organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-3-Methyl-5-(4-methyl­phen­­oxy)-1-phenyl-1H-pyrazole-4-carbaldehyde O-[(2-chloro-1,3-thia­zol-5-yl)meth­yl]oxime

aCollege of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, People's Republic of China
*Correspondence e-mail: dh123@ntu.edu.cn

(Received 13 February 2011; accepted 22 February 2011; online 26 February 2011)

In the title compound, C22H19ClN4O2S, the planes of the benzene ring, the substituted phenyl ring and the thia­zole ring make dihedral angles of 18.4 (3), 88.9 (2) and 63.0 (3)°, respectively, with the pyrazole ring.

Related literature

For the biological activity of pyrazole oxime ether derivatives, see: Drabek (1992[Drabek, J. (1992). DE Patent No. 4200742.]); Motoba et al. (2000[Motoba, K., Nishizawa, H., Suzuki, T., Hamaguchi, H., Uchida, M. & Funayama, S. (2000). Pestic. Biochem. Physiol. 67, 73-84.]); Park et al. (2005[Park, H. J., Lee, K., Park, S. J., Ahn, B., Lee, J. C., Cho, H. Y. & Lee, K. I. (2005). Bioorg. Med. Chem. Lett. 15, 3307-3312.]); Watanabe et al. (2001[Watanabe, M., Kuwata, T., Okada, T., Ohita, S., Asahara, T., Noritake, T. & Fukuda, Y. (2001). Jpn Patent No. 2001233861.]). For the bioactivity of compounds containing a thia­zole ring, see: Araki (2004[Araki, T. (2004). Jpn Patent No. 2004131416.]); Fahmy & Bekhit (2002[Fahmy, H. T. Y. & Bekhit, A. A. (2002). Pharmazie, 57, 800-803.]); Manabe et al. (2003[Manabe, H., Ishii, N. & Akasaka, T. (2003). Jpn Patent No. 2003096059.]); Zhang et al. (2000[Zhang, A., Kayser, H., Maienfisch, P. & Casida, J. E. (2000). J. Neurochem. 75, 1294-1303.]).

[Scheme 1]

Experimental

Crystal data
  • C22H19ClN4O2S

  • Mr = 438.92

  • Triclinic, [P \overline 1]

  • a = 8.114 (3) Å

  • b = 11.452 (4) Å

  • c = 12.494 (4) Å

  • α = 102.700 (6)°

  • β = 107.885 (6)°

  • γ = 93.634 (7)°

  • V = 1067.1 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 294 K

  • 0.20 × 0.18 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.938, Tmax = 0.968

  • 5562 measured reflections

  • 3755 independent reflections

  • 2030 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.124

  • S = 1.00

  • 3755 reflections

  • 273 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the past few years, pyrazole oxime ethers have been found to exhibit a wide range of bioactivities, such as fungicidal, insecticidal, acaricidal and anticancer activities (Drabek, 1992; Motoba et al., 2000; Watanabe et al., 2001;Park et al., 2005). In addition, the biological activity of thiazole derivatives has been the subject of intense interest for past decades. They are widely used as fungicide, insecticide, herbicide and antitumor agents (Zhang et al., 2000; Fahmy & Bekhit, 2002; Manabe et al., 2003; Araki,2004). Having the above facts in mind and in continuation of our efforts to explore more biologically active moleculars, we synthesized a series of pyrazole oxime ether compounds containing a thiazole moiety. Herein we report the crystal structure of the title compound. The molecule of the title compound (Fig.1)contains four planar rings, the benzene ring (p1: C1/C2/C3/C4/C5/C6), the substituted phenyl ring (p2: C11/C12/C13/C14/C15/C16),the thiazole ring(p3: C20/C21/N4/C22/S1) and the pyrazole ring(p4: N1/N2/C8/C9/C10).The planes of p1, p2 and p3 make dihedral angles of 18.4 (3)°, 88.9 (2) ° and 63.0 (3) °,respectively, with p4.

Related literature top

For the biological activity of pyrazole oxime ether derivatives, see: Drabek (1992); Motoba et al. (2000); Park et al. (2005); Watanabe et al. (2001). For the bioactivity of compounds containing a thiazole ring, see: Araki (2004); Fahmy & Bekhit (2002); Manabe et al. (2003); Zhang et al. (2000).

Experimental top

To a well stirred solution of 1-phenyl-3-methyl-5-(4-methylphenoxy)-1H- pyrazole-4-carbaldehyde oxime (3 mmol),and powdered potassium carbonate (6 mmol) in 20 ml of anhydrous acetone, was added 2-chloro-5-chloromethyl thiazole (3.3 mmol) at room temperature. The mixture was heated to reflux for 10 h. The solvent was evaporated under reduced pressure, and then 80 ml of dichloromethane was added to the residue. The organic layer was washed with saturated brine(3 * 20 ml),and dried over anhydrous magnesium sulfate. After removal of the solvent, the residue was separated by column chromatography on silica gel with petroleum ether/ethyl acetate(6:1 v/v) as eluent, and recrystallized from ethyl acetate to give a colourless crystal.

Refinement top

All H atoms were placed in calculated positions, with C–H = 0.93, 0.96 and 0.97 Å, and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title compound, with displacement ellipsoids drawn at the 30% probability level.
(E)-3-Methyl-5-(4-methylphenoxy)-1-phenyl-1H-pyrazole-4- carbaldehyde O-[(2-chloro-1,3-thiazol-5-yl)methyl]oxime top
Crystal data top
C22H19ClN4O2SZ = 2
Mr = 438.92F(000) = 456
Triclinic, P1Dx = 1.366 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.114 (3) ÅCell parameters from 1218 reflections
b = 11.452 (4) Åθ = 2.7–22.3°
c = 12.494 (4) ŵ = 0.30 mm1
α = 102.700 (6)°T = 294 K
β = 107.885 (6)°Triclinic, colourless
γ = 93.634 (7)°0.20 × 0.18 × 0.10 mm
V = 1067.1 (6) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
3755 independent reflections
Radiation source: fine-focus sealed tube2030 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ϕ and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.938, Tmax = 0.968k = 1013
5562 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.049P)2 + 0.1132P]
where P = (Fo2 + 2Fc2)/3
3755 reflections(Δ/σ)max = 0.001
273 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C22H19ClN4O2Sγ = 93.634 (7)°
Mr = 438.92V = 1067.1 (6) Å3
Triclinic, P1Z = 2
a = 8.114 (3) ÅMo Kα radiation
b = 11.452 (4) ŵ = 0.30 mm1
c = 12.494 (4) ÅT = 294 K
α = 102.700 (6)°0.20 × 0.18 × 0.10 mm
β = 107.885 (6)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3755 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2030 reflections with I > 2σ(I)
Tmin = 0.938, Tmax = 0.968Rint = 0.029
5562 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 1.00Δρmax = 0.17 e Å3
3755 reflectionsΔρmin = 0.19 e Å3
273 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.45270 (11)0.85178 (9)0.33662 (8)0.0647 (3)
Cl10.61728 (16)0.68418 (11)0.47383 (9)0.0975 (4)
O10.0621 (2)0.84964 (18)0.10876 (17)0.0450 (5)
O20.4577 (3)1.0355 (2)0.16837 (17)0.0530 (6)
N10.2014 (3)0.7626 (2)0.0923 (2)0.0434 (7)
N20.1696 (3)0.7554 (2)0.1953 (2)0.0510 (7)
N30.2917 (3)0.9627 (2)0.1279 (2)0.0479 (7)
N40.7640 (4)0.8986 (3)0.4813 (2)0.0660 (9)
C10.3633 (4)0.7038 (3)0.0939 (3)0.0471 (8)
C20.4206 (4)0.7326 (3)0.0001 (3)0.0636 (10)
H20.35720.79370.06530.076*
C30.5742 (5)0.6692 (4)0.0040 (4)0.0768 (12)
H30.61260.68700.05990.092*
C40.6702 (5)0.5811 (4)0.0999 (5)0.0914 (14)
H40.77230.53840.10090.110*
C50.6157 (5)0.5561 (4)0.1939 (4)0.0941 (14)
H50.68280.49750.26020.113*
C60.4610 (5)0.6171 (4)0.1921 (3)0.0719 (11)
H60.42400.59940.25660.086*
C70.0690 (4)0.8267 (4)0.2568 (3)0.0676 (11)
H7A0.16990.78550.24740.101*
H7B0.10310.91080.24900.101*
H7C0.01520.79190.33240.101*
C80.0104 (4)0.8142 (3)0.1657 (3)0.0465 (8)
C90.0656 (4)0.8599 (3)0.0440 (2)0.0400 (8)
C100.0610 (4)0.8238 (3)0.0019 (3)0.0395 (8)
C110.0066 (4)0.7658 (3)0.1735 (2)0.0408 (8)
C120.0280 (4)0.7901 (3)0.2804 (3)0.0541 (9)
H120.07620.85820.30550.065*
C130.0232 (4)0.7116 (3)0.3504 (3)0.0591 (10)
H130.00850.72780.42300.071*
C140.0945 (4)0.6111 (3)0.3161 (3)0.0531 (9)
C150.1125 (4)0.5889 (3)0.2072 (3)0.0550 (9)
H150.16060.52090.18190.066*
C160.0612 (4)0.6647 (3)0.1352 (3)0.0449 (8)
H160.07250.64740.06170.054*
C170.1474 (5)0.5256 (4)0.3933 (3)0.0871 (13)
H17A0.22020.57070.46950.131*
H17B0.21100.46780.36090.131*
H17C0.04470.48410.39840.131*
C180.2345 (4)0.9303 (3)0.0182 (3)0.0437 (8)
H180.30350.95250.02330.052*
C190.5031 (4)1.0792 (3)0.2911 (3)0.0565 (9)
H19A0.40041.10290.30960.068*
H19B0.59041.15050.31750.068*
C200.5727 (4)0.9879 (3)0.3541 (3)0.0468 (8)
C210.7309 (4)0.9944 (4)0.4334 (3)0.0606 (10)
H210.81491.06200.45480.073*
C220.6282 (5)0.8196 (4)0.4373 (3)0.0581 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0518 (6)0.0703 (7)0.0665 (6)0.0003 (5)0.0059 (5)0.0280 (5)
Cl10.1287 (10)0.0848 (9)0.0856 (8)0.0232 (7)0.0255 (7)0.0467 (7)
O10.0519 (13)0.0432 (14)0.0441 (13)0.0105 (11)0.0182 (11)0.0148 (11)
O20.0445 (13)0.0612 (16)0.0491 (14)0.0041 (11)0.0079 (11)0.0191 (12)
N10.0359 (15)0.0482 (18)0.0457 (16)0.0056 (13)0.0095 (13)0.0168 (14)
N20.0474 (17)0.062 (2)0.0428 (16)0.0036 (15)0.0121 (14)0.0170 (14)
N30.0375 (15)0.0513 (18)0.0510 (18)0.0010 (13)0.0074 (13)0.0170 (14)
N40.062 (2)0.077 (2)0.0519 (19)0.0171 (19)0.0049 (16)0.0184 (18)
C10.0368 (18)0.041 (2)0.065 (2)0.0078 (16)0.0136 (18)0.0205 (18)
C20.049 (2)0.073 (3)0.073 (3)0.005 (2)0.026 (2)0.019 (2)
C30.059 (3)0.084 (3)0.099 (3)0.009 (2)0.042 (2)0.025 (3)
C40.058 (3)0.072 (3)0.150 (5)0.003 (2)0.051 (3)0.020 (3)
C50.057 (3)0.080 (3)0.118 (4)0.016 (2)0.025 (3)0.017 (3)
C60.049 (2)0.070 (3)0.084 (3)0.002 (2)0.022 (2)0.002 (2)
C70.069 (2)0.089 (3)0.050 (2)0.001 (2)0.0227 (19)0.027 (2)
C80.0408 (19)0.053 (2)0.048 (2)0.0056 (17)0.0118 (16)0.0210 (17)
C90.0383 (18)0.043 (2)0.0402 (19)0.0085 (15)0.0097 (15)0.0171 (16)
C100.0390 (18)0.039 (2)0.0418 (19)0.0092 (15)0.0118 (16)0.0146 (16)
C110.0399 (17)0.045 (2)0.0403 (19)0.0021 (16)0.0149 (15)0.0149 (16)
C120.067 (2)0.053 (2)0.050 (2)0.0139 (19)0.0300 (18)0.0120 (18)
C130.072 (2)0.064 (3)0.047 (2)0.004 (2)0.0266 (19)0.016 (2)
C140.060 (2)0.049 (2)0.058 (2)0.0042 (19)0.0227 (19)0.0241 (19)
C150.059 (2)0.049 (2)0.064 (2)0.0136 (18)0.0257 (18)0.0194 (19)
C160.0498 (19)0.044 (2)0.0461 (19)0.0081 (17)0.0217 (16)0.0128 (17)
C170.116 (3)0.080 (3)0.084 (3)0.021 (3)0.038 (3)0.050 (3)
C180.0398 (18)0.050 (2)0.049 (2)0.0083 (16)0.0161 (17)0.0251 (17)
C190.053 (2)0.057 (2)0.050 (2)0.0042 (18)0.0068 (17)0.0090 (19)
C200.0438 (19)0.054 (2)0.0397 (18)0.0060 (17)0.0121 (16)0.0077 (17)
C210.054 (2)0.065 (3)0.051 (2)0.0035 (19)0.0053 (18)0.011 (2)
C220.069 (2)0.064 (3)0.047 (2)0.018 (2)0.0207 (19)0.020 (2)
Geometric parameters (Å, º) top
S1—C221.708 (4)C7—H7A0.9600
S1—C201.718 (3)C7—H7B0.9600
Cl1—C221.714 (4)C7—H7C0.9600
O1—C101.352 (3)C8—C91.414 (4)
O1—C111.397 (3)C9—C101.370 (4)
O2—N31.421 (3)C9—C181.436 (4)
O2—C191.424 (3)C11—C161.368 (4)
N1—C101.351 (3)C11—C121.370 (4)
N1—N21.375 (3)C12—C131.384 (4)
N1—C11.430 (4)C12—H120.9300
N2—C81.321 (4)C13—C141.365 (5)
N3—C181.264 (4)C13—H130.9300
N4—C221.272 (4)C14—C151.383 (4)
N4—C211.365 (4)C14—C171.512 (4)
C1—C21.374 (4)C15—C161.377 (4)
C1—C61.374 (5)C15—H150.9300
C2—C31.383 (5)C16—H160.9300
C2—H20.9300C17—H17A0.9600
C3—C41.362 (6)C17—H17B0.9600
C3—H30.9300C17—H17C0.9600
C4—C51.358 (6)C18—H180.9300
C4—H40.9300C19—C201.482 (4)
C5—C61.388 (5)C19—H19A0.9700
C5—H50.9300C19—H19B0.9700
C6—H60.9300C20—C211.345 (4)
C7—C81.497 (4)C21—H210.9300
C22—S1—C2088.36 (18)C16—C11—C12120.9 (3)
C10—O1—C11117.5 (2)C16—C11—O1124.2 (3)
N3—O2—C19107.2 (2)C12—C11—O1114.9 (3)
C10—N1—N2110.3 (2)C11—C12—C13118.9 (3)
C10—N1—C1130.4 (3)C11—C12—H12120.6
N2—N1—C1119.3 (3)C13—C12—H12120.6
C8—N2—N1105.2 (2)C14—C13—C12121.9 (3)
C18—N3—O2110.9 (2)C14—C13—H13119.0
C22—N4—C21108.2 (3)C12—C13—H13119.0
C2—C1—C6120.4 (3)C13—C14—C15117.6 (3)
C2—C1—N1121.3 (3)C13—C14—C17121.1 (3)
C6—C1—N1118.3 (3)C15—C14—C17121.3 (3)
C1—C2—C3118.9 (4)C16—C15—C14121.8 (3)
C1—C2—H2120.6C16—C15—H15119.1
C3—C2—H2120.6C14—C15—H15119.1
C4—C3—C2121.2 (4)C11—C16—C15118.9 (3)
C4—C3—H3119.4C11—C16—H16120.5
C2—C3—H3119.4C15—C16—H16120.5
C5—C4—C3119.5 (4)C14—C17—H17A109.5
C5—C4—H4120.3C14—C17—H17B109.5
C3—C4—H4120.3H17A—C17—H17B109.5
C4—C5—C6120.7 (4)C14—C17—H17C109.5
C4—C5—H5119.6H17A—C17—H17C109.5
C6—C5—H5119.6H17B—C17—H17C109.5
C1—C6—C5119.2 (4)N3—C18—C9121.6 (3)
C1—C6—H6120.4N3—C18—H18119.2
C5—C6—H6120.4C9—C18—H18119.2
C8—C7—H7A109.5O2—C19—C20112.5 (3)
C8—C7—H7B109.5O2—C19—H19A109.1
H7A—C7—H7B109.5C20—C19—H19A109.1
C8—C7—H7C109.5O2—C19—H19B109.1
H7A—C7—H7C109.5C20—C19—H19B109.1
H7B—C7—H7C109.5H19A—C19—H19B107.8
N2—C8—C9112.1 (3)C21—C20—C19128.5 (3)
N2—C8—C7120.5 (3)C21—C20—S1108.3 (3)
C9—C8—C7127.4 (3)C19—C20—S1123.1 (2)
C10—C9—C8103.7 (3)C20—C21—N4117.8 (3)
C10—C9—C18129.1 (3)C20—C21—H21121.1
C8—C9—C18127.2 (3)N4—C21—H21121.1
N1—C10—O1122.1 (3)N4—C22—S1117.4 (3)
N1—C10—C9108.8 (3)N4—C22—Cl1122.8 (3)
O1—C10—C9128.9 (3)S1—C22—Cl1119.9 (2)
C10—N1—N2—C80.8 (3)C8—C9—C10—O1175.4 (3)
C1—N1—N2—C8178.1 (2)C18—C9—C10—O13.0 (5)
C19—O2—N3—C18173.5 (3)C10—O1—C11—C165.4 (4)
C10—N1—C1—C220.1 (5)C10—O1—C11—C12173.3 (3)
N2—N1—C1—C2163.2 (3)C16—C11—C12—C131.2 (5)
C10—N1—C1—C6159.8 (3)O1—C11—C12—C13179.9 (3)
N2—N1—C1—C616.9 (4)C11—C12—C13—C140.1 (5)
C6—C1—C2—C32.8 (5)C12—C13—C14—C150.8 (5)
N1—C1—C2—C3177.1 (3)C12—C13—C14—C17179.2 (3)
C1—C2—C3—C41.3 (6)C13—C14—C15—C160.1 (5)
C2—C3—C4—C51.0 (7)C17—C14—C15—C16178.6 (3)
C3—C4—C5—C61.8 (7)C12—C11—C16—C151.8 (4)
C2—C1—C6—C52.0 (5)O1—C11—C16—C15179.6 (3)
N1—C1—C6—C5177.9 (3)C14—C15—C16—C111.1 (5)
C4—C5—C6—C10.3 (6)O2—N3—C18—C9177.5 (2)
N1—N2—C8—C90.4 (3)C10—C9—C18—N34.6 (5)
N1—N2—C8—C7179.3 (3)C8—C9—C18—N3177.4 (3)
N2—C8—C9—C100.0 (3)N3—O2—C19—C2079.6 (3)
C7—C8—C9—C10179.7 (3)O2—C19—C20—C21119.4 (3)
N2—C8—C9—C18178.4 (3)O2—C19—C20—S162.1 (3)
C7—C8—C9—C181.3 (5)C22—S1—C20—C210.0 (2)
N2—N1—C10—O1176.1 (3)C22—S1—C20—C19178.9 (3)
C1—N1—C10—O17.0 (5)C19—C20—C21—N4178.9 (3)
N2—N1—C10—C90.8 (3)S1—C20—C21—N40.1 (4)
C1—N1—C10—C9177.8 (3)C22—N4—C21—C200.2 (4)
C11—O1—C10—N190.5 (3)C21—N4—C22—S10.1 (4)
C11—O1—C10—C995.2 (4)C21—N4—C22—Cl1179.3 (2)
C8—C9—C10—N10.5 (3)C20—S1—C22—N40.1 (3)
C18—C9—C10—N1177.9 (3)C20—S1—C22—Cl1179.3 (2)

Experimental details

Crystal data
Chemical formulaC22H19ClN4O2S
Mr438.92
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)8.114 (3), 11.452 (4), 12.494 (4)
α, β, γ (°)102.700 (6), 107.885 (6), 93.634 (7)
V3)1067.1 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.20 × 0.18 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.938, 0.968
No. of measured, independent and
observed [I > 2σ(I)] reflections
5562, 3755, 2030
Rint0.029
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.124, 1.00
No. of reflections3755
No. of parameters273
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.19

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by the Science and Technology Projects Fund of Nantong City (grant Nos. K2010016, AS2010005), the Science Foundation of Nantong University (grant Nos. 09Z010, 09 C001) and the Scientific Research Foundation for Talent Introduction of Nantong University.

References

First citationAraki, T. (2004). Jpn Patent No. 2004131416.  Google Scholar
First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDrabek, J. (1992). DE Patent No. 4200742.  Google Scholar
First citationFahmy, H. T. Y. & Bekhit, A. A. (2002). Pharmazie, 57, 800–803.  Web of Science PubMed CAS Google Scholar
First citationManabe, H., Ishii, N. & Akasaka, T. (2003). Jpn Patent No. 2003096059.  Google Scholar
First citationMotoba, K., Nishizawa, H., Suzuki, T., Hamaguchi, H., Uchida, M. & Funayama, S. (2000). Pestic. Biochem. Physiol. 67, 73–84.  Web of Science CrossRef CAS Google Scholar
First citationPark, H. J., Lee, K., Park, S. J., Ahn, B., Lee, J. C., Cho, H. Y. & Lee, K. I. (2005). Bioorg. Med. Chem. Lett. 15, 3307–3312.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatanabe, M., Kuwata, T., Okada, T., Ohita, S., Asahara, T., Noritake, T. & Fukuda, Y. (2001). Jpn Patent No. 2001233861.  Google Scholar
First citationZhang, A., Kayser, H., Maienfisch, P. & Casida, J. E. (2000). J. Neurochem. 75, 1294–1303.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds