organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(4-Chloro­phen­yl)-1-(2-methyl-4-phenyl­quinolin-3-yl)prop-2-en-1-one

aChemistry Group, BITS, Pilani, K. K. Birla Goa Campus, Goa 403 726, India, bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, and cDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA
*Correspondence e-mail: rbutcher99@yahoo.com

(Received 30 January 2011; accepted 7 February 2011; online 12 February 2011)

The crystal structure of the title compound, C25H18ClNO, shows that the mol­ecules are isolated and not involved in inter­molecular C—H⋯O or C—H⋯Cl inter­actions. However, the phenyl and quinoline rings are involved in ππ inter­actions [centroid–centroid distance = 3.8829 (9) Å].

Related literature

For background details and the biological activity of quinolines, see: Markees et al. (1970[Markees, D. G., Dewey, V. C. & Kidder, G. W. (1970). J. Med. Chem. 13, 324-326.]); Campbell et al. (1998[Campbell, S. F., Hardstone, J. D. & Palmer, M. J. (1998). J. Med. Chem. 31, 1031-1035.]); Bhat et al. (2005[Bhat, B. A., Dhar, K. L., Puri, S. C., Saxena, A. K., Shanmugavel, M. & Qazi, G. N. (2005). Bioorg. Med. Chem. Lett. 15, 3177-3180.]). For the biological activity of chalcones, see: Wu et al. (2006[Wu, X., Tiekink, E. R. T., Iouri, K., Nikolai, K. & Mei, L. G. (2006). Eur. J. Pharm. Sci. 27, 175-187.]).

[Scheme 1]

Experimental

Crystal data
  • C25H18ClNO

  • Mr = 383.85

  • Triclinic, [P \overline 1]

  • a = 6.5376 (2) Å

  • b = 10.0345 (4) Å

  • c = 15.6545 (6) Å

  • α = 90.845 (3)°

  • β = 95.521 (3)°

  • γ = 107.035 (3)°

  • V = 976.36 (6) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 1.84 mm−1

  • T = 295 K

  • 0.52 × 0.18 × 0.12 mm

Data collection
  • Oxford Diffraction Xcalibur Ruby Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO, CrysAlis RED and CrysAlis CCD. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.544, Tmax = 1.000

  • 7607 measured reflections

  • 4065 independent reflections

  • 3402 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.160

  • S = 1.04

  • 4065 reflections

  • 254 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO, CrysAlis RED and CrysAlis CCD. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Quinoline derivatives are very important compounds because of their wide occurrence in natural products and biologically active compounds (Markees et al., 1970; Campbell et al., 1998). Additionally, chalcone derivatives are attracting the increasing interest of many researchers, because of their bioactivity such as antimicrobial, antimalarial, anticancer, antiviral, antitumor activities (Bhat et al., 2005). Introduction of the quinoline scaffold into chalcone compounds can bring about significant changes in biological effects (Wu et al., 2006).

The crystal structure of the title compound shows that the molecules are isolated and not involved in intermolecular interactions. However, both the phenyl ring and the quinoline rings are involved in ππ interactions (centroid to centroid distances of 3.428 (2) and 3.770 (2) Å, respectively).

Related literature top

For background details and the biological activity of quinolines, see: Markees et al. (1970); Campbell et al. (1998); Bhat et al. (2005. For the biological activity of chalcones, see: Wu et al. (2006).

Experimental top

A mixture of 3-acetyl-2-methyl-4-phenylquinoline (2.61 g, 0.01 M), 4-chlorobenzaldehyde (1.40 g, 0.01 M) and KOH (1.12 g, 0.02 M ) in distilled ethanol (20 ml) was stirred for 12 h at room temperature. The resulting mixture was neutralized with dilute acetic acid. The resultant solid was filtered, dried and purified by column chromatography using 1:1 mixture of ethyl acetate and hexane. Re-crystallization was by slow evaporation of acetone solution of (I) which yielded colourless needle type crystals. M.pt. 453-455 K. Yield: 72%.

Refinement top

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with a C—H distances of 0.93 and 0.96 Å Uiso(H) = 1.2Ueq(C) and 0.98 Å for CH3 [Uiso(H) = 1.5Ueq(C)].

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Diagram of the title compound, C25H18ClNO, showing atom labeling.
[Figure 2] Fig. 2. The molecular packing for C25H18ClNO viewed down the a axis.
3-(4-Chlorophenyl)-1-(2-methyl-4-phenylquinolin-3-yl)prop-2-en-1-one top
Crystal data top
C25H18ClNOZ = 2
Mr = 383.85F(000) = 400
Triclinic, P1Dx = 1.306 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54184 Å
a = 6.5376 (2) ÅCell parameters from 4929 reflections
b = 10.0345 (4) Åθ = 5.3–77.1°
c = 15.6545 (6) ŵ = 1.84 mm1
α = 90.845 (3)°T = 295 K
β = 95.521 (3)°Needle, colorless
γ = 107.035 (3)°0.52 × 0.18 × 0.12 mm
V = 976.36 (6) Å3
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
4065 independent reflections
Radiation source: Enhance (Cu) X-ray Source3402 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
Detector resolution: 10.5081 pixels mm-1θmax = 77.4°, θmin = 5.3°
ω scansh = 38
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 1212
Tmin = 0.544, Tmax = 1.000l = 1919
7607 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.160H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.1125P)2 + 0.0628P]
where P = (Fo2 + 2Fc2)/3
4065 reflections(Δ/σ)max = 0.001
254 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C25H18ClNOγ = 107.035 (3)°
Mr = 383.85V = 976.36 (6) Å3
Triclinic, P1Z = 2
a = 6.5376 (2) ÅCu Kα radiation
b = 10.0345 (4) ŵ = 1.84 mm1
c = 15.6545 (6) ÅT = 295 K
α = 90.845 (3)°0.52 × 0.18 × 0.12 mm
β = 95.521 (3)°
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
4065 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
3402 reflections with I > 2σ(I)
Tmin = 0.544, Tmax = 1.000Rint = 0.019
7607 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.160H-atom parameters constrained
S = 1.04Δρmax = 0.29 e Å3
4065 reflectionsΔρmin = 0.24 e Å3
254 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl0.41045 (10)0.24622 (7)0.99317 (4)0.1004 (3)
O0.6524 (2)0.15628 (12)0.65464 (9)0.0678 (3)
N0.22876 (19)0.41447 (12)0.55076 (8)0.0485 (3)
C10.0479 (2)0.02060 (15)0.82219 (9)0.0505 (3)
C20.0750 (3)0.10510 (17)0.85056 (12)0.0603 (4)
H2A0.18890.13380.83400.072*
C30.0651 (3)0.18756 (18)0.90290 (12)0.0671 (4)
H3A0.04650.27140.92120.081*
C40.2326 (3)0.14364 (19)0.92754 (11)0.0638 (4)
C50.2633 (3)0.0196 (2)0.90095 (13)0.0696 (4)
H5A0.37650.00920.91810.083*
C60.1218 (3)0.06090 (18)0.84822 (12)0.0620 (4)
H6A0.14160.14440.82990.074*
C70.1907 (3)0.11066 (14)0.76588 (10)0.0515 (3)
H7A0.16460.19490.75320.062*
C80.3530 (3)0.08465 (14)0.73113 (10)0.0543 (4)
H8A0.37970.00010.74200.065*
C90.4934 (2)0.18093 (14)0.67652 (10)0.0488 (3)
C100.4416 (2)0.31192 (13)0.64783 (8)0.0434 (3)
C110.2682 (2)0.30333 (14)0.58322 (9)0.0463 (3)
C120.1198 (3)0.16483 (16)0.54764 (11)0.0588 (4)
H12A0.06400.17440.48980.088*
H12B0.00300.13450.58240.088*
H12C0.19780.09730.54800.088*
C130.3573 (2)0.54308 (14)0.58070 (8)0.0447 (3)
C140.3076 (3)0.66120 (16)0.54642 (10)0.0547 (4)
H14A0.19390.64940.50370.066*
C150.4265 (3)0.79222 (17)0.57609 (12)0.0622 (4)
H15A0.39280.86930.55350.075*
C160.5992 (3)0.81211 (15)0.64035 (12)0.0596 (4)
H16A0.67820.90200.66020.072*
C170.6522 (3)0.70013 (15)0.67399 (10)0.0511 (3)
H17A0.76750.71450.71620.061*
C180.5324 (2)0.56215 (13)0.64491 (8)0.0422 (3)
C190.5751 (2)0.44052 (13)0.67829 (8)0.0414 (3)
C200.7569 (2)0.45328 (13)0.74642 (8)0.0437 (3)
C210.9681 (3)0.50871 (19)0.72893 (11)0.0599 (4)
H21A0.99770.53930.67440.072*
C221.1357 (3)0.5186 (2)0.79260 (14)0.0710 (5)
H22A1.27720.55670.78070.085*
C231.0937 (3)0.4725 (2)0.87317 (12)0.0673 (5)
H23A1.20660.47770.91530.081*
C240.8847 (3)0.41878 (18)0.89139 (11)0.0623 (4)
H24A0.85630.38860.94610.075*
C250.7164 (2)0.40945 (15)0.82857 (9)0.0512 (3)
H25A0.57530.37360.84140.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.0863 (4)0.1060 (5)0.0916 (4)0.0055 (3)0.0264 (3)0.0365 (3)
O0.0731 (7)0.0532 (6)0.0893 (8)0.0308 (6)0.0285 (6)0.0164 (6)
N0.0481 (6)0.0462 (6)0.0503 (6)0.0133 (5)0.0028 (5)0.0012 (5)
C10.0537 (8)0.0416 (7)0.0515 (7)0.0073 (6)0.0036 (6)0.0039 (5)
C20.0624 (9)0.0487 (8)0.0697 (10)0.0146 (7)0.0107 (7)0.0116 (7)
C30.0731 (11)0.0506 (8)0.0718 (10)0.0093 (7)0.0057 (8)0.0178 (7)
C40.0599 (9)0.0639 (9)0.0542 (8)0.0025 (7)0.0051 (7)0.0109 (7)
C50.0627 (10)0.0746 (11)0.0719 (11)0.0178 (8)0.0168 (8)0.0097 (8)
C60.0667 (10)0.0536 (8)0.0677 (9)0.0189 (7)0.0126 (7)0.0111 (7)
C70.0600 (8)0.0358 (6)0.0576 (8)0.0121 (6)0.0061 (6)0.0067 (5)
C80.0636 (9)0.0368 (6)0.0634 (8)0.0146 (6)0.0107 (7)0.0104 (6)
C90.0551 (8)0.0377 (6)0.0540 (7)0.0135 (6)0.0082 (6)0.0043 (5)
C100.0478 (7)0.0374 (6)0.0460 (6)0.0120 (5)0.0112 (5)0.0043 (5)
C110.0475 (7)0.0404 (6)0.0497 (7)0.0102 (5)0.0079 (5)0.0003 (5)
C120.0581 (8)0.0442 (7)0.0668 (9)0.0065 (6)0.0008 (7)0.0035 (6)
C130.0488 (7)0.0419 (6)0.0454 (6)0.0152 (5)0.0093 (5)0.0047 (5)
C140.0580 (8)0.0511 (8)0.0578 (8)0.0214 (6)0.0024 (6)0.0100 (6)
C150.0742 (10)0.0447 (7)0.0734 (10)0.0255 (7)0.0080 (8)0.0132 (7)
C160.0712 (10)0.0368 (7)0.0684 (9)0.0124 (6)0.0065 (7)0.0008 (6)
C170.0579 (8)0.0413 (7)0.0522 (7)0.0121 (6)0.0040 (6)0.0016 (5)
C180.0492 (7)0.0374 (6)0.0411 (6)0.0127 (5)0.0099 (5)0.0036 (5)
C190.0466 (6)0.0390 (6)0.0403 (6)0.0134 (5)0.0099 (5)0.0039 (5)
C200.0491 (7)0.0386 (6)0.0454 (6)0.0153 (5)0.0068 (5)0.0021 (5)
C210.0529 (8)0.0722 (10)0.0563 (8)0.0185 (7)0.0134 (6)0.0028 (7)
C220.0461 (8)0.0879 (13)0.0803 (12)0.0219 (8)0.0073 (8)0.0080 (9)
C230.0642 (10)0.0716 (10)0.0683 (10)0.0301 (8)0.0129 (8)0.0077 (8)
C240.0742 (10)0.0602 (9)0.0508 (8)0.0198 (8)0.0021 (7)0.0065 (6)
C250.0544 (8)0.0476 (7)0.0488 (7)0.0108 (6)0.0058 (6)0.0060 (5)
Geometric parameters (Å, º) top
Cl—C41.7399 (17)C12—H12C0.9600
O—C91.2149 (19)C13—C181.4149 (19)
N—C111.3147 (18)C13—C141.4173 (19)
N—C131.3646 (18)C14—C151.365 (2)
C1—C61.380 (2)C14—H14A0.9300
C1—C21.397 (2)C15—C161.403 (2)
C1—C71.467 (2)C15—H15A0.9300
C2—C31.384 (2)C16—C171.367 (2)
C2—H2A0.9300C16—H16A0.9300
C3—C41.379 (3)C17—C181.4196 (19)
C3—H3A0.9300C17—H17A0.9300
C4—C51.381 (3)C18—C191.4253 (17)
C5—C61.385 (2)C19—C201.4929 (18)
C5—H5A0.9300C20—C211.385 (2)
C6—H6A0.9300C20—C251.390 (2)
C7—C81.326 (2)C21—C221.388 (2)
C7—H7A0.9300C21—H21A0.9300
C8—C91.471 (2)C22—C231.375 (3)
C8—H8A0.9300C22—H22A0.9300
C9—C101.5142 (18)C23—C241.374 (3)
C10—C191.3770 (18)C23—H23A0.9300
C10—C111.4267 (19)C24—C251.384 (2)
C11—C121.5053 (19)C24—H24A0.9300
C12—H12A0.9600C25—H25A0.9300
C12—H12B0.9600
C11—N—C13118.73 (12)N—C13—C18122.82 (12)
C6—C1—C2118.20 (15)N—C13—C14117.62 (13)
C6—C1—C7118.85 (14)C18—C13—C14119.55 (13)
C2—C1—C7122.95 (14)C15—C14—C13120.05 (14)
C3—C2—C1120.99 (16)C15—C14—H14A120.0
C3—C2—H2A119.5C13—C14—H14A120.0
C1—C2—H2A119.5C14—C15—C16120.79 (14)
C4—C3—C2119.06 (16)C14—C15—H15A119.6
C4—C3—H3A120.5C16—C15—H15A119.6
C2—C3—H3A120.5C17—C16—C15120.43 (14)
C3—C4—C5121.40 (16)C17—C16—H16A119.8
C3—C4—Cl119.65 (14)C15—C16—H16A119.8
C5—C4—Cl118.96 (15)C16—C17—C18120.51 (14)
C4—C5—C6118.56 (17)C16—C17—H17A119.7
C4—C5—H5A120.7C18—C17—H17A119.7
C6—C5—H5A120.7C13—C18—C17118.66 (12)
C1—C6—C5121.79 (16)C13—C18—C19117.70 (12)
C1—C6—H6A119.1C17—C18—C19123.63 (13)
C5—C6—H6A119.1C10—C19—C18118.40 (12)
C8—C7—C1126.86 (13)C10—C19—C20121.16 (12)
C8—C7—H7A116.6C18—C19—C20120.42 (11)
C1—C7—H7A116.6C21—C20—C25118.93 (14)
C7—C8—C9124.21 (13)C21—C20—C19120.71 (13)
C7—C8—H8A117.9C25—C20—C19120.37 (13)
C9—C8—H8A117.9C20—C21—C22120.14 (16)
O—C9—C8120.17 (13)C20—C21—H21A119.9
O—C9—C10119.62 (13)C22—C21—H21A119.9
C8—C9—C10120.21 (12)C23—C22—C21120.37 (16)
C19—C10—C11119.78 (12)C23—C22—H22A119.8
C19—C10—C9119.63 (12)C21—C22—H22A119.8
C11—C10—C9120.30 (12)C24—C23—C22119.90 (16)
N—C11—C10122.56 (12)C24—C23—H23A120.1
N—C11—C12116.00 (13)C22—C23—H23A120.1
C10—C11—C12121.44 (13)C23—C24—C25120.18 (16)
C11—C12—H12A109.5C23—C24—H24A119.9
C11—C12—H12B109.5C25—C24—H24A119.9
H12A—C12—H12B109.5C24—C25—C20120.47 (15)
C11—C12—H12C109.5C24—C25—H25A119.8
H12A—C12—H12C109.5C20—C25—H25A119.8
H12B—C12—H12C109.5
C6—C1—C2—C30.4 (3)C13—C14—C15—C160.2 (3)
C7—C1—C2—C3179.28 (15)C14—C15—C16—C170.4 (3)
C1—C2—C3—C40.5 (3)C15—C16—C17—C180.5 (3)
C2—C3—C4—C50.1 (3)N—C13—C18—C17177.84 (13)
C2—C3—C4—Cl179.88 (13)C14—C13—C18—C170.8 (2)
C3—C4—C5—C60.2 (3)N—C13—C18—C190.69 (19)
Cl—C4—C5—C6179.55 (14)C14—C13—C18—C19179.30 (12)
C2—C1—C6—C50.1 (3)C16—C17—C18—C130.1 (2)
C7—C1—C6—C5179.63 (16)C16—C17—C18—C19178.57 (13)
C4—C5—C6—C10.2 (3)C11—C10—C19—C181.17 (19)
C6—C1—C7—C8176.02 (16)C9—C10—C19—C18174.99 (11)
C2—C1—C7—C83.7 (3)C11—C10—C19—C20179.45 (11)
C1—C7—C8—C9178.63 (14)C9—C10—C19—C206.74 (19)
C7—C8—C9—O172.12 (16)C13—C18—C19—C101.45 (18)
C7—C8—C9—C107.4 (2)C17—C18—C19—C10177.00 (13)
O—C9—C10—C1967.03 (19)C13—C18—C19—C20179.74 (11)
C8—C9—C10—C19112.49 (15)C17—C18—C19—C201.3 (2)
O—C9—C10—C11106.75 (17)C10—C19—C20—C21114.65 (16)
C8—C9—C10—C1173.73 (18)C18—C19—C20—C2167.11 (18)
C13—N—C11—C100.7 (2)C10—C19—C20—C2565.29 (17)
C13—N—C11—C12179.73 (13)C18—C19—C20—C25112.95 (15)
C19—C10—C11—N0.1 (2)C25—C20—C21—C220.6 (2)
C9—C10—C11—N173.84 (13)C19—C20—C21—C22179.32 (15)
C19—C10—C11—C12179.44 (13)C20—C21—C22—C230.6 (3)
C9—C10—C11—C125.7 (2)C21—C22—C23—C241.3 (3)
C11—N—C13—C180.4 (2)C22—C23—C24—C250.8 (3)
C11—N—C13—C14178.23 (13)C23—C24—C25—C200.5 (2)
N—C13—C14—C15177.86 (15)C21—C20—C25—C241.2 (2)
C18—C13—C14—C150.8 (2)C19—C20—C25—C24178.80 (13)

Experimental details

Crystal data
Chemical formulaC25H18ClNO
Mr383.85
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)6.5376 (2), 10.0345 (4), 15.6545 (6)
α, β, γ (°)90.845 (3), 95.521 (3), 107.035 (3)
V3)976.36 (6)
Z2
Radiation typeCu Kα
µ (mm1)1.84
Crystal size (mm)0.52 × 0.18 × 0.12
Data collection
DiffractometerOxford Diffraction Xcalibur Ruby Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.544, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
7607, 4065, 3402
Rint0.019
(sin θ/λ)max1)0.633
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.160, 1.04
No. of reflections4065
No. of parameters254
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.24

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

RJB wishes to acknowledge the NSF–MRI program (grant CHE-0619278) for funds to purchase the diffractometer.

References

First citationBhat, B. A., Dhar, K. L., Puri, S. C., Saxena, A. K., Shanmugavel, M. & Qazi, G. N. (2005). Bioorg. Med. Chem. Lett. 15, 3177–3180.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCampbell, S. F., Hardstone, J. D. & Palmer, M. J. (1998). J. Med. Chem. 31, 1031–1035.  CrossRef Web of Science Google Scholar
First citationMarkees, D. G., Dewey, V. C. & Kidder, G. W. (1970). J. Med. Chem. 13, 324–326.  CrossRef CAS PubMed Web of Science Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO, CrysAlis RED and CrysAlis CCD. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, X., Tiekink, E. R. T., Iouri, K., Nikolai, K. & Mei, L. G. (2006). Eur. J. Pharm. Sci. 27, 175–187.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds