organic compounds
3-(4-Chlorophenyl)-1-(2-methyl-4-phenylquinolin-3-yl)prop-2-en-1-one
aChemistry Group, BITS, Pilani, K. K. Birla Goa Campus, Goa 403 726, India, bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, and cDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA
*Correspondence e-mail: rbutcher99@yahoo.com
The 25H18ClNO, shows that the molecules are isolated and not involved in intermolecular C—H⋯O or C—H⋯Cl interactions. However, the phenyl and quinoline rings are involved in π–π interactions [centroid–centroid distance = 3.8829 (9) Å].
of the title compound, CRelated literature
For background details and the biological activity of quinolines, see: Markees et al. (1970); Campbell et al. (1998); Bhat et al. (2005). For the biological activity of see: Wu et al. (2006).
Experimental
Crystal data
|
Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536811004661/ez2231sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811004661/ez2231Isup2.hkl
A mixture of 3-acetyl-2-methyl-4-phenylquinoline (2.61 g, 0.01 M), 4-chlorobenzaldehyde (1.40 g, 0.01 M) and KOH (1.12 g, 0.02 M ) in distilled ethanol (20 ml) was stirred for 12 h at room temperature. The resulting mixture was neutralized with dilute acetic acid. The resultant solid was filtered, dried and purified by
using 1:1 mixture of ethyl acetate and hexane. Re-crystallization was by slow evaporation of acetone solution of (I) which yielded colourless needle type crystals. M.pt. 453-455 K. Yield: 72%.H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with a C—H distances of 0.93 and 0.96 Å Uiso(H) = 1.2Ueq(C) and 0.98 Å for CH3 [Uiso(H) = 1.5Ueq(C)].
Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell
CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. Diagram of the title compound, C25H18ClNO, showing atom labeling. | |
Fig. 2. The molecular packing for C25H18ClNO viewed down the a axis. |
C25H18ClNO | Z = 2 |
Mr = 383.85 | F(000) = 400 |
Triclinic, P1 | Dx = 1.306 Mg m−3 |
Hall symbol: -P 1 | Cu Kα radiation, λ = 1.54184 Å |
a = 6.5376 (2) Å | Cell parameters from 4929 reflections |
b = 10.0345 (4) Å | θ = 5.3–77.1° |
c = 15.6545 (6) Å | µ = 1.84 mm−1 |
α = 90.845 (3)° | T = 295 K |
β = 95.521 (3)° | Needle, colorless |
γ = 107.035 (3)° | 0.52 × 0.18 × 0.12 mm |
V = 976.36 (6) Å3 |
Oxford Diffraction Xcalibur Ruby Gemini diffractometer | 4065 independent reflections |
Radiation source: Enhance (Cu) X-ray Source | 3402 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.019 |
Detector resolution: 10.5081 pixels mm-1 | θmax = 77.4°, θmin = 5.3° |
ω scans | h = −3→8 |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) | k = −12→12 |
Tmin = 0.544, Tmax = 1.000 | l = −19→19 |
7607 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.049 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.160 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.1125P)2 + 0.0628P] where P = (Fo2 + 2Fc2)/3 |
4065 reflections | (Δ/σ)max = 0.001 |
254 parameters | Δρmax = 0.29 e Å−3 |
0 restraints | Δρmin = −0.24 e Å−3 |
C25H18ClNO | γ = 107.035 (3)° |
Mr = 383.85 | V = 976.36 (6) Å3 |
Triclinic, P1 | Z = 2 |
a = 6.5376 (2) Å | Cu Kα radiation |
b = 10.0345 (4) Å | µ = 1.84 mm−1 |
c = 15.6545 (6) Å | T = 295 K |
α = 90.845 (3)° | 0.52 × 0.18 × 0.12 mm |
β = 95.521 (3)° |
Oxford Diffraction Xcalibur Ruby Gemini diffractometer | 4065 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) | 3402 reflections with I > 2σ(I) |
Tmin = 0.544, Tmax = 1.000 | Rint = 0.019 |
7607 measured reflections |
R[F2 > 2σ(F2)] = 0.049 | 0 restraints |
wR(F2) = 0.160 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.29 e Å−3 |
4065 reflections | Δρmin = −0.24 e Å−3 |
254 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl | −0.41045 (10) | −0.24622 (7) | 0.99317 (4) | 0.1004 (3) | |
O | 0.6524 (2) | 0.15628 (12) | 0.65464 (9) | 0.0678 (3) | |
N | 0.22876 (19) | 0.41447 (12) | 0.55076 (8) | 0.0485 (3) | |
C1 | 0.0479 (2) | 0.02060 (15) | 0.82219 (9) | 0.0505 (3) | |
C2 | 0.0750 (3) | −0.10510 (17) | 0.85056 (12) | 0.0603 (4) | |
H2A | 0.1889 | −0.1338 | 0.8340 | 0.072* | |
C3 | −0.0651 (3) | −0.18756 (18) | 0.90290 (12) | 0.0671 (4) | |
H3A | −0.0465 | −0.2714 | 0.9212 | 0.081* | |
C4 | −0.2326 (3) | −0.14364 (19) | 0.92754 (11) | 0.0638 (4) | |
C5 | −0.2633 (3) | −0.0196 (2) | 0.90095 (13) | 0.0696 (4) | |
H5A | −0.3765 | 0.0092 | 0.9181 | 0.083* | |
C6 | −0.1218 (3) | 0.06090 (18) | 0.84822 (12) | 0.0620 (4) | |
H6A | −0.1416 | 0.1444 | 0.8299 | 0.074* | |
C7 | 0.1907 (3) | 0.11066 (14) | 0.76588 (10) | 0.0515 (3) | |
H7A | 0.1646 | 0.1949 | 0.7532 | 0.062* | |
C8 | 0.3530 (3) | 0.08465 (14) | 0.73113 (10) | 0.0543 (4) | |
H8A | 0.3797 | 0.0001 | 0.7420 | 0.065* | |
C9 | 0.4934 (2) | 0.18093 (14) | 0.67652 (10) | 0.0488 (3) | |
C10 | 0.4416 (2) | 0.31192 (13) | 0.64783 (8) | 0.0434 (3) | |
C11 | 0.2682 (2) | 0.30333 (14) | 0.58322 (9) | 0.0463 (3) | |
C12 | 0.1198 (3) | 0.16483 (16) | 0.54764 (11) | 0.0588 (4) | |
H12A | 0.0640 | 0.1744 | 0.4898 | 0.088* | |
H12B | 0.0030 | 0.1345 | 0.5824 | 0.088* | |
H12C | 0.1978 | 0.0973 | 0.5480 | 0.088* | |
C13 | 0.3573 (2) | 0.54308 (14) | 0.58070 (8) | 0.0447 (3) | |
C14 | 0.3076 (3) | 0.66120 (16) | 0.54642 (10) | 0.0547 (4) | |
H14A | 0.1939 | 0.6494 | 0.5037 | 0.066* | |
C15 | 0.4265 (3) | 0.79222 (17) | 0.57609 (12) | 0.0622 (4) | |
H15A | 0.3928 | 0.8693 | 0.5535 | 0.075* | |
C16 | 0.5992 (3) | 0.81211 (15) | 0.64035 (12) | 0.0596 (4) | |
H16A | 0.6782 | 0.9020 | 0.6602 | 0.072* | |
C17 | 0.6522 (3) | 0.70013 (15) | 0.67399 (10) | 0.0511 (3) | |
H17A | 0.7675 | 0.7145 | 0.7162 | 0.061* | |
C18 | 0.5324 (2) | 0.56215 (13) | 0.64491 (8) | 0.0422 (3) | |
C19 | 0.5751 (2) | 0.44052 (13) | 0.67829 (8) | 0.0414 (3) | |
C20 | 0.7569 (2) | 0.45328 (13) | 0.74642 (8) | 0.0437 (3) | |
C21 | 0.9681 (3) | 0.50871 (19) | 0.72893 (11) | 0.0599 (4) | |
H21A | 0.9977 | 0.5393 | 0.6744 | 0.072* | |
C22 | 1.1357 (3) | 0.5186 (2) | 0.79260 (14) | 0.0710 (5) | |
H22A | 1.2772 | 0.5567 | 0.7807 | 0.085* | |
C23 | 1.0937 (3) | 0.4725 (2) | 0.87317 (12) | 0.0673 (5) | |
H23A | 1.2066 | 0.4777 | 0.9153 | 0.081* | |
C24 | 0.8847 (3) | 0.41878 (18) | 0.89139 (11) | 0.0623 (4) | |
H24A | 0.8563 | 0.3886 | 0.9461 | 0.075* | |
C25 | 0.7164 (2) | 0.40945 (15) | 0.82857 (9) | 0.0512 (3) | |
H25A | 0.5753 | 0.3736 | 0.8414 | 0.061* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl | 0.0863 (4) | 0.1060 (5) | 0.0916 (4) | −0.0055 (3) | 0.0264 (3) | 0.0365 (3) |
O | 0.0731 (7) | 0.0532 (6) | 0.0893 (8) | 0.0308 (6) | 0.0285 (6) | 0.0164 (6) |
N | 0.0481 (6) | 0.0462 (6) | 0.0503 (6) | 0.0133 (5) | 0.0028 (5) | 0.0012 (5) |
C1 | 0.0537 (8) | 0.0416 (7) | 0.0515 (7) | 0.0073 (6) | 0.0036 (6) | 0.0039 (5) |
C2 | 0.0624 (9) | 0.0487 (8) | 0.0697 (10) | 0.0146 (7) | 0.0107 (7) | 0.0116 (7) |
C3 | 0.0731 (11) | 0.0506 (8) | 0.0718 (10) | 0.0093 (7) | 0.0057 (8) | 0.0178 (7) |
C4 | 0.0599 (9) | 0.0639 (9) | 0.0542 (8) | −0.0025 (7) | 0.0051 (7) | 0.0109 (7) |
C5 | 0.0627 (10) | 0.0746 (11) | 0.0719 (11) | 0.0178 (8) | 0.0168 (8) | 0.0097 (8) |
C6 | 0.0667 (10) | 0.0536 (8) | 0.0677 (9) | 0.0189 (7) | 0.0126 (7) | 0.0111 (7) |
C7 | 0.0600 (8) | 0.0358 (6) | 0.0576 (8) | 0.0121 (6) | 0.0061 (6) | 0.0067 (5) |
C8 | 0.0636 (9) | 0.0368 (6) | 0.0634 (8) | 0.0146 (6) | 0.0107 (7) | 0.0104 (6) |
C9 | 0.0551 (8) | 0.0377 (6) | 0.0540 (7) | 0.0135 (6) | 0.0082 (6) | 0.0043 (5) |
C10 | 0.0478 (7) | 0.0374 (6) | 0.0460 (6) | 0.0120 (5) | 0.0112 (5) | 0.0043 (5) |
C11 | 0.0475 (7) | 0.0404 (6) | 0.0497 (7) | 0.0102 (5) | 0.0079 (5) | −0.0003 (5) |
C12 | 0.0581 (8) | 0.0442 (7) | 0.0668 (9) | 0.0065 (6) | −0.0008 (7) | −0.0035 (6) |
C13 | 0.0488 (7) | 0.0419 (6) | 0.0454 (6) | 0.0152 (5) | 0.0093 (5) | 0.0047 (5) |
C14 | 0.0580 (8) | 0.0511 (8) | 0.0578 (8) | 0.0214 (6) | 0.0024 (6) | 0.0100 (6) |
C15 | 0.0742 (10) | 0.0447 (7) | 0.0734 (10) | 0.0255 (7) | 0.0080 (8) | 0.0132 (7) |
C16 | 0.0712 (10) | 0.0368 (7) | 0.0684 (9) | 0.0124 (6) | 0.0065 (7) | 0.0008 (6) |
C17 | 0.0579 (8) | 0.0413 (7) | 0.0522 (7) | 0.0121 (6) | 0.0040 (6) | 0.0016 (5) |
C18 | 0.0492 (7) | 0.0374 (6) | 0.0411 (6) | 0.0127 (5) | 0.0099 (5) | 0.0036 (5) |
C19 | 0.0466 (6) | 0.0390 (6) | 0.0403 (6) | 0.0134 (5) | 0.0099 (5) | 0.0039 (5) |
C20 | 0.0491 (7) | 0.0386 (6) | 0.0454 (6) | 0.0153 (5) | 0.0068 (5) | 0.0021 (5) |
C21 | 0.0529 (8) | 0.0722 (10) | 0.0563 (8) | 0.0185 (7) | 0.0134 (6) | 0.0028 (7) |
C22 | 0.0461 (8) | 0.0879 (13) | 0.0803 (12) | 0.0219 (8) | 0.0073 (8) | −0.0080 (9) |
C23 | 0.0642 (10) | 0.0716 (10) | 0.0683 (10) | 0.0301 (8) | −0.0129 (8) | −0.0077 (8) |
C24 | 0.0742 (10) | 0.0602 (9) | 0.0508 (8) | 0.0198 (8) | −0.0021 (7) | 0.0065 (6) |
C25 | 0.0544 (8) | 0.0476 (7) | 0.0488 (7) | 0.0108 (6) | 0.0058 (6) | 0.0060 (5) |
Cl—C4 | 1.7399 (17) | C12—H12C | 0.9600 |
O—C9 | 1.2149 (19) | C13—C18 | 1.4149 (19) |
N—C11 | 1.3147 (18) | C13—C14 | 1.4173 (19) |
N—C13 | 1.3646 (18) | C14—C15 | 1.365 (2) |
C1—C6 | 1.380 (2) | C14—H14A | 0.9300 |
C1—C2 | 1.397 (2) | C15—C16 | 1.403 (2) |
C1—C7 | 1.467 (2) | C15—H15A | 0.9300 |
C2—C3 | 1.384 (2) | C16—C17 | 1.367 (2) |
C2—H2A | 0.9300 | C16—H16A | 0.9300 |
C3—C4 | 1.379 (3) | C17—C18 | 1.4196 (19) |
C3—H3A | 0.9300 | C17—H17A | 0.9300 |
C4—C5 | 1.381 (3) | C18—C19 | 1.4253 (17) |
C5—C6 | 1.385 (2) | C19—C20 | 1.4929 (18) |
C5—H5A | 0.9300 | C20—C21 | 1.385 (2) |
C6—H6A | 0.9300 | C20—C25 | 1.390 (2) |
C7—C8 | 1.326 (2) | C21—C22 | 1.388 (2) |
C7—H7A | 0.9300 | C21—H21A | 0.9300 |
C8—C9 | 1.471 (2) | C22—C23 | 1.375 (3) |
C8—H8A | 0.9300 | C22—H22A | 0.9300 |
C9—C10 | 1.5142 (18) | C23—C24 | 1.374 (3) |
C10—C19 | 1.3770 (18) | C23—H23A | 0.9300 |
C10—C11 | 1.4267 (19) | C24—C25 | 1.384 (2) |
C11—C12 | 1.5053 (19) | C24—H24A | 0.9300 |
C12—H12A | 0.9600 | C25—H25A | 0.9300 |
C12—H12B | 0.9600 | ||
C11—N—C13 | 118.73 (12) | N—C13—C18 | 122.82 (12) |
C6—C1—C2 | 118.20 (15) | N—C13—C14 | 117.62 (13) |
C6—C1—C7 | 118.85 (14) | C18—C13—C14 | 119.55 (13) |
C2—C1—C7 | 122.95 (14) | C15—C14—C13 | 120.05 (14) |
C3—C2—C1 | 120.99 (16) | C15—C14—H14A | 120.0 |
C3—C2—H2A | 119.5 | C13—C14—H14A | 120.0 |
C1—C2—H2A | 119.5 | C14—C15—C16 | 120.79 (14) |
C4—C3—C2 | 119.06 (16) | C14—C15—H15A | 119.6 |
C4—C3—H3A | 120.5 | C16—C15—H15A | 119.6 |
C2—C3—H3A | 120.5 | C17—C16—C15 | 120.43 (14) |
C3—C4—C5 | 121.40 (16) | C17—C16—H16A | 119.8 |
C3—C4—Cl | 119.65 (14) | C15—C16—H16A | 119.8 |
C5—C4—Cl | 118.96 (15) | C16—C17—C18 | 120.51 (14) |
C4—C5—C6 | 118.56 (17) | C16—C17—H17A | 119.7 |
C4—C5—H5A | 120.7 | C18—C17—H17A | 119.7 |
C6—C5—H5A | 120.7 | C13—C18—C17 | 118.66 (12) |
C1—C6—C5 | 121.79 (16) | C13—C18—C19 | 117.70 (12) |
C1—C6—H6A | 119.1 | C17—C18—C19 | 123.63 (13) |
C5—C6—H6A | 119.1 | C10—C19—C18 | 118.40 (12) |
C8—C7—C1 | 126.86 (13) | C10—C19—C20 | 121.16 (12) |
C8—C7—H7A | 116.6 | C18—C19—C20 | 120.42 (11) |
C1—C7—H7A | 116.6 | C21—C20—C25 | 118.93 (14) |
C7—C8—C9 | 124.21 (13) | C21—C20—C19 | 120.71 (13) |
C7—C8—H8A | 117.9 | C25—C20—C19 | 120.37 (13) |
C9—C8—H8A | 117.9 | C20—C21—C22 | 120.14 (16) |
O—C9—C8 | 120.17 (13) | C20—C21—H21A | 119.9 |
O—C9—C10 | 119.62 (13) | C22—C21—H21A | 119.9 |
C8—C9—C10 | 120.21 (12) | C23—C22—C21 | 120.37 (16) |
C19—C10—C11 | 119.78 (12) | C23—C22—H22A | 119.8 |
C19—C10—C9 | 119.63 (12) | C21—C22—H22A | 119.8 |
C11—C10—C9 | 120.30 (12) | C24—C23—C22 | 119.90 (16) |
N—C11—C10 | 122.56 (12) | C24—C23—H23A | 120.1 |
N—C11—C12 | 116.00 (13) | C22—C23—H23A | 120.1 |
C10—C11—C12 | 121.44 (13) | C23—C24—C25 | 120.18 (16) |
C11—C12—H12A | 109.5 | C23—C24—H24A | 119.9 |
C11—C12—H12B | 109.5 | C25—C24—H24A | 119.9 |
H12A—C12—H12B | 109.5 | C24—C25—C20 | 120.47 (15) |
C11—C12—H12C | 109.5 | C24—C25—H25A | 119.8 |
H12A—C12—H12C | 109.5 | C20—C25—H25A | 119.8 |
H12B—C12—H12C | 109.5 | ||
C6—C1—C2—C3 | 0.4 (3) | C13—C14—C15—C16 | 0.2 (3) |
C7—C1—C2—C3 | −179.28 (15) | C14—C15—C16—C17 | 0.4 (3) |
C1—C2—C3—C4 | −0.5 (3) | C15—C16—C17—C18 | −0.5 (3) |
C2—C3—C4—C5 | 0.1 (3) | N—C13—C18—C17 | −177.84 (13) |
C2—C3—C4—Cl | 179.88 (13) | C14—C13—C18—C17 | 0.8 (2) |
C3—C4—C5—C6 | 0.2 (3) | N—C13—C18—C19 | 0.69 (19) |
Cl—C4—C5—C6 | −179.55 (14) | C14—C13—C18—C19 | 179.30 (12) |
C2—C1—C6—C5 | −0.1 (3) | C16—C17—C18—C13 | −0.1 (2) |
C7—C1—C6—C5 | 179.63 (16) | C16—C17—C18—C19 | −178.57 (13) |
C4—C5—C6—C1 | −0.2 (3) | C11—C10—C19—C18 | 1.17 (19) |
C6—C1—C7—C8 | −176.02 (16) | C9—C10—C19—C18 | 174.99 (11) |
C2—C1—C7—C8 | 3.7 (3) | C11—C10—C19—C20 | 179.45 (11) |
C1—C7—C8—C9 | −178.63 (14) | C9—C10—C19—C20 | −6.74 (19) |
C7—C8—C9—O | 172.12 (16) | C13—C18—C19—C10 | −1.45 (18) |
C7—C8—C9—C10 | −7.4 (2) | C17—C18—C19—C10 | 177.00 (13) |
O—C9—C10—C19 | −67.03 (19) | C13—C18—C19—C20 | −179.74 (11) |
C8—C9—C10—C19 | 112.49 (15) | C17—C18—C19—C20 | −1.3 (2) |
O—C9—C10—C11 | 106.75 (17) | C10—C19—C20—C21 | 114.65 (16) |
C8—C9—C10—C11 | −73.73 (18) | C18—C19—C20—C21 | −67.11 (18) |
C13—N—C11—C10 | −0.7 (2) | C10—C19—C20—C25 | −65.29 (17) |
C13—N—C11—C12 | 179.73 (13) | C18—C19—C20—C25 | 112.95 (15) |
C19—C10—C11—N | −0.1 (2) | C25—C20—C21—C22 | 0.6 (2) |
C9—C10—C11—N | −173.84 (13) | C19—C20—C21—C22 | −179.32 (15) |
C19—C10—C11—C12 | 179.44 (13) | C20—C21—C22—C23 | 0.6 (3) |
C9—C10—C11—C12 | 5.7 (2) | C21—C22—C23—C24 | −1.3 (3) |
C11—N—C13—C18 | 0.4 (2) | C22—C23—C24—C25 | 0.8 (3) |
C11—N—C13—C14 | −178.23 (13) | C23—C24—C25—C20 | 0.5 (2) |
N—C13—C14—C15 | 177.86 (15) | C21—C20—C25—C24 | −1.2 (2) |
C18—C13—C14—C15 | −0.8 (2) | C19—C20—C25—C24 | 178.80 (13) |
Experimental details
Crystal data | |
Chemical formula | C25H18ClNO |
Mr | 383.85 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 295 |
a, b, c (Å) | 6.5376 (2), 10.0345 (4), 15.6545 (6) |
α, β, γ (°) | 90.845 (3), 95.521 (3), 107.035 (3) |
V (Å3) | 976.36 (6) |
Z | 2 |
Radiation type | Cu Kα |
µ (mm−1) | 1.84 |
Crystal size (mm) | 0.52 × 0.18 × 0.12 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur Ruby Gemini diffractometer |
Absorption correction | Multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) |
Tmin, Tmax | 0.544, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7607, 4065, 3402 |
Rint | 0.019 |
(sin θ/λ)max (Å−1) | 0.633 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.049, 0.160, 1.04 |
No. of reflections | 4065 |
No. of parameters | 254 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.29, −0.24 |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Acknowledgements
RJB wishes to acknowledge the NSF–MRI program (grant CHE-0619278) for funds to purchase the diffractometer.
References
Bhat, B. A., Dhar, K. L., Puri, S. C., Saxena, A. K., Shanmugavel, M. & Qazi, G. N. (2005). Bioorg. Med. Chem. Lett. 15, 3177–3180. Web of Science CrossRef PubMed CAS Google Scholar
Campbell, S. F., Hardstone, J. D. & Palmer, M. J. (1998). J. Med. Chem. 31, 1031–1035. CrossRef Web of Science Google Scholar
Markees, D. G., Dewey, V. C. & Kidder, G. W. (1970). J. Med. Chem. 13, 324–326. CrossRef CAS PubMed Web of Science Google Scholar
Oxford Diffraction (2009). CrysAlis PRO, CrysAlis RED and CrysAlis CCD. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wu, X., Tiekink, E. R. T., Iouri, K., Nikolai, K. & Mei, L. G. (2006). Eur. J. Pharm. Sci. 27, 175–187. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Quinoline derivatives are very important compounds because of their wide occurrence in natural products and biologically active compounds (Markees et al., 1970; Campbell et al., 1998). Additionally, chalcone derivatives are attracting the increasing interest of many researchers, because of their bioactivity such as antimicrobial, antimalarial, anticancer, antiviral, antitumor activities (Bhat et al., 2005). Introduction of the quinoline scaffold into chalcone compounds can bring about significant changes in biological effects (Wu et al., 2006).
The crystal structure of the title compound shows that the molecules are isolated and not involved in intermolecular interactions. However, both the phenyl ring and the quinoline rings are involved in π–π interactions (centroid to centroid distances of 3.428 (2) and 3.770 (2) Å, respectively).