organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Chloro-N-[(2-methyl­phen­yl)sulfon­yl]acetamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 18 January 2011; accepted 28 January 2011; online 2 February 2011)

In the title compound, C9H10ClNO3S, the amide H atom is syn with respect to the ortho-methyl group in the benzene ring and the C—S—N—C torsion angle is −66.9 (2)°. An intra­molecular N—H⋯Cl hydrogen bond occurs. The crystal structure features inversion-related dimers linked by pairs of N—H⋯O hydrogen bonds.

Related literature

For the sulfanilamide moiety in sulfonamide drugs, see; Maren (1976[Maren, T. H. (1976). Annu. Rev. Pharmacol Toxicol. 16, 309-327.]). For its ability to form hydrogen bonds in the solid state, see; Yang & Guillory (1972[Yang, S. S. & Guillory, J. K. (1972). J. Pharm. Sci. 61, 26-40.]). For hydrogen-bonding preferences of sulfonamides, see; Adsmond & Grant (2001[Adsmond, D. A. & Grant, D. J. W. (2001). J. Pharm. Sci. 90, 2058-2077.]). For the effect of substituents on the crystal structures of sulfono­amides, see: Gowda et al. (2008a[Gowda, B. T., Foro, S., Nirmala, P. G., Sowmya, B. P. & Fuess, H. (2008a). Acta Cryst. E64, o1492.],b[Gowda, B. T., Foro, S., Nirmala, P. G., Sowmya, B. P. & Fuess, H. (2008b). Acta Cryst. E64, o1522.], 2010[Gowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2010). Acta Cryst. E66, o1284.])

[Scheme 1]

Experimental

Crystal data
  • C9H10ClNO3S

  • Mr = 247.69

  • Triclinic, [P \overline 1]

  • a = 7.4439 (8) Å

  • b = 7.5195 (8) Å

  • c = 10.519 (1) Å

  • α = 93.64 (1)°

  • β = 109.72 (1)°

  • γ = 102.52 (1)°

  • V = 535.07 (10) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 4.90 mm−1

  • T = 299 K

  • 0.50 × 0.40 × 0.18 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.193, Tmax = 0.473

  • 3727 measured reflections

  • 1891 independent reflections

  • 1771 reflections with I > 2σ(I)

  • Rint = 0.051

  • 3 standard reflections every 120 min intensity decay: 0.5%

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.137

  • S = 1.08

  • 1891 reflections

  • 141 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.57 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.79 (2) 2.32 (2) 3.087 (3) 166 (3)
N1—H1N⋯Cl1 0.79 (2) 2.62 (3) 2.978 (2) 110 (2)
Symmetry code: (i) -x+1, -y+1, -z.

Data collection: CAD-4-PC (Enraf–Nonius, 1996[Enraf-Nonius (1996). CAD-4-PC. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4-PC; data reduction: REDU4 (Stoe & Cie, 1987[Stoe & Cie (1987). REDU4. Stoe & Cie GmbH, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The molecular structures of sulfonamide drugs contain the sulfanilamide moiety (Maren, 1976). The propensity for hydrogen bonding in the solid state, due to the presence of various hydrogen bond donors and acceptors can give rise to polymorphism (Yang & Guillory, 1972). The hydrogen bonding preferences of sulfonamides has also been investigated (Adsmond & Grant, 2001). The nature and position of substituents play a significant role on the crystal structures of N-(aryl)sulfonoamides (Gowda et al., 2008a,b, 2010). As a part of studying the substituent effects on the structures of this class of compounds, the structure of 2-chloro-N-(2-methylphenylsulfonyl)- acetamide (I) has been determined. The conformations of the N—H and C=O bonds of the SO2—NH—CO—C segment in the structure are anti to each other (Fig. 1), similar to that observed in N-(phenylsulfonyl)acetamide (II)(Gowda et al., 2010), N-(phenylsulfonyl)- 2,2-dichloroacetamide (III) (Gowda et al., 2008b) and N-(4-methylphenylsulfonyl)-2,2-dichloroacetamide (IV) (Gowda et al., 2008a).

The molecule in (I) is bent at the S-atom with a C1—S1—N1—C7 torsion angle of -67.0 (3)°, compared to the values of -58.8 (4)° in (II), -66.3 (3)° in (III) and -71.1 (2)° in (IV). Further, the dihedral angle between the benzene ring and the SO2—NH—CO—C group in (I) is 78.9 (1)°, compared to the values of 89.0 (2)° in (II), 79.8 (1)° in (III) and 81.0 (1)° in (IV),

The structure exhibits both the intramolecular N—H···Cl and the intermolecular N—H···O(S) hydrogen bonds.

In the crystal structure, the pairs of intermolecular N–H···O hydrogen bonds (Table 1) link the molecules through inversion-related dimers into zigzag chains running in the bc-plane. Part of the crystal structure is shown in Fig. 2.

Related literature top

For the sulfanilamide moiety in sulfonamide drugs, see; Maren (1976). For its propensity for hydrogen bonding in the solid state, see; Yang & Guillory (1972). For hydrogen-bonding preferences of sulfonamides, see; Adsmond & Grant (2001). For the effect of substituents on the crystal structures of sulfonoamides, see: Gowda et al. (2008a,b, 2010)

Experimental top

The title compound was prepared by refluxing 2-methylbenzenesulfonamide (0.10 mole) with an excess of chloroacetyl chloride (0.20 mole) for about an hour on a water bath. The reaction mixture was cooled and poured into ice cold water. The resulting solid was separated, washed thoroughly with water and dissolved in warm dilute sodium hydrogen carbonate solution. The title compound was reprecipitated by acidifying the filtered solution with glacial acetic acid. It was filtered, dried and recrystallized from ethanol. The purity of the compound was checked by determining its melting point. It was further characterized by recording its infrared spectra.

Prism like colorless single crystals of the title compound used in X-ray diffraction studies were obtained from a slow evaporation of an ethanolic solution of the compound.

Refinement top

The H atom of the NH group was located in a difference map and later restrained to the distance N—H = 0.86 (3) Å. The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93–0.97 Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

The Uij components of C3, C4 and C5 were restrained to approximate isotropic behavoir.

Computing details top

Data collection: CAD-4-PC (Enraf–Nonius, 1996); cell refinement: CAD-4-PC (Enraf–Nonius, 1996); data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom- labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing in the title compound. Hydrogen bonds are shown as dashed lines.
2-Chloro-N-[(2-methylphenyl)sulfonyl]acetamide top
Crystal data top
C9H10ClNO3SZ = 2
Mr = 247.69F(000) = 256
Triclinic, P1Dx = 1.537 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54180 Å
a = 7.4439 (8) ÅCell parameters from 25 reflections
b = 7.5195 (8) Åθ = 7.0–23.1°
c = 10.519 (1) ŵ = 4.90 mm1
α = 93.64 (1)°T = 299 K
β = 109.72 (1)°Prism, colourless
γ = 102.52 (1)°0.50 × 0.40 × 0.18 mm
V = 535.07 (10) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
1771 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.051
Graphite monochromatorθmax = 66.9°, θmin = 4.5°
ω/2θ scansh = 88
Absorption correction: ψ scan
(North et al., 1968)
k = 88
Tmin = 0.193, Tmax = 0.473l = 1212
3727 measured reflections3 standard reflections every 120 min
1891 independent reflections intensity decay: 0.5%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.137 w = 1/[σ2(Fo2) + (0.0853P)2 + 0.2427P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
1891 reflectionsΔρmax = 0.52 e Å3
141 parametersΔρmin = 0.57 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.028 (3)
Crystal data top
C9H10ClNO3Sγ = 102.52 (1)°
Mr = 247.69V = 535.07 (10) Å3
Triclinic, P1Z = 2
a = 7.4439 (8) ÅCu Kα radiation
b = 7.5195 (8) ŵ = 4.90 mm1
c = 10.519 (1) ÅT = 299 K
α = 93.64 (1)°0.50 × 0.40 × 0.18 mm
β = 109.72 (1)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1771 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.051
Tmin = 0.193, Tmax = 0.4733 standard reflections every 120 min
3727 measured reflections intensity decay: 0.5%
1891 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0501 restraint
wR(F2) = 0.137H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.52 e Å3
1891 reflectionsΔρmin = 0.57 e Å3
141 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4813 (4)0.6426 (3)0.3198 (2)0.0356 (6)
C20.6844 (5)0.7012 (3)0.3580 (3)0.0465 (7)
C30.7891 (6)0.7927 (4)0.4905 (3)0.0674 (10)
H30.92590.83210.52060.081*
C40.6944 (8)0.8259 (5)0.5778 (3)0.0764 (13)
H40.76820.88920.66530.092*
C50.4938 (8)0.7680 (5)0.5388 (3)0.0754 (12)
H50.43200.79160.59920.090*
C60.3832 (6)0.6737 (4)0.4081 (3)0.0531 (8)
H60.24680.63210.38000.064*
C70.2227 (4)0.8123 (3)0.0563 (2)0.0336 (5)
C80.1973 (4)0.9327 (3)0.0539 (3)0.0397 (6)
H8A0.25931.05960.01100.048*
H8B0.05740.92240.09840.048*
C90.7974 (5)0.6716 (5)0.2685 (4)0.0622 (8)
H9A0.72410.68470.17660.075*
H9B0.81810.55000.27040.075*
H9C0.92260.76100.30100.075*
N10.3146 (3)0.6745 (3)0.05184 (19)0.0327 (5)
H1N0.366 (4)0.660 (4)0.001 (3)0.039*
O10.4251 (3)0.3986 (2)0.11017 (18)0.0450 (5)
O20.1386 (3)0.4445 (3)0.1603 (2)0.0516 (5)
O30.1615 (3)0.8425 (3)0.14615 (19)0.0504 (5)
Cl10.29367 (12)0.88507 (9)0.18091 (7)0.0525 (3)
S10.32891 (8)0.51904 (7)0.15752 (5)0.0320 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0487 (16)0.0278 (10)0.0267 (11)0.0120 (10)0.0075 (10)0.0051 (8)
C20.0512 (18)0.0318 (12)0.0458 (14)0.0066 (11)0.0055 (12)0.0113 (10)
C30.076 (3)0.0459 (16)0.0511 (18)0.0051 (15)0.0078 (16)0.0068 (13)
C40.112 (4)0.0511 (18)0.0400 (17)0.017 (2)0.0020 (19)0.0004 (13)
C50.137 (4)0.070 (2)0.0381 (16)0.051 (2)0.039 (2)0.0132 (14)
C60.076 (2)0.0538 (16)0.0392 (14)0.0305 (15)0.0231 (14)0.0143 (11)
C70.0357 (13)0.0325 (11)0.0310 (11)0.0118 (9)0.0084 (9)0.0030 (8)
C80.0451 (16)0.0363 (12)0.0417 (13)0.0181 (11)0.0150 (11)0.0101 (10)
C90.0466 (19)0.0606 (18)0.076 (2)0.0087 (14)0.0209 (15)0.0130 (15)
N10.0407 (12)0.0335 (10)0.0287 (9)0.0161 (8)0.0141 (8)0.0063 (8)
O10.0661 (14)0.0323 (9)0.0412 (9)0.0231 (9)0.0185 (9)0.0057 (7)
O20.0432 (12)0.0498 (11)0.0537 (11)0.0001 (9)0.0134 (9)0.0151 (8)
O30.0648 (14)0.0597 (12)0.0438 (10)0.0355 (10)0.0277 (10)0.0130 (8)
Cl10.0744 (6)0.0547 (5)0.0462 (4)0.0325 (4)0.0314 (4)0.0216 (3)
S10.0384 (4)0.0259 (4)0.0298 (4)0.0087 (3)0.0093 (3)0.0049 (2)
Geometric parameters (Å, º) top
C1—C21.386 (4)C7—N11.367 (3)
C1—C61.398 (4)C7—C81.502 (3)
C1—S11.760 (2)C8—Cl11.768 (3)
C2—C31.392 (4)C8—H8A0.9700
C2—C91.494 (5)C8—H8B0.9700
C3—C41.374 (7)C9—H9A0.9600
C3—H30.9300C9—H9B0.9600
C4—C51.367 (6)C9—H9C0.9600
C4—H40.9300N1—S11.6590 (19)
C5—C61.389 (5)N1—H1N0.79 (2)
C5—H50.9300O1—S11.4303 (18)
C6—H60.9300O2—S11.417 (2)
C7—O31.208 (3)
C2—C1—C6122.5 (2)C7—C8—Cl1116.35 (17)
C2—C1—S1122.3 (2)C7—C8—H8A108.2
C6—C1—S1115.3 (2)Cl1—C8—H8A108.2
C1—C2—C3116.8 (3)C7—C8—H8B108.2
C1—C2—C9124.9 (2)Cl1—C8—H8B108.2
C3—C2—C9118.3 (3)H8A—C8—H8B107.4
C4—C3—C2121.3 (4)C2—C9—H9A109.5
C4—C3—H3119.4C2—C9—H9B109.5
C2—C3—H3119.4H9A—C9—H9B109.5
C5—C4—C3121.4 (3)C2—C9—H9C109.5
C5—C4—H4119.3H9A—C9—H9C109.5
C3—C4—H4119.3H9B—C9—H9C109.5
C4—C5—C6119.4 (3)C7—N1—S1123.27 (17)
C4—C5—H5120.3C7—N1—H1N124 (2)
C6—C5—H5120.3S1—N1—H1N113 (2)
C5—C6—C1118.7 (4)O2—S1—O1118.71 (12)
C5—C6—H6120.7O2—S1—N1108.92 (11)
C1—C6—H6120.7O1—S1—N1103.64 (10)
O3—C7—N1122.6 (2)O2—S1—C1108.50 (12)
O3—C7—C8118.3 (2)O1—S1—C1110.83 (12)
N1—C7—C8119.1 (2)N1—S1—C1105.34 (10)
C6—C1—C2—C30.5 (4)N1—C7—C8—Cl10.7 (3)
S1—C1—C2—C3178.1 (2)O3—C7—N1—S17.4 (4)
C6—C1—C2—C9179.8 (3)C8—C7—N1—S1172.97 (18)
S1—C1—C2—C91.2 (4)C7—N1—S1—O249.3 (2)
C1—C2—C3—C41.2 (4)C7—N1—S1—O1176.60 (19)
C9—C2—C3—C4179.4 (3)C7—N1—S1—C166.9 (2)
C2—C3—C4—C51.0 (5)C2—C1—S1—O2167.1 (2)
C3—C4—C5—C60.0 (5)C6—C1—S1—O211.5 (2)
C4—C5—C6—C10.7 (5)C2—C1—S1—O135.1 (2)
C2—C1—C6—C50.4 (4)C6—C1—S1—O1143.56 (19)
S1—C1—C6—C5179.1 (2)C2—C1—S1—N176.3 (2)
O3—C7—C8—Cl1178.8 (2)C6—C1—S1—N1105.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.79 (2)2.32 (2)3.087 (3)166 (3)
N1—H1N···Cl10.79 (2)2.62 (3)2.978 (2)110 (2)
Symmetry code: (i) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC9H10ClNO3S
Mr247.69
Crystal system, space groupTriclinic, P1
Temperature (K)299
a, b, c (Å)7.4439 (8), 7.5195 (8), 10.519 (1)
α, β, γ (°)93.64 (1), 109.72 (1), 102.52 (1)
V3)535.07 (10)
Z2
Radiation typeCu Kα
µ (mm1)4.90
Crystal size (mm)0.50 × 0.40 × 0.18
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.193, 0.473
No. of measured, independent and
observed [I > 2σ(I)] reflections
3727, 1891, 1771
Rint0.051
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.137, 1.08
No. of reflections1891
No. of parameters141
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.52, 0.57

Computer programs: CAD-4-PC (Enraf–Nonius, 1996), REDU4 (Stoe & Cie, 1987), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.79 (2)2.32 (2)3.087 (3)166 (3)
N1—H1N···Cl10.79 (2)2.62 (3)2.978 (2)110 (2)
Symmetry code: (i) x+1, y+1, z.
 

Acknowledgements

KS thanks the University Grants Commission, Government of India, New Delhi, for the award of a research fellowship under its faculty improvement program.

References

First citationAdsmond, D. A. & Grant, D. J. W. (2001). J. Pharm. Sci. 90, 2058–2077.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEnraf–Nonius (1996). CAD-4-PC. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationGowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2010). Acta Cryst. E66, o1284.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Nirmala, P. G., Sowmya, B. P. & Fuess, H. (2008a). Acta Cryst. E64, o1492.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Nirmala, P. G., Sowmya, B. P. & Fuess, H. (2008b). Acta Cryst. E64, o1522.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMaren, T. H. (1976). Annu. Rev. Pharmacol Toxicol. 16, 309–327.  CrossRef CAS PubMed Web of Science Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1987). REDU4. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationYang, S. S. & Guillory, J. K. (1972). J. Pharm. Sci. 61, 26–40.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds