organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2-Chloro­phenyl­sulfon­yl)-2-methyl­propanamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 3 February 2011; accepted 4 February 2011; online 9 February 2011)

In the title compound, C10H12ClNO3S, the amide H atom is syn with respect to the ortho-chloro group in the benzene ring and the C—S—N—C torsion angle is 64.35 (16)°. The benzene ring and the SO2—NH—CO—C segment form a dihedral angle of 87.4 (1)°. The crystal structure features inversion-related dimers linked by pairs of N—H⋯O hydrogen bonds.

Related literature

For the sulfanilamide moiety in sulfonamide drugs, see; Maren (1976[Maren, T. H. (1976). Annu. Rev. Pharmacol Toxicol. 16, 309-327.]). For its ability to form hydrogen bonds in the solid state, see; Yang & Guillory (1972[Yang, S. S. & Guillory, J. K. (1972). J. Pharm. Sci. 61, 26-40.]). For the hydrogen-bonding characteristics of sulfonamides, see; Adsmond & Grant (2001[Adsmond, D. A. & Grant, D. J. W. (2001). J. Pharm. Sci. 90, 2058-2077.]). For the effect of substituents on the crystal structures of sulfono­amides, see: Gowda et al. (2008[Gowda, B. T., Foro, S., Nirmala, P. G., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, o1522.], 2009[Gowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2009). Acta Cryst. E65, o2680.], 2010[Gowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2010). Acta Cryst. E66, o1284.])

[Scheme 1]

Experimental

Crystal data
  • C10H12ClNO3S

  • Mr = 261.72

  • Triclinic, [P \overline 1]

  • a = 8.365 (1) Å

  • b = 8.719 (1) Å

  • c = 9.143 (1) Å

  • α = 92.74 (1)°

  • β = 104.22 (1)°

  • γ = 108.75 (1)°

  • V = 606.24 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.48 mm−1

  • T = 293 K

  • 0.45 × 0.35 × 0.35 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.814, Tmax = 0.851

  • 4031 measured reflections

  • 2481 independent reflections

  • 2200 reflections with I > 2σ(I)

  • Rint = 0.011

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.102

  • S = 1.04

  • 2481 reflections

  • 149 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.84 (2) 2.14 (2) 2.976 (2) 174 (2)
Symmetry code: (i) -x+1, -y, -z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The molecular structures of sulfonamide drugs contain the sulfanilamide moiety (Maren, 1976). The affinity for hydrogen bonding in the solid state due to the presence of various hydrogen bond donors and acceptors can give rise to polymorphism (Yang & Guillory, 1972). The hydrogen bonding preferences of sulfonamides has also been investigated (Adsmond & Grant, 2001). The nature and position of substituents play a significant role on the crystal structures of N-(aryl)sulfonoamides (Gowda et al., 2008, 2009, 2010). As a part of studying the substituent effects on the structures of this class of compounds, the structure of N-(2-chlorophenylsulfonyl)-2,2-dimethylacetamide (I) has been determined. The conformations of the N—H and C=O bonds of the SO2—NH—CO—C segment in the structure are anti to each other (Fig. 1), similar to that observed in N-(phenylsulfonyl)-acetamide (II) (Gowda et al., 2010), 2,2-dimethyl-N-(phenylsulfonyl)- acetamide (III)(Gowda et al., 2009) and 2,2-dichloro-N- (phenylsulfonyl)-acetamide (IV) (Gowda et al., 2008).

The molecule in (I) is bent at the S-atom with a C1—S1—N1—C7 torsion angle of 64.4 (2)°, compared to the values of -58.8 (4)° in (II), 67.1 (3)° in (III) and -66.3 (3)° in (IV). Further, the dihedral angle between the benzene ring and the SO2—NH—CO—C group in (I) is 87.4 (1)°, compared to the values of 89.0 (2)° in (II), 87.4 (1)° in (III) and 79.8 (1)° in (IV),

In the crystal structure, the intermolecular N–H···O hydrogen bonds (Table 1) link the molecules through inversion-related dimers into zigzag chains in the bc-plane. Part of the crystal structure is shown in Fig. 2.

Related literature top

For the sulfanilamide moiety in sulfonamide drugs, see; Maren (1976). For its ability to form hydrogen bonds in the solid state, see; Yang & Guillory (1972). For the hydrogen-bonding characteristics of sulfonamides, see; Adsmond & Grant (2001). For the effect of substituents on the crystal structures of sulfonoamides, see: Gowda et al. (2008, 2009, 2010)

Experimental top

The title compound was prepared by refluxing 2-chlorobenzenesulfonamide (0.10 mole) with an excess of 2,2-dimethylacetyl chloride (0.20 mole) for one hour on a water bath. The reaction mixture was cooled and poured into ice cold water. The resulting solid was separated, washed thoroughly with water and dissolved in warm dilute sodium hydrogen carbonate solution. The title compound was reprecipitated by acidifying the filtered solution with glacial acetic acid. It was filtered, dried and recrystallized from ethanol. The purity of the compound was checked by determining its melting point. It was further characterized by recording its infrared spectra.

Prism like colorless single crystals of the title compound used in X-ray diffraction studies were obtained from a slow evaporation of an ethanolic solution of the compound.

Refinement top

The H atom of the NH group was located in a difference map and later restrained to the distance N—H = 0.86 (2) Å. The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93–0.98 Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom- labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing in the title compound. Hydrogen bonds are shown as dashed lines.
N-(2-Chlorophenylsulfonyl)-2-methylpropanamide top
Crystal data top
C10H12ClNO3SZ = 2
Mr = 261.72F(000) = 272
Triclinic, P1Dx = 1.434 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.365 (1) ÅCell parameters from 2678 reflections
b = 8.719 (1) Åθ = 3.0–27.7°
c = 9.143 (1) ŵ = 0.48 mm1
α = 92.74 (1)°T = 293 K
β = 104.22 (1)°Prism, colourless
γ = 108.75 (1)°0.45 × 0.35 × 0.35 mm
V = 606.24 (12) Å3
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2481 independent reflections
Radiation source: fine-focus sealed tube2200 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.011
Rotation method data acquisition using ω scansθmax = 26.4°, θmin = 3.0°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 1010
Tmin = 0.814, Tmax = 0.851k = 109
4031 measured reflectionsl = 1111
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.102 w = 1/[σ2(Fo2) + (0.0589P)2 + 0.1796P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2481 reflectionsΔρmax = 0.39 e Å3
149 parametersΔρmin = 0.27 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.074 (7)
Crystal data top
C10H12ClNO3Sγ = 108.75 (1)°
Mr = 261.72V = 606.24 (12) Å3
Triclinic, P1Z = 2
a = 8.365 (1) ÅMo Kα radiation
b = 8.719 (1) ŵ = 0.48 mm1
c = 9.143 (1) ÅT = 293 K
α = 92.74 (1)°0.45 × 0.35 × 0.35 mm
β = 104.22 (1)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2481 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
2200 reflections with I > 2σ(I)
Tmin = 0.814, Tmax = 0.851Rint = 0.011
4031 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0361 restraint
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.39 e Å3
2481 reflectionsΔρmin = 0.27 e Å3
149 parameters
Special details top

Experimental. CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8887 (2)0.33504 (18)0.17180 (18)0.0374 (3)
C20.9618 (2)0.2693 (2)0.07502 (19)0.0455 (4)
C31.1391 (3)0.3366 (3)0.0881 (2)0.0571 (5)
H31.18820.29240.02340.069*
C41.2436 (3)0.4688 (3)0.1967 (3)0.0581 (5)
H41.36300.51370.20510.070*
C51.1725 (3)0.5347 (2)0.2926 (2)0.0546 (5)
H51.24360.62430.36560.065*
C60.9956 (2)0.4682 (2)0.2808 (2)0.0441 (4)
H60.94770.51280.34620.053*
C70.7107 (2)0.0482 (2)0.36475 (18)0.0397 (4)
C80.6623 (2)0.1303 (2)0.3835 (2)0.0481 (4)
H80.53750.18480.33060.058*
C90.6889 (5)0.1514 (4)0.5501 (3)0.0922 (9)
H9A0.61680.10530.59150.111*
H9B0.81010.09650.60460.111*
H9C0.65660.26570.55990.111*
C100.7668 (3)0.2058 (3)0.3089 (3)0.0720 (6)
H10A0.89000.15030.35560.086*
H10B0.74010.19580.20230.086*
H10C0.73680.31940.32150.086*
Cl10.83725 (8)0.10188 (7)0.06290 (7)0.0749 (2)
N10.63339 (19)0.07529 (16)0.22009 (16)0.0418 (3)
H1N0.578 (3)0.005 (2)0.150 (2)0.050*
O10.55713 (17)0.22202 (16)0.00990 (15)0.0571 (4)
O20.63345 (17)0.36011 (15)0.27093 (17)0.0567 (4)
O30.8089 (2)0.16099 (17)0.46098 (15)0.0609 (4)
S10.66390 (5)0.25610 (5)0.16468 (5)0.04147 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0413 (8)0.0280 (7)0.0386 (8)0.0104 (6)0.0055 (6)0.0046 (6)
C20.0544 (10)0.0359 (8)0.0409 (8)0.0119 (7)0.0098 (7)0.0009 (7)
C30.0622 (12)0.0528 (11)0.0604 (11)0.0176 (9)0.0277 (10)0.0037 (9)
C40.0452 (10)0.0501 (11)0.0717 (13)0.0050 (8)0.0189 (9)0.0054 (9)
C50.0481 (10)0.0384 (9)0.0610 (11)0.0013 (8)0.0072 (8)0.0068 (8)
C60.0469 (9)0.0341 (8)0.0452 (9)0.0108 (7)0.0077 (7)0.0024 (7)
C70.0393 (8)0.0378 (8)0.0400 (8)0.0126 (7)0.0090 (7)0.0020 (6)
C80.0424 (9)0.0400 (9)0.0549 (10)0.0088 (7)0.0070 (8)0.0130 (8)
C90.118 (2)0.0910 (19)0.0757 (17)0.0331 (18)0.0383 (16)0.0458 (15)
C100.0806 (16)0.0527 (12)0.0824 (16)0.0358 (12)0.0069 (12)0.0016 (11)
Cl10.0767 (4)0.0630 (4)0.0670 (4)0.0134 (3)0.0098 (3)0.0306 (3)
N10.0444 (8)0.0286 (7)0.0412 (7)0.0055 (6)0.0017 (6)0.0008 (5)
O10.0500 (7)0.0446 (7)0.0586 (8)0.0094 (6)0.0090 (6)0.0123 (6)
O20.0506 (7)0.0399 (7)0.0824 (10)0.0184 (6)0.0210 (7)0.0004 (6)
O30.0738 (9)0.0465 (7)0.0459 (7)0.0160 (7)0.0040 (6)0.0078 (6)
S10.0381 (2)0.0302 (2)0.0493 (3)0.01005 (16)0.00256 (17)0.00424 (17)
Geometric parameters (Å, º) top
C1—C61.387 (2)C7—C81.507 (2)
C1—C21.389 (2)C8—C101.511 (3)
C1—S11.7659 (17)C8—C91.514 (3)
C2—C31.380 (3)C8—H80.9800
C2—Cl11.7344 (18)C9—H9A0.9600
C3—C41.377 (3)C9—H9B0.9600
C3—H30.9300C9—H9C0.9600
C4—C51.371 (3)C10—H10A0.9600
C4—H40.9300C10—H10B0.9600
C5—C61.379 (3)C10—H10C0.9600
C5—H50.9300N1—S11.6396 (14)
C6—H60.9300N1—H1N0.843 (15)
C7—O31.208 (2)O1—S11.4341 (13)
C7—N11.390 (2)O2—S11.4202 (14)
C6—C1—C2119.32 (16)C7—C8—H8108.1
C6—C1—S1117.57 (13)C10—C8—H8108.1
C2—C1—S1123.11 (13)C9—C8—H8108.1
C3—C2—C1119.91 (16)C8—C9—H9A109.5
C3—C2—Cl1118.08 (14)C8—C9—H9B109.5
C1—C2—Cl1122.01 (14)H9A—C9—H9B109.5
C4—C3—C2120.17 (18)C8—C9—H9C109.5
C4—C3—H3119.9H9A—C9—H9C109.5
C2—C3—H3119.9H9B—C9—H9C109.5
C5—C4—C3120.34 (18)C8—C10—H10A109.5
C5—C4—H4119.8C8—C10—H10B109.5
C3—C4—H4119.8H10A—C10—H10B109.5
C4—C5—C6119.98 (17)C8—C10—H10C109.5
C4—C5—H5120.0H10A—C10—H10C109.5
C6—C5—H5120.0H10B—C10—H10C109.5
C5—C6—C1120.28 (17)C7—N1—S1124.59 (11)
C5—C6—H6119.9C7—N1—H1N119.7 (15)
C1—C6—H6119.9S1—N1—H1N115.1 (14)
O3—C7—N1120.87 (16)O2—S1—O1118.79 (9)
O3—C7—C8125.77 (16)O2—S1—N1109.66 (8)
N1—C7—C8113.34 (14)O1—S1—N1104.14 (8)
C7—C8—C10109.40 (16)O2—S1—C1107.71 (8)
C7—C8—C9110.55 (18)O1—S1—C1110.42 (8)
C10—C8—C9112.5 (2)N1—S1—C1105.30 (8)
C6—C1—C2—C30.1 (3)O3—C7—C8—C923.2 (3)
S1—C1—C2—C3179.39 (15)N1—C7—C8—C9158.19 (19)
C6—C1—C2—Cl1179.41 (13)O3—C7—N1—S10.2 (2)
S1—C1—C2—Cl10.0 (2)C8—C7—N1—S1178.89 (12)
C1—C2—C3—C40.1 (3)C7—N1—S1—O251.29 (16)
Cl1—C2—C3—C4179.50 (16)C7—N1—S1—O1179.42 (14)
C2—C3—C4—C50.0 (3)C7—N1—S1—C164.35 (16)
C3—C4—C5—C60.2 (3)C6—C1—S1—O24.95 (16)
C4—C5—C6—C10.3 (3)C2—C1—S1—O2175.59 (14)
C2—C1—C6—C50.1 (3)C6—C1—S1—O1136.13 (13)
S1—C1—C6—C5179.61 (14)C2—C1—S1—O144.41 (16)
O3—C7—C8—C10101.1 (2)C6—C1—S1—N1112.02 (14)
N1—C7—C8—C1077.45 (19)C2—C1—S1—N167.44 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.84 (2)2.14 (2)2.976 (2)174 (2)
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC10H12ClNO3S
Mr261.72
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.365 (1), 8.719 (1), 9.143 (1)
α, β, γ (°)92.74 (1), 104.22 (1), 108.75 (1)
V3)606.24 (12)
Z2
Radiation typeMo Kα
µ (mm1)0.48
Crystal size (mm)0.45 × 0.35 × 0.35
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.814, 0.851
No. of measured, independent and
observed [I > 2σ(I)] reflections
4031, 2481, 2200
Rint0.011
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.102, 1.04
No. of reflections2481
No. of parameters149
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.39, 0.27

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.843 (15)2.136 (16)2.976 (2)174 (2)
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

KS thanks the University Grants Commission, Government of India, New Delhi, for the award of a research fellowship under its faculty improvement program.

References

First citationAdsmond, D. A. & Grant, D. J. W. (2001). J. Pharm. Sci. 90, 2058–2077.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2009). Acta Cryst. E65, o2680.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2010). Acta Cryst. E66, o1284.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Nirmala, P. G., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, o1522.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMaren, T. H. (1976). Annu. Rev. Pharmacol Toxicol. 16, 309–327.  CrossRef CAS PubMed Web of Science Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, S. S. & Guillory, J. K. (1972). J. Pharm. Sci. 61, 26–40.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds