organic compounds
Bis(2-amino-3-carboxypyrazin-1-ium) sulfate dihydrate
aLaboratoire de Chimie Appliquée et Technologie des Matériaux LCATM, Université Larbi Ben M'Hidi, 04000 Oum El Bouaghi, Algeria, bDépartement Sciences de la Matière, Faculté des Sciences Exactes et Sciences de la Nature et de la Vie, Université Larbi Ben M'hidi, 04000 Oum El Bouaghi, Algeria, cUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Faculté des Sciences Exactes, Université Mentouri Constantine 25000, Algeria, and dCentre de Difractométrie X, UMR 6226 CNRS Unité Sciences Chimiques de Rennes, Université de Rennes I, 263 Avenue du Général Leclerc, 35042 Rennes, France
*Correspondence e-mail: fadilaber@yahoo.fr
The 5H6N3O2+·SO42−·2H2O, displays a variety of N—H⋯O and O—H⋯O hydrogen bonds in which all potential donors and acceptors are involved. In the crystal, cations and anions are interconnected, forming R33(10) and R22(8) ring motifs whereas the anions and water molecules form R23(10) rings, which develop in chains running along [100]. The resulting three-dimensional network exhibits undulating sheets parallel to (011), marked by the presence of R66(26) rings in which six cations are involved.
of the title compound, 2CRelated literature
For related compounds, see: Berrah et al. (2005a,b, 2011); Bouacida et al. (2005, 2009); Dobson & Gerkin (1996). For hydrogen-bond motifs, see: Bernstein et al. (1995); Etter et al. (1990). For similar intermolecular interactions, see: Dorn et al. (2005), Janiak (2000); Desiraju (2003).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2001); cell SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536811005824/dn2656sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811005824/dn2656Isup2.hkl
The title compound was synthesized by reacting 3-amino-pyrazine 2- carboxylic acid with some excess of sulphiric acid in aqueous solution. Slow evaporation leads to well crystallized yellow needles.
All non-H atoms were refined with anisotropic atomic displacement parameters. H atoms of water molecule were located in difference Fourier maps and treated as riding on their parent oxygen atoms with O—H = 0.85, H···H = 1.40 and Uiso(H) = 1.5Ueq(O). The remaining H atoms were localized on Fourier maps but introduced in calculated positions and treated as riding on their parent atoms (C, N or O) with C—H = 0.95 Å, O—H = 0.84 Å and N—H = 0.88 Å with Uiso(H) = 1.2Ueq(C or N) and Uiso(H = 1.5 Ueq(O).
Data collection: APEX2 (Bruker,2001); cell
SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick,2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. The asymmetric unit of the title compound with the atomic labelling scheme.Displacement are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii. Hydrogen bonds are shown as dashed lines. | |
Fig. 2. Partial packing view showing undulating sheets parallel to (011) plane and R66(26) rings set motif. Hydrogen bonds are shown as dashed lines. Hydrogen atoms not involved in H-bonds have been omitted for clarity | |
Fig. 3. Partial packing view showing sulfate-water chains extending along [100] direction and undulating sheets. Hydrogen bonds are shown as dashed lines.Hydrogen atoms not involved in H-bonds have been omitted for clarity. |
2C5H6N3O2+·SO42−·2H2O | F(000) = 856 |
Mr = 412.36 | Dx = 1.706 Mg m−3 |
Monoclinic, P21/a | Mo Kα radiation, λ = 0.71073 Å |
a = 7.7214 (4) Å | Cell parameters from 5179 reflections |
b = 20.7043 (14) Å | θ = 2.8–27.5° |
c = 10.6398 (7) Å | µ = 0.27 mm−1 |
β = 109.299 (2)° | T = 150 K |
V = 1605.36 (17) Å3 | Prism, yellow |
Z = 4 | 0.55 × 0.36 × 0.15 mm |
Bruker APEXII diffractometer | 3146 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.039 |
CCD rotation images, thin slices scans | θmax = 27.6°, θmin = 2.3° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2002) | h = −8→9 |
Tmin = 0.708, Tmax = 0.960 | k = −26→26 |
13466 measured reflections | l = −13→13 |
3675 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.035 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.096 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0491P)2 + 0.7394P] where P = (Fo2 + 2Fc2)/3 |
3675 reflections | (Δ/σ)max = 0.001 |
246 parameters | Δρmax = 0.47 e Å−3 |
0 restraints | Δρmin = −0.48 e Å−3 |
2C5H6N3O2+·SO42−·2H2O | V = 1605.36 (17) Å3 |
Mr = 412.36 | Z = 4 |
Monoclinic, P21/a | Mo Kα radiation |
a = 7.7214 (4) Å | µ = 0.27 mm−1 |
b = 20.7043 (14) Å | T = 150 K |
c = 10.6398 (7) Å | 0.55 × 0.36 × 0.15 mm |
β = 109.299 (2)° |
Bruker APEXII diffractometer | 3675 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2002) | 3146 reflections with I > 2σ(I) |
Tmin = 0.708, Tmax = 0.960 | Rint = 0.039 |
13466 measured reflections |
R[F2 > 2σ(F2)] = 0.035 | 0 restraints |
wR(F2) = 0.096 | H-atom parameters constrained |
S = 1.03 | Δρmax = 0.47 e Å−3 |
3675 reflections | Δρmin = −0.48 e Å−3 |
246 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O5A | 0.17659 (16) | 0.04617 (6) | 0.03501 (11) | 0.0221 (3) | |
H5A | 0.1515 | 0.0732 | −0.0273 | 0.033* | |
O6A | 0.03846 (18) | 0.11842 (6) | 0.12557 (11) | 0.0258 (3) | |
N1A | 0.0567 (2) | 0.10587 (7) | 0.37979 (13) | 0.0231 (3) | |
H1A1 | 0.0399 | 0.1167 | 0.4549 | 0.028* | |
H1A2 | 0.0122 | 0.1303 | 0.3087 | 0.028* | |
N2A | 0.21592 (19) | 0.01604 (6) | 0.48490 (13) | 0.0195 (3) | |
H2A | 0.1989 | 0.0288 | 0.5588 | 0.023* | |
N3A | 0.27826 (19) | −0.02410 (6) | 0.25952 (13) | 0.0194 (3) | |
C1A | 0.1266 (2) | 0.06905 (7) | 0.13275 (15) | 0.0185 (3) | |
C2A | 0.1875 (2) | 0.02980 (7) | 0.25829 (15) | 0.0177 (3) | |
C3A | 0.1485 (2) | 0.05305 (7) | 0.37379 (15) | 0.0183 (3) | |
C4A | 0.3079 (2) | −0.03946 (8) | 0.48622 (16) | 0.0207 (3) | |
H4A | 0.3518 | −0.0644 | 0.5654 | 0.025* | |
C5A | 0.3374 (2) | −0.05941 (8) | 0.37264 (16) | 0.0214 (3) | |
H5C | 0.4006 | −0.0988 | 0.3731 | 0.026* | |
O5B | −0.03794 (19) | 0.32977 (6) | 1.37046 (12) | 0.0273 (3) | |
H5B | −0.0768 | 0.3055 | 1.4185 | 0.041* | |
O6B | −0.03786 (17) | 0.23824 (5) | 1.25812 (11) | 0.0241 (3) | |
N1B | 0.0619 (2) | 0.24559 (7) | 1.03668 (14) | 0.0238 (3) | |
H1B1 | 0.0821 | 0.2313 | 0.9649 | 0.029* | |
H1B2 | 0.0315 | 0.2184 | 1.0895 | 0.029* | |
N2B | 0.12393 (19) | 0.34886 (7) | 0.98346 (13) | 0.0205 (3) | |
H2B | 0.1422 | 0.3332 | 0.912 | 0.025* | |
N3B | 0.07073 (19) | 0.39911 (6) | 1.20349 (13) | 0.0206 (3) | |
C1B | −0.0126 (2) | 0.29617 (8) | 1.27448 (15) | 0.0196 (3) | |
C2B | 0.0482 (2) | 0.33663 (7) | 1.17934 (14) | 0.0178 (3) | |
C3B | 0.0773 (2) | 0.30786 (8) | 1.06522 (15) | 0.0187 (3) | |
C4B | 0.1438 (2) | 0.41269 (8) | 1.00633 (16) | 0.0227 (3) | |
H4B | 0.1752 | 0.4403 | 0.9458 | 0.027* | |
C5B | 0.1180 (2) | 0.43737 (8) | 1.11810 (16) | 0.0233 (3) | |
H5D | 0.1338 | 0.4824 | 1.1357 | 0.028* | |
S1 | 0.15317 (5) | 0.131125 (18) | 0.73117 (4) | 0.01813 (11) | |
O1 | 0.2146 (2) | 0.06509 (6) | 0.71883 (12) | 0.0337 (3) | |
O2 | 0.09536 (18) | 0.13565 (6) | 0.85065 (12) | 0.0262 (3) | |
O3 | 0.30149 (17) | 0.17773 (7) | 0.74478 (12) | 0.0306 (3) | |
O4 | −0.00482 (16) | 0.14708 (6) | 0.61180 (11) | 0.0236 (3) | |
O1W | 0.23309 (17) | 0.30737 (6) | 0.78406 (12) | 0.0262 (3) | |
H1W | 0.2465 | 0.2676 | 0.7697 | 0.039* | |
H2W | 0.3352 | 0.3253 | 0.7903 | 0.039* | |
O2W | −0.15818 (19) | 0.26453 (6) | 1.52193 (12) | 0.0296 (3) | |
H3W | −0.1068 | 0.2285 | 1.5511 | 0.044* | |
H4W | −0.1653 | 0.2863 | 1.5886 | 0.044* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O5A | 0.0332 (7) | 0.0213 (6) | 0.0140 (5) | 0.0044 (5) | 0.0109 (5) | 0.0030 (4) |
O6A | 0.0400 (7) | 0.0206 (6) | 0.0184 (6) | 0.0076 (5) | 0.0115 (5) | 0.0036 (4) |
N1A | 0.0340 (8) | 0.0227 (7) | 0.0140 (6) | 0.0063 (6) | 0.0100 (6) | 0.0012 (5) |
N2A | 0.0269 (7) | 0.0193 (6) | 0.0128 (6) | −0.0002 (5) | 0.0072 (5) | 0.0001 (5) |
N3A | 0.0253 (7) | 0.0168 (6) | 0.0158 (6) | −0.0013 (5) | 0.0063 (5) | −0.0003 (5) |
C1A | 0.0232 (8) | 0.0172 (7) | 0.0153 (7) | −0.0026 (6) | 0.0065 (6) | −0.0007 (6) |
C2A | 0.0225 (8) | 0.0159 (7) | 0.0154 (7) | −0.0020 (6) | 0.0072 (6) | −0.0008 (6) |
C3A | 0.0229 (8) | 0.0175 (7) | 0.0144 (7) | −0.0027 (6) | 0.0062 (6) | −0.0007 (6) |
C4A | 0.0259 (8) | 0.0177 (7) | 0.0168 (7) | −0.0016 (6) | 0.0048 (6) | 0.0035 (6) |
C5A | 0.0279 (9) | 0.0163 (7) | 0.0186 (7) | 0.0011 (6) | 0.0056 (6) | 0.0000 (6) |
O5B | 0.0480 (8) | 0.0198 (6) | 0.0201 (6) | −0.0009 (5) | 0.0194 (5) | −0.0004 (5) |
O6B | 0.0355 (7) | 0.0185 (6) | 0.0193 (6) | −0.0015 (5) | 0.0104 (5) | 0.0003 (4) |
N1B | 0.0372 (8) | 0.0188 (7) | 0.0167 (6) | −0.0035 (6) | 0.0105 (6) | −0.0037 (5) |
N2B | 0.0267 (7) | 0.0221 (7) | 0.0128 (6) | −0.0027 (5) | 0.0069 (5) | −0.0024 (5) |
N3B | 0.0267 (7) | 0.0172 (6) | 0.0167 (6) | 0.0005 (5) | 0.0056 (5) | −0.0008 (5) |
C1B | 0.0231 (8) | 0.0198 (8) | 0.0141 (7) | 0.0019 (6) | 0.0039 (6) | 0.0008 (6) |
C2B | 0.0216 (8) | 0.0173 (7) | 0.0127 (7) | 0.0005 (6) | 0.0033 (6) | 0.0001 (5) |
C3B | 0.0203 (8) | 0.0194 (7) | 0.0142 (7) | −0.0010 (6) | 0.0029 (6) | −0.0014 (6) |
C4B | 0.0276 (9) | 0.0201 (8) | 0.0195 (7) | −0.0035 (6) | 0.0068 (6) | 0.0020 (6) |
C5B | 0.0324 (9) | 0.0177 (7) | 0.0193 (7) | −0.0019 (6) | 0.0077 (7) | 0.0004 (6) |
S1 | 0.0259 (2) | 0.01758 (19) | 0.01276 (18) | 0.00290 (14) | 0.00883 (15) | 0.00224 (13) |
O1 | 0.0605 (9) | 0.0245 (6) | 0.0186 (6) | 0.0188 (6) | 0.0163 (6) | 0.0047 (5) |
O2 | 0.0429 (7) | 0.0230 (6) | 0.0193 (6) | 0.0051 (5) | 0.0192 (5) | 0.0035 (5) |
O3 | 0.0291 (7) | 0.0384 (7) | 0.0238 (6) | −0.0067 (5) | 0.0080 (5) | 0.0029 (5) |
O4 | 0.0266 (6) | 0.0246 (6) | 0.0179 (6) | 0.0031 (5) | 0.0049 (5) | 0.0017 (4) |
O1W | 0.0294 (6) | 0.0273 (6) | 0.0252 (6) | −0.0009 (5) | 0.0136 (5) | −0.0005 (5) |
O2W | 0.0460 (8) | 0.0244 (6) | 0.0229 (6) | 0.0086 (5) | 0.0174 (6) | 0.0061 (5) |
O5A—C1A | 1.3116 (19) | N1B—H1B1 | 0.88 |
O5A—H5A | 0.84 | N1B—H1B2 | 0.88 |
O6A—C1A | 1.216 (2) | N2B—C4B | 1.343 (2) |
N1A—C3A | 1.316 (2) | N2B—C3B | 1.347 (2) |
N1A—H1A1 | 0.88 | N2B—H2B | 0.88 |
N1A—H1A2 | 0.88 | N3B—C2B | 1.319 (2) |
N2A—C4A | 1.349 (2) | N3B—C5B | 1.344 (2) |
N2A—C3A | 1.360 (2) | C1B—C2B | 1.503 (2) |
N2A—H2A | 0.88 | C2B—C3B | 1.435 (2) |
N3A—C2A | 1.315 (2) | C4B—C5B | 1.368 (2) |
N3A—C5A | 1.352 (2) | C4B—H4B | 0.95 |
C1A—C2A | 1.500 (2) | C5B—H5D | 0.95 |
C2A—C3A | 1.442 (2) | S1—O1 | 1.4670 (12) |
C4A—C5A | 1.365 (2) | S1—O3 | 1.4677 (13) |
C4A—H4A | 0.95 | S1—O4 | 1.4786 (12) |
C5A—H5C | 0.95 | S1—O2 | 1.4831 (12) |
O5B—C1B | 1.3028 (19) | O1W—H1W | 0.8491 |
O5B—H5B | 0.84 | O1W—H2W | 0.8542 |
O6B—C1B | 1.218 (2) | O2W—H3W | 0.8543 |
N1B—C3B | 1.321 (2) | O2W—H4W | 0.8582 |
C1A—O5A—H5A | 109.5 | C4B—N2B—C3B | 122.81 (14) |
C3A—N1A—H1A1 | 120 | C4B—N2B—H2B | 118.6 |
C3A—N1A—H1A2 | 120 | C3B—N2B—H2B | 118.6 |
H1A1—N1A—H1A2 | 120 | C2B—N3B—C5B | 119.63 (14) |
C4A—N2A—C3A | 122.57 (14) | O6B—C1B—O5B | 125.38 (15) |
C4A—N2A—H2A | 118.7 | O6B—C1B—C2B | 121.55 (14) |
C3A—N2A—H2A | 118.7 | O5B—C1B—C2B | 113.05 (14) |
C2A—N3A—C5A | 119.32 (14) | N3B—C2B—C3B | 121.62 (14) |
O6A—C1A—O5A | 123.99 (14) | N3B—C2B—C1B | 117.76 (14) |
O6A—C1A—C2A | 121.03 (14) | C3B—C2B—C1B | 120.62 (14) |
O5A—C1A—C2A | 114.98 (13) | N1B—C3B—N2B | 119.31 (15) |
N3A—C2A—C3A | 122.39 (14) | N1B—C3B—C2B | 124.91 (15) |
N3A—C2A—C1A | 118.54 (14) | N2B—C3B—C2B | 115.78 (14) |
C3A—C2A—C1A | 119.06 (14) | N2B—C4B—C5B | 118.98 (15) |
N1A—C3A—N2A | 118.94 (14) | N2B—C4B—H4B | 120.5 |
N1A—C3A—C2A | 125.91 (14) | C5B—C4B—H4B | 120.5 |
N2A—C3A—C2A | 115.15 (14) | N3B—C5B—C4B | 121.17 (15) |
N2A—C4A—C5A | 119.33 (14) | N3B—C5B—H5D | 119.4 |
N2A—C4A—H4A | 120.3 | C4B—C5B—H5D | 119.4 |
C5A—C4A—H4A | 120.3 | O1—S1—O3 | 110.91 (9) |
N3A—C5A—C4A | 121.21 (15) | O1—S1—O4 | 109.31 (7) |
N3A—C5A—H5C | 119.4 | O3—S1—O4 | 109.46 (7) |
C4A—C5A—H5C | 119.4 | O1—S1—O2 | 109.47 (7) |
C1B—O5B—H5B | 109.5 | O3—S1—O2 | 108.66 (7) |
C3B—N1B—H1B1 | 120 | O4—S1—O2 | 109.00 (7) |
C3B—N1B—H1B2 | 120 | H1W—O1W—H2W | 105.7 |
H1B1—N1B—H1B2 | 120 | H3W—O2W—H4W | 108 |
C5A—N3A—C2A—C3A | 0.1 (2) | C5B—N3B—C2B—C3B | 1.6 (2) |
C5A—N3A—C2A—C1A | 178.70 (14) | C5B—N3B—C2B—C1B | −177.43 (14) |
O6A—C1A—C2A—N3A | 178.18 (15) | O6B—C1B—C2B—N3B | 179.35 (15) |
O5A—C1A—C2A—N3A | −2.2 (2) | O5B—C1B—C2B—N3B | 0.9 (2) |
O6A—C1A—C2A—C3A | −3.2 (2) | O6B—C1B—C2B—C3B | 0.3 (2) |
O5A—C1A—C2A—C3A | 176.41 (14) | O5B—C1B—C2B—C3B | −178.12 (14) |
C4A—N2A—C3A—N1A | 178.56 (15) | C4B—N2B—C3B—N1B | −179.42 (15) |
C4A—N2A—C3A—C2A | −1.9 (2) | C4B—N2B—C3B—C2B | 0.5 (2) |
N3A—C2A—C3A—N1A | −179.04 (16) | N3B—C2B—C3B—N1B | 178.17 (15) |
C1A—C2A—C3A—N1A | 2.4 (2) | C1B—C2B—C3B—N1B | −2.9 (2) |
N3A—C2A—C3A—N2A | 1.5 (2) | N3B—C2B—C3B—N2B | −1.7 (2) |
C1A—C2A—C3A—N2A | −177.09 (13) | C1B—C2B—C3B—N2B | 177.27 (14) |
C3A—N2A—C4A—C5A | 0.8 (2) | C3B—N2B—C4B—C5B | 0.8 (2) |
C2A—N3A—C5A—C4A | −1.4 (2) | C2B—N3B—C5B—C4B | −0.2 (3) |
N2A—C4A—C5A—N3A | 0.9 (2) | N2B—C4B—C5B—N3B | −1.0 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1A—H1A1···O4 | 0.88 | 1.92 | 2.7970 (18) | 175 |
N1A—H1A2···O6A | 0.88 | 2.04 | 2.6741 (18) | 128 |
N1A—H1A2···O6Bi | 0.88 | 2.30 | 3.0158 (18) | 138 |
N2A—H2A···O1 | 0.88 | 1.83 | 2.6915 (18) | 167 |
N1B—H1B1···O2 | 0.88 | 2.34 | 3.0827 (18) | 142 |
N1B—H1B2···O6B | 0.88 | 2.08 | 2.7144 (19) | 129 |
N1B—H1B2···O6Aii | 0.88 | 2.10 | 2.8237 (18) | 139 |
N2B—H2B···O1W | 0.88 | 1.81 | 2.6705 (18) | 167 |
O5B—H5B···O2W | 0.84 | 1.67 | 2.5046 (17) | 174 |
O5A—H5A···O2i | 0.84 | 1.78 | 2.6192 (16) | 175 |
O1W—H1W···O3 | 0.85 | 1.95 | 2.7934 (19) | 175 |
O1W—H2W···O2iii | 0.85 | 2.06 | 2.8996 (18) | 167 |
O1W—H2W···O4iii | 0.85 | 2.65 | 3.2856 (17) | 133 |
O2W—H3W···O4ii | 0.85 | 1.88 | 2.7351 (17) | 177 |
O2W—H4W···O3iv | 0.86 | 1.91 | 2.7633 (17) | 171 |
C4A—H4A···O5Bv | 0.95 | 2.58 | 3.320 (2) | 134 |
C4A—H4A···N3Bv | 0.95 | 2.45 | 3.369 (2) | 163 |
C4B—H4B···O5Avi | 0.95 | 2.45 | 3.187 (2) | 134 |
C4B—H4B···N3Avi | 0.95 | 2.44 | 3.347 (2) | 159 |
C5A—H5C···O1Wvii | 0.95 | 2.55 | 3.175 (2) | 124 |
C5B—H5D···O1viii | 0.95 | 2.35 | 3.192 (2) | 148 |
Symmetry codes: (i) x, y, z−1; (ii) x, y, z+1; (iii) x+1/2, −y+1/2, z; (iv) x−1/2, −y+1/2, z+1; (v) −x+1/2, y−1/2, −z+2; (vi) −x+1/2, y+1/2, −z+1; (vii) −x+1/2, y−1/2, −z+1; (viii) −x+1/2, y+1/2, −z+2. |
Experimental details
Crystal data | |
Chemical formula | 2C5H6N3O2+·SO42−·2H2O |
Mr | 412.36 |
Crystal system, space group | Monoclinic, P21/a |
Temperature (K) | 150 |
a, b, c (Å) | 7.7214 (4), 20.7043 (14), 10.6398 (7) |
β (°) | 109.299 (2) |
V (Å3) | 1605.36 (17) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.27 |
Crystal size (mm) | 0.55 × 0.36 × 0.15 |
Data collection | |
Diffractometer | Bruker APEXII diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2002) |
Tmin, Tmax | 0.708, 0.960 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 13466, 3675, 3146 |
Rint | 0.039 |
(sin θ/λ)max (Å−1) | 0.651 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.035, 0.096, 1.03 |
No. of reflections | 3675 |
No. of parameters | 246 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.47, −0.48 |
Computer programs: APEX2 (Bruker,2001), SAINT (Bruker, 2001), SIR2002 (Burla et al., 2003), SHELXL97 (Sheldrick,2008), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
N1A—H1A1···O4 | 0.88 | 1.92 | 2.7970 (18) | 175.3 |
N1A—H1A2···O6A | 0.88 | 2.04 | 2.6741 (18) | 128.1 |
N1A—H1A2···O6Bi | 0.88 | 2.30 | 3.0158 (18) | 138.4 |
N2A—H2A···O1 | 0.88 | 1.83 | 2.6915 (18) | 166.5 |
N1B—H1B1···O2 | 0.88 | 2.34 | 3.0827 (18) | 141.8 |
N1B—H1B2···O6B | 0.88 | 2.08 | 2.7144 (19) | 128.7 |
N1B—H1B2···O6Aii | 0.88 | 2.10 | 2.8237 (18) | 138.6 |
N2B—H2B···O1W | 0.88 | 1.81 | 2.6705 (18) | 166.8 |
O5B—H5B···O2W | 0.84 | 1.67 | 2.5046 (17) | 173.7 |
O5A—H5A···O2i | 0.84 | 1.78 | 2.6192 (16) | 174.9 |
O1W—H1W···O3 | 0.85 | 1.95 | 2.7934 (19) | 174.7 |
O1W—H2W···O2iii | 0.85 | 2.06 | 2.8996 (18) | 167 |
O1W—H2W···O4iii | 0.85 | 2.65 | 3.2856 (17) | 132.5 |
O2W—H3W···O4ii | 0.85 | 1.88 | 2.7351 (17) | 177.2 |
O2W—H4W···O3iv | 0.86 | 1.91 | 2.7633 (17) | 170.5 |
Symmetry codes: (i) x, y, z−1; (ii) x, y, z+1; (iii) x+1/2, −y+1/2, z; (iv) x−1/2, −y+1/2, z+1. |
Cg1 is the centroid of the N2A–C4A ring. |
CgI | CgJ | CgI···CgJa | α | β | γ | CgI···P(J)b | CgJ···P(I)c | Slippage |
Cg1 | Cg1i | 3.9678 (9) | 0 | 34.94 | 34.94 | 3.2528 (6) | 3.2527 (6) | 2.272 |
Symmetry codes: (i)1-x,-y,1-z Notes: a : Distance between centroids b : Perpendicular distance of CgI on ring plan J c : Perpendicular distance of CgJ on ring plan I α = Dihedral Angle between the ring planes β = Angle between the centroid vector CgI···CgJ and the normal to the plane I. γ = Angle between the centroid vector CgI···CgJ and the normal to the plane J. Slippage = vertical displacement between ring centroids. |
Cg1 and Cg2 are the centroids of the N2A–C4A and N2B–C4B rings, respectively. |
X | I | J | I···J | X–I···J | X···J |
S1 | O1 | Cg1i | 3.5922 (17) | 91.83 (7) | 3.9233 (8) |
S1 | O2 | Cg1i | 3.9845 (14) | 76.88 (5) | 3.9233 (8) |
S1 | O2 | Cg2ii | 3.8831 (15) | 92.77 (6) | 4.2231 (8) |
C1A | O6A | Cg2iii | 3.3136 (16) | 125.62 (11) | 4.1418 (18) |
Symmetry codes: (i) -x, -y, 1-z; (ii) x, y, 1+z; (iii) x-1, y, z. |
Acknowledgements
We are grateful to the LCATM laboratory, Université Larbi Ben M'Hidi, Oum El Bouaghi, Algeria, for financial support.
References
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Berrah, F., Benali-Cherif, N. & Lamraoui, H. (2005b). Acta Cryst. E61, o1517–o1519. Web of Science CSD CrossRef IUCr Journals Google Scholar
Berrah, F., Lamraoui, H. & Benali-Cherif, N. (2005a). Acta Cryst. E61, o210–o212. Web of Science CSD CrossRef IUCr Journals Google Scholar
Berrah, F., Ouakkaf, A., Bouacida, S. & Roisnel, T. (2011). Acta Cryst. E67, o525–o526. Web of Science CrossRef IUCr Journals Google Scholar
Bouacida, S., Belhouas, R., Kechout, H., Merazig, H. & Bénard-Rocherullé, P. (2009). Acta Cryst. E65, o628–o629. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Bouacida, S., Merazig, H., Beghidja, A. & Beghidja, C. (2005). Acta Cryst. E61, m1153–m1155. Web of Science CSD CrossRef IUCr Journals Google Scholar
Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany. Google Scholar
Bruker (2001). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103. CrossRef IUCr Journals Google Scholar
Desiraju, G. R. (2003). Editor. Crystal Design: Structure and Function. In Perspectives in Supramolecular Chemistry, Vol. 7. Chichester: John Wiley & Sons, Ltd. Google Scholar
Dobson, A. J. & Gerkin, R. E. (1996). Acta Cryst. C52, 1512–1514. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Dorn, T., Janiak, C. & Abu-Shandi, K. (2005). CrystEngComm, 7, 633–641. Web of Science CSD CrossRef CAS Google Scholar
Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. CrossRef CAS Web of Science IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896. Web of Science CrossRef Google Scholar
Sheldrick, G. M. (2002). SADABS Bruker AXS Inc., Madison, Wisconsin, USA Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Hydrogen bonds are object of several studies, that aim at elucidate their influence on crystal construction and compounds properties (Desiraju, 2003). N-heterocyclic compounds such as pyrazine and its derivatives may be interesting units to built new edifices involving original hydrogen-bonding scheme since they include a variety of potential hydrogen donors and acceptors. In this perspective and as a part of our search for new hybrid compounds based on protonated amines and imines (Berrah et al. 2011, 2005a,b; Bouacida et al. 2005,2009), we present here the structure of Bis (2-Amino-3-carboxypyrazin-1-ium) sulfate dihydrate.
The asymmetric units of (I) includes two symmetry- independent cations and water molecules, and one sulfate anion. Cations and anions are interconnected to form R33(10) and R22(8) ring motifs (Etter et al., 1990; Bernstein et al., 1995) (Fig 1). Bond lengths and angles are as expected (Berrah et al. 2011; Dobson & Gerkin, 1996).
The three-dimensional structure of (I), results from undulating sheets of cations dimmers parallel to (011) plane(Fig.2 and Fig.3 )and sulfate-water chains extending along [100](Fig.3). An interesting hydrogen bonds network, in which all potential donors and acceptors are involved, and especially marked by the presence of R66(26)and R23(10) set-graph motifs (Etter et al., 1990; Bernstein et al., 1995), ensures the coherence of the structure(Fig.2 and Fig.3, table 1). This later is reinforced by the contribution of π-π, S—O··· π and C—O··· π interactions (Dorn et al. 2005; Janiak, 2000) (table 2,3).