67, o525–o526.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBouacida, S., Belhouas, R., Kechout, H., Merazig, H. & Bénard-Rocherullé, P. (2009). Acta Cryst. E65, o628–o629.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBouacida, S., Merazig, H., Beghidja, A. & Beghidja, C. (2005). Acta Cryst. E61, m1153–m1155.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.  Google Scholar
First citationBruker (2001). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  CrossRef IUCr Journals Google Scholar
First citationDesiraju, G. R. (2003). Editor. Crystal Design: Structure and Function. In Perspectives in Supramolecular Chemistry, Vol. 7. Chichester: John Wiley & Sons, Ltd.  Google Scholar
First citationDobson, A. J. & Gerkin, R. E. (1996). Acta Cryst. C52, 1512–1514.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDorn, T., Janiak, C. & Abu-Shandi, K. (2005). CrystEngComm, 7, 633–641.  Web of Science CSD CrossRef CAS Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationJaniak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2002). SADABS Bruker AXS Inc., Madison, Wisconsin, USA  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 3| March 2011| Pages o677-o678
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds