organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 3| March 2011| Pages o627-o628

4-[(1,3-Dioxo-2,3-di­hydro-1H-benzo[de]isoquinolin-2-yl)meth­yl]-N′-[(E)-4-nitro­benzyl­­idene]benzene­sulfono­hydrazide di­methyl sulfoxide monosolvate

aDepartamento de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, Brazil
*Correspondence e-mail: adajb@qmc.ufsc.br

(Received 21 January 2011; accepted 7 February 2011; online 12 February 2011)

The mol­ecular structure of the title compound, C26H18N4O6S·C2H6OS, shows an E conformation of the hydrazone double bond. The presence of a methyl­ene group between the benzo[de]isoquinoline and benzene­sulfonyl moieties allows the 4-nitro­phenyl ring and the benzo[de]isoquinoline system to be parallel with respect to each other, so that the mol­ecule adopts a U-shaped spatial conformation. The dihedral angle between mean planes of these aromatic groups is 4.4 (1)°. This special arrangement enables neighboring mol­ecules to be inter­calated, forming slipped ππ inter­actions [centroid–centroid distance = 3.535 (2) Å] between the 4-nitro­phenyl and benzo[de]isoquinoline groups and point-to-face C—H⋯π inter­actions between the benzo[de]isoquinoline and benzene­sulfonyl aromatic systems. In addition, the crystal packing also features an inter­molecular N—H⋯O inter­action involving the amine group and the dimethyl sulfoxide solvent mol­ecule.

Related literature

For the therapeutic properties of sulfonyl­hydrazones, see: Rollas et al. (2002[Rollas, S., Gulerman, N. & Erdeniz, H. (2002). Farmaco, 57, 171-174.]); Frlan et al. (2008[Frlan, R., Kovac, A., Blanot, D., Gobec, S., Pecar, S. & Obreza, A. (2008). Molecules, 13, 11-30.]); Lima et al. (1999[Lima, L. M., Ormelli, C. B., Miranda, A. L. P., Brito, F. F., Fraga, C. A. M. & Barreiro, E. J. (1999). Pharm. Pharmacol. Commun. 5, 673-678.]); Sondhi et al. (2006[Sondhi, S. M., Dinodia, M. & Kumar, A. (2006). Bioorg. Med. Chem. 14, 4657-4663.]) and for their biological activity, see: Kendall et al. (2007[Kendall, J. D., Rewcastle, G. W., Frederick, R., Mawson, R., Denny, W. A., Marshall, E. S., Baguley, B. C., Chaussade, C., Jackson, S. P. & Shepherd, P. R. (2007). Bioorg. Med. Chem. 15, 7677-7687.]); Sadek et al. (2008[Sadek, H., Hannack, B., Choe, E., Wang, J., Latif, S., Garry, M. G., Garry, D. J., Longgood, J., Frantz, D. E., Olson, E. N., Hsieh, J. & Schneider, J. W. (2008). PNAS, 105, 6063-6068.]). For the anti­cancer activity of naphthalimides, see: Braña & Ramos (2001[Braña, M. F. & Ramos, A. (2001). Curr. Med. Chem. 1, 237-255.]); Braña et al. (2001[Braña, M. F., Cacho, M., Gradillas, A., Pascual-Teresa, B. & Ramos, A. (2001). Curr. Pharm. 7, 1745-1780.]); Suárez & Sánchez (1992[Suárez, A. I. T. & Sánchez, M. A. C. (1992). Farmaco, 47, 497-508.]); Ingrassia et al. (2009[Ingrassia, L., Lefranc, F., Kiss, R. & Mijatovic, T. (2009). Curr. Med. Chem. 16, 1192-1213.]); Wu et al. (2009[Wu, A., Xu, Y. & Qian, X. (2009). Bioorg. Med. Chem. 17, 592-599.]); Norton et al. (2008[Norton, J. T., Witschi, M. A., Luong, L., Kawamura, A., Ghosh, S., Stack, M. S., Sim, E., Avram, M. J., Appella, D. H. & Huang, S. (2008). Anticancer Drugs, 19, 23-36.]). For the therapeutic properties of cyclic imides, see: Cechinel Filho et al. (2003[Cechinel Filho, V., Campos, F., Corrêa, R., Yunes, R. A. & Nunes, R. J. (2003). Quim. Nova, 26, 230-241.]); Walter et al. (2002[Walter, M. E., Mora, C., Mundstock, K., Souza, M. M., Pinheiro, A. O., Yunes, R. A. & Nunes, R. J. (2002). Arch. Pharm. Pharm. Med. Chem. 337, 201-206.]). For background to this study, see: Silva et al. (2006[Silva, L. L., Oliveira, K. N. & Nunes, R. J. (2006). Arkivoc, xiii, 124-129.]); Oliveira & Nunes (2006[Oliveira, K. N. & Nunes, R. J. (2006). Synth. Commun. 36, 3401-3409.]).

[Scheme 1]

Experimental

Crystal data
  • C26H18N4O6S·C2H6OS

  • Mr = 592.63

  • Triclinic, [P \overline 1]

  • a = 9.152 (1) Å

  • b = 11.971 (1) Å

  • c = 13.910 (1) Å

  • α = 107.268 (7)°

  • β = 101.789 (7)°

  • γ = 96.319 (8)°

  • V = 1400.6 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 293 K

  • 0.50 × 0.16 × 0.13 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • 5055 measured reflections

  • 4737 independent reflections

  • 3075 reflections with I > 2σ(I)

  • Rint = 0.017

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.163

  • S = 1.04

  • 4737 reflections

  • 371 parameters

  • H-atom parameters constrained

  • Δρmax = 0.73 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the p-nitro­phenyl (C22–C27) ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯O1S 0.80 1.99 2.764 (4) 163
C8—H8⋯Cgi 0.93 2.90 3.799 (6) 162
Symmetry code: (i) -x+2, -y+2, -z+2.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: HELENA (Spek, 1996[Spek, A. L. (1996). HELENA. University of Utrecht, The Netherlands.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Sulfonyl-hydrazones are known for their therapeutic properties, such as, antimicrobial (Rollas et al. 2002, Frlan et al. 2008), analgesic (Lima et al. 1999, Sondhi et al. 2006), etc. Sulfonyl-hydrazones was selective inhibitor of p110α, a phosphoinositide-3-kinase that is over-expressed in 30% of tumors (Kendall et al. 2007). In innovative study, the sulfonyl-hydrazones were reported by enhance myocardial repair by stem cells by activating cardiac differentiation in human mobilized peripheral blood mononuclear cells (M-PBMCs) (Sadek et al. 2008).

Cyclic imides have also many therapeutic properties including antibacterial, antitumor, diuretic and antiviral (Cechinel Filho et al. 2003). In a previous publication, we reported the synthesis of imidobenzenesulfonyl compounds that showed promising analgesic profiles in the acetic acid- induced mice writhing test. The mechanism of action occurred possibly due to additional non-covalent interactions with the COX active site (Walter et al. 2002). The naphthalimides, in special, are known of their high DNA-binding ability and consequently many of them have anticancer property (Braña & Ramos, 2001); Braña et al. 2001). Mitonafide and Amonafide are classical examples of naphthalimides derivatives with antitumoral activity (Suárez et al. 1992). Recently, many similar compounds have been showed activity against different cancer cell lines (Ingrassia et al. 2009, Wu et al. 2009, Norton et al. 2008).

The title compound (I) (Scheme 1) was synthesized as a part of our work to investigate the antitumoral activity of the sulfonyl-hydrazones cyclic imides derivatives (Oliveira et al. 2006, Silva et al. 2006).

The molecular structure of the title compound (Fig. 1) shows E conformation on the hydrazone double bond, which is evidenced by the torsion angle S1–N2–N3–C21 of 165.8 (2)°. The presence of a methylene group among benzo[de]isoquinoline and benzenesulfonyl moieties allows p-nitrophenyl ring and benzo[de]isoquinoline system to be parallel with respect to each other, so that the molecule adopts an U-shaped spatial conformation. The dihedral angle between mean planes of these planar groups is 4.4 (1)°. This special arrangement enables the neighboring molecule be intercalated by a center of symmetry, forming pairs of molecules in a centrosymmetric structure (Fig. 2). Slipped ππ interaction between p-nitrophenyl and benzo[de]isoquinoline, with centroid–C12 distance of 3.589 Å, and point-to-face C–H···π interaction between benzenesulfonyl and benzo[de]isoquinoline aromatic systems, with centroid-H8 distance of 2.903 Å, are observed. In addition, crystal packing also shows an intermolecular N2–H···O1S interaction involving amine group and DMSO solvate.

Related literature top

For the therapeutic properties of sulfonylhydrazones, see: Rollas et al. (2002); Frlan et al. (2008); Lima et al. (1999); Sondhi et al. (2006) and for their biological activity, see: Kendall et al. (2007); Sadek et al. (2008). For the anticancer activity of naphthalimides, see: Braña & Ramos (2001); Braña et al. (2001); Suárez & Sánchez (1992); Ingrassia et al. (2009); Wu et al. (2009); Norton et al. (2008). For the therapeutic properties of cyclic imides, see: Cechinel Filho et al. (2003); Walter et al. (2002). For background to this study, see: Silva et al. (2006); Oliveira & Nunes (2006).

Experimental top

4-nitrobenzaldehyde (79 mg, 0.52 mmol) was added in a mixture of 4-[(1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl)methyl] benzenesulfonohydrazide (200 mg, 0.52 mmol) in ethanol (10 ml), with a drop of hydrochloric acid as catalyst, as described for similar compounds (Silva et al. 2006, Oliveira et al. 2006). The reaction was carried out by stirring at room temperature for one hour. The solid was filtered off with suction. The crystal used for data collection was obtained by dissolving 30 mg of (I) in 10 ml of dimethylsulfoxide and by slow evaporation of the solvent.

Refinement top

All non-H atoms were refined with anisotropic displacement parameters. H atoms were placed at their idealized positions with distances of 0.93 and 0.97 Å and Ueq fixed at 1.2 times Uiso of the preceding atom for C–HAr and C–H2, respectively and at 1.5 times Uiso of the preceding atom for C–H3. The H atom of the amino group was found from Fourier map and treated with riding model and its Ueq was refined freely.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: HELENA (Spek, 1996); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the labelling scheme. Displacement ellipsoids are shown at the 40% probability level.
[Figure 2] Fig. 2. Intermolecular interactions observed in (I).
4-[(1,3-Dioxo-2,3-dihydro-1H-benzo[de]isoquinolin-2-yl)methyl]- N'-[(E)-4-nitrobenzylidene]benzenesulfonohydrazide dimethyl sulfoxide monosolvate top
Crystal data top
C26H18N4O6S·C2H6OSZ = 2
Mr = 592.63F(000) = 616
Triclinic, P1Dx = 1.405 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.152 (1) ÅCell parameters from 25 reflections
b = 11.971 (1) Åθ = 8.5–13.4°
c = 13.910 (1) ŵ = 0.24 mm1
α = 107.268 (7)°T = 293 K
β = 101.789 (7)°Prismatic, colourless
γ = 96.319 (8)°0.50 × 0.16 × 0.13 mm
V = 1400.6 (2) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.017
Radiation source: fine-focus sealed tubeθmax = 25.1°, θmin = 2.3°
Graphite monochromatorh = 010
ω–2θ scansk = 1414
5055 measured reflectionsl = 1616
4737 independent reflections3 standard reflections every 200 reflections
3075 reflections with I > 2σ(I) intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.163H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0792P)2 + 0.613P]
where P = (Fo2 + 2Fc2)/3
4737 reflections(Δ/σ)max < 0.001
371 parametersΔρmax = 0.73 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
C26H18N4O6S·C2H6OSγ = 96.319 (8)°
Mr = 592.63V = 1400.6 (2) Å3
Triclinic, P1Z = 2
a = 9.152 (1) ÅMo Kα radiation
b = 11.971 (1) ŵ = 0.24 mm1
c = 13.910 (1) ÅT = 293 K
α = 107.268 (7)°0.50 × 0.16 × 0.13 mm
β = 101.789 (7)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.017
5055 measured reflections3 standard reflections every 200 reflections
4737 independent reflections intensity decay: 1%
3075 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.163H-atom parameters constrained
S = 1.04Δρmax = 0.73 e Å3
4737 reflectionsΔρmin = 0.43 e Å3
371 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.34031 (11)0.73620 (8)0.53120 (6)0.0597 (3)
N10.8354 (3)1.1992 (2)0.8805 (2)0.0571 (7)
N20.4477 (3)0.6426 (2)0.55446 (19)0.0540 (7)
H2N0.51700.63980.52730.058 (12)*
N30.4776 (3)0.6399 (2)0.65605 (19)0.0501 (6)
O10.6771 (4)1.2526 (3)0.9840 (2)0.1026 (11)
O20.9903 (3)1.1379 (3)0.7756 (2)0.0987 (10)
O30.3260 (3)0.7192 (2)0.42331 (18)0.0797 (8)
O40.2088 (3)0.7188 (2)0.5685 (2)0.0766 (8)
C20.7994 (4)1.2237 (3)0.9760 (3)0.0626 (9)
C30.9105 (4)1.2127 (3)1.0630 (2)0.0547 (8)
C40.8859 (5)1.2441 (4)1.1612 (3)0.0767 (11)
H40.79941.27471.17240.092*
C50.9881 (6)1.2309 (4)1.2432 (3)0.0864 (13)
H50.97061.25471.30920.104*
C61.1117 (6)1.1846 (4)1.2296 (3)0.0803 (13)
H61.17791.17531.28580.096*
C71.1429 (4)1.1495 (3)1.1304 (3)0.0645 (10)
C81.2697 (5)1.1010 (4)1.1103 (5)0.0918 (15)
H81.33831.08951.16430.110*
C91.2953 (5)1.0705 (4)1.0149 (6)0.1053 (19)
H91.37991.03701.00380.126*
C101.1970 (5)1.0884 (4)0.9325 (4)0.0845 (13)
H101.21701.06830.86720.101*
C111.0701 (4)1.1359 (3)0.9479 (3)0.0547 (8)
C121.0410 (4)1.1663 (3)1.0464 (3)0.0492 (8)
C130.9662 (4)1.1572 (3)0.8612 (3)0.0636 (10)
C140.7269 (5)1.2149 (3)0.7930 (3)0.0737 (11)
H14A0.78271.24620.75150.088*
H14B0.66601.27230.82020.088*
C150.6233 (4)1.0984 (3)0.7248 (3)0.0602 (9)
C160.6623 (5)1.0275 (3)0.6388 (3)0.0680 (10)
H160.74961.05390.62140.082*
C170.5738 (4)0.9184 (3)0.5784 (3)0.0636 (9)
H170.60090.87150.52080.076*
C180.4443 (4)0.8797 (3)0.6049 (2)0.0535 (8)
C190.4011 (4)0.9501 (4)0.6880 (3)0.0714 (10)
H190.31270.92460.70450.086*
C200.4909 (5)1.0596 (4)0.7469 (3)0.0765 (11)
H200.46111.10790.80270.092*
C210.5844 (4)0.5873 (3)0.6806 (2)0.0500 (8)
H210.63720.55410.63200.060*
C220.6255 (4)0.5781 (3)0.7849 (2)0.0475 (7)
C230.7517 (4)0.5304 (3)0.8140 (3)0.0580 (9)
H230.80570.49940.76550.070*
C240.7984 (4)0.5285 (3)0.9143 (3)0.0613 (9)
H240.88390.49730.93410.074*
C250.7162 (4)0.5734 (3)0.9838 (2)0.0550 (8)
C260.5894 (4)0.6196 (3)0.9578 (3)0.0638 (9)
H260.53560.64951.00670.077*
C270.5431 (4)0.6209 (3)0.8576 (3)0.0615 (9)
H270.45610.65070.83820.074*
N40.7691 (4)0.5767 (3)1.0923 (3)0.0733 (9)
O50.6974 (4)0.6209 (4)1.1535 (2)0.1111 (12)
O60.8819 (4)0.5387 (4)1.1166 (2)0.1188 (13)
S20.74498 (12)0.64956 (10)0.39415 (8)0.0747 (3)
O1S0.7208 (3)0.6673 (3)0.5003 (2)0.0830 (8)
C1S0.8748 (5)0.5522 (4)0.3777 (3)0.0833 (12)
H1S10.82570.47340.36890.125*
H1S20.95910.57840.43790.125*
H1S30.91050.55150.31730.125*
C2S0.8693 (6)0.7814 (4)0.4070 (4)0.1081 (17)
H2S10.81570.84680.41700.162*
H2S20.90490.77050.34510.162*
H2S30.95420.79790.46570.162*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0667 (6)0.0595 (5)0.0449 (5)0.0013 (4)0.0036 (4)0.0219 (4)
N10.0665 (19)0.0523 (16)0.0478 (16)0.0087 (14)0.0064 (14)0.0155 (13)
N20.0696 (19)0.0552 (16)0.0371 (14)0.0016 (14)0.0122 (14)0.0193 (12)
N30.0566 (16)0.0536 (15)0.0412 (14)0.0033 (13)0.0094 (12)0.0217 (12)
O10.084 (2)0.137 (3)0.079 (2)0.060 (2)0.0151 (16)0.0140 (19)
O20.103 (2)0.127 (3)0.0623 (18)0.0099 (19)0.0389 (17)0.0240 (17)
O30.113 (2)0.0723 (17)0.0391 (13)0.0025 (15)0.0086 (13)0.0230 (12)
O40.0539 (15)0.0878 (19)0.0830 (19)0.0021 (13)0.0062 (13)0.0319 (15)
C20.064 (2)0.062 (2)0.055 (2)0.0181 (18)0.0125 (18)0.0088 (17)
C30.059 (2)0.055 (2)0.0449 (19)0.0089 (16)0.0094 (16)0.0111 (15)
C40.077 (3)0.085 (3)0.059 (2)0.014 (2)0.019 (2)0.010 (2)
C50.103 (4)0.097 (3)0.046 (2)0.003 (3)0.011 (2)0.019 (2)
C60.094 (3)0.068 (3)0.062 (3)0.011 (2)0.012 (2)0.028 (2)
C70.058 (2)0.0424 (18)0.079 (3)0.0036 (16)0.0068 (19)0.0200 (17)
C80.062 (3)0.057 (2)0.136 (5)0.007 (2)0.012 (3)0.028 (3)
C90.053 (3)0.075 (3)0.170 (6)0.020 (2)0.022 (3)0.015 (3)
C100.062 (3)0.068 (3)0.111 (4)0.003 (2)0.038 (3)0.004 (2)
C110.0454 (19)0.0446 (17)0.066 (2)0.0026 (15)0.0159 (17)0.0083 (16)
C120.0477 (19)0.0370 (16)0.057 (2)0.0010 (14)0.0091 (15)0.0119 (14)
C130.073 (3)0.054 (2)0.058 (2)0.0128 (18)0.0226 (19)0.0129 (17)
C140.099 (3)0.054 (2)0.058 (2)0.008 (2)0.003 (2)0.0214 (17)
C150.083 (3)0.0477 (19)0.0437 (19)0.0127 (18)0.0020 (18)0.0186 (15)
C160.082 (3)0.060 (2)0.059 (2)0.0055 (19)0.014 (2)0.0247 (18)
C170.080 (3)0.056 (2)0.051 (2)0.0032 (19)0.0152 (19)0.0167 (16)
C180.062 (2)0.0540 (19)0.0415 (18)0.0084 (16)0.0002 (15)0.0211 (15)
C190.067 (2)0.080 (3)0.061 (2)0.007 (2)0.0146 (19)0.017 (2)
C200.080 (3)0.072 (3)0.060 (2)0.009 (2)0.012 (2)0.004 (2)
C210.061 (2)0.0471 (17)0.0396 (17)0.0028 (16)0.0122 (15)0.0141 (14)
C220.0561 (19)0.0409 (16)0.0446 (17)0.0047 (14)0.0108 (15)0.0152 (13)
C230.073 (2)0.053 (2)0.051 (2)0.0212 (17)0.0210 (17)0.0152 (16)
C240.069 (2)0.062 (2)0.055 (2)0.0231 (18)0.0075 (18)0.0227 (17)
C250.064 (2)0.055 (2)0.0431 (18)0.0007 (17)0.0074 (16)0.0192 (15)
C260.068 (2)0.081 (3)0.053 (2)0.017 (2)0.0235 (18)0.0292 (19)
C270.057 (2)0.083 (3)0.057 (2)0.0212 (19)0.0184 (17)0.0352 (19)
N40.080 (2)0.087 (2)0.052 (2)0.0088 (19)0.0094 (18)0.0279 (17)
O50.115 (3)0.171 (3)0.0557 (18)0.032 (2)0.0289 (19)0.043 (2)
O60.121 (3)0.182 (4)0.072 (2)0.070 (3)0.0121 (19)0.062 (2)
S20.0732 (7)0.1007 (8)0.0565 (6)0.0068 (6)0.0234 (5)0.0332 (5)
O1S0.103 (2)0.095 (2)0.0608 (16)0.0099 (16)0.0414 (15)0.0291 (14)
C1S0.080 (3)0.094 (3)0.077 (3)0.010 (2)0.028 (2)0.025 (2)
C2S0.130 (4)0.101 (4)0.115 (4)0.005 (3)0.060 (3)0.053 (3)
Geometric parameters (Å, º) top
S1—O41.423 (3)C15—C201.375 (5)
S1—O31.429 (2)C15—C161.384 (5)
S1—N21.630 (3)C16—C171.381 (5)
S1—C181.762 (3)C16—H160.9300
N1—C21.388 (4)C17—C181.383 (5)
N1—C131.394 (5)C17—H170.9300
N1—C141.478 (4)C18—C191.373 (5)
N2—N31.394 (3)C19—C201.383 (5)
N2—H2N0.8006C19—H190.9300
N3—C211.263 (4)C20—H200.9300
O1—C21.224 (4)C21—C221.462 (4)
O2—C131.214 (4)C21—H210.9300
C2—C31.461 (5)C22—C231.383 (4)
C3—C41.377 (5)C22—C271.394 (4)
C3—C121.404 (5)C23—C241.381 (5)
C4—C51.380 (6)C23—H230.9300
C4—H40.9300C24—C251.367 (5)
C5—C61.336 (6)C24—H240.9300
C5—H50.9300C25—C261.369 (5)
C6—C71.415 (6)C25—N41.474 (4)
C6—H60.9300C26—C271.377 (5)
C7—C81.395 (6)C26—H260.9300
C7—C121.418 (5)C27—H270.9300
C8—C91.344 (7)N4—O61.200 (4)
C8—H80.9300N4—O51.213 (4)
C9—C101.391 (7)S2—O1S1.494 (3)
C9—H90.9300S2—C1S1.755 (4)
C10—C111.375 (5)S2—C2S1.781 (5)
C10—H100.9300C1S—H1S10.9600
C11—C121.399 (5)C1S—H1S20.9600
C11—C131.481 (5)C1S—H1S30.9600
C14—C151.517 (5)C2S—H2S10.9600
C14—H14A0.9700C2S—H2S20.9600
C14—H14B0.9700C2S—H2S30.9600
O4—S1—O3120.25 (16)C20—C15—C14121.5 (4)
O4—S1—N2108.61 (16)C16—C15—C14120.0 (4)
O3—S1—N2103.64 (16)C17—C16—C15121.1 (4)
O4—S1—C18107.94 (17)C17—C16—H16119.5
O3—S1—C18109.03 (15)C15—C16—H16119.5
N2—S1—C18106.58 (15)C16—C17—C18119.1 (4)
C2—N1—C13123.8 (3)C16—C17—H17120.4
C2—N1—C14118.4 (3)C18—C17—H17120.4
C13—N1—C14117.7 (3)C19—C18—C17120.7 (3)
N3—N2—S1115.3 (2)C19—C18—S1121.3 (3)
N3—N2—H2N117.1C17—C18—S1118.0 (3)
S1—N2—H2N114.1C18—C19—C20119.2 (4)
C21—N3—N2115.5 (3)C18—C19—H19120.4
O1—C2—N1119.3 (3)C20—C19—H19120.4
O1—C2—C3122.8 (3)C15—C20—C19121.4 (4)
N1—C2—C3117.9 (3)C15—C20—H20119.3
C4—C3—C12119.4 (3)C19—C20—H20119.3
C4—C3—C2120.4 (3)N3—C21—C22120.5 (3)
C12—C3—C2120.1 (3)N3—C21—H21119.7
C3—C4—C5120.8 (4)C22—C21—H21119.7
C3—C4—H4119.6C23—C22—C27118.9 (3)
C5—C4—H4119.6C23—C22—C21119.9 (3)
C6—C5—C4121.3 (4)C27—C22—C21121.1 (3)
C6—C5—H5119.4C24—C23—C22120.7 (3)
C4—C5—H5119.4C24—C23—H23119.6
C5—C6—C7120.7 (4)C22—C23—H23119.6
C5—C6—H6119.6C25—C24—C23118.5 (3)
C7—C6—H6119.6C25—C24—H24120.7
C8—C7—C6124.0 (4)C23—C24—H24120.7
C8—C7—C12117.6 (4)C24—C25—C26122.6 (3)
C6—C7—C12118.3 (4)C24—C25—N4118.9 (3)
C9—C8—C7121.7 (5)C26—C25—N4118.5 (3)
C9—C8—H8119.1C25—C26—C27118.6 (3)
C7—C8—H8119.1C25—C26—H26120.7
C8—C9—C10120.9 (4)C27—C26—H26120.7
C8—C9—H9119.6C26—C27—C22120.6 (3)
C10—C9—H9119.6C26—C27—H27119.7
C11—C10—C9119.9 (5)C22—C27—H27119.7
C11—C10—H10120.1O6—N4—O5123.1 (4)
C9—C10—H10120.1O6—N4—C25119.1 (4)
C10—C11—C12119.8 (4)O5—N4—C25117.7 (4)
C10—C11—C13120.2 (4)O1S—S2—C1S106.61 (19)
C12—C11—C13119.9 (3)O1S—S2—C2S104.8 (2)
C11—C12—C3120.5 (3)C1S—S2—C2S97.5 (2)
C11—C12—C7120.1 (3)S2—C1S—H1S1109.5
C3—C12—C7119.4 (3)S2—C1S—H1S2109.5
O2—C13—N1120.1 (4)H1S1—C1S—H1S2109.5
O2—C13—C11122.6 (4)S2—C1S—H1S3109.5
N1—C13—C11117.3 (3)H1S1—C1S—H1S3109.5
N1—C14—C15111.5 (3)H1S2—C1S—H1S3109.5
N1—C14—H14A109.3S2—C2S—H2S1109.5
C15—C14—H14A109.3S2—C2S—H2S2109.5
N1—C14—H14B109.3H2S1—C2S—H2S2109.5
C15—C14—H14B109.3S2—C2S—H2S3109.5
H14A—C14—H14B108.0H2S1—C2S—H2S3109.5
C20—C15—C16118.5 (3)H2S2—C2S—H2S3109.5
O4—S1—N2—N349.9 (3)C12—C11—C13—O2176.2 (3)
O3—S1—N2—N3178.9 (2)C10—C11—C13—N1176.5 (3)
C18—S1—N2—N366.1 (3)C12—C11—C13—N14.8 (4)
S1—N2—N3—C21165.8 (2)C2—N1—C14—C1596.1 (4)
C13—N1—C2—O1175.1 (3)C13—N1—C14—C1582.0 (4)
C14—N1—C2—O12.9 (5)N1—C14—C15—C2086.5 (5)
C13—N1—C2—C34.6 (5)N1—C14—C15—C1692.5 (4)
C14—N1—C2—C3177.4 (3)C20—C15—C16—C172.3 (5)
O1—C2—C3—C45.1 (6)C14—C15—C16—C17176.8 (3)
N1—C2—C3—C4175.2 (3)C15—C16—C17—C180.1 (5)
O1—C2—C3—C12172.8 (4)C16—C17—C18—C192.1 (5)
N1—C2—C3—C126.8 (5)C16—C17—C18—S1176.1 (3)
C12—C3—C4—C50.2 (6)O4—S1—C18—C195.1 (3)
C2—C3—C4—C5178.1 (4)O3—S1—C18—C19137.3 (3)
C3—C4—C5—C61.7 (7)N2—S1—C18—C19111.5 (3)
C4—C5—C6—C71.1 (7)O4—S1—C18—C17176.8 (3)
C5—C6—C7—C8179.7 (4)O3—S1—C18—C1744.6 (3)
C5—C6—C7—C120.8 (5)N2—S1—C18—C1766.7 (3)
C6—C7—C8—C9179.1 (4)C17—C18—C19—C201.6 (5)
C12—C7—C8—C90.2 (6)S1—C18—C19—C20176.6 (3)
C7—C8—C9—C101.2 (7)C16—C15—C20—C192.8 (6)
C8—C9—C10—C111.2 (7)C14—C15—C20—C19176.2 (3)
C9—C10—C11—C120.2 (5)C18—C19—C20—C150.9 (6)
C9—C10—C11—C13179.0 (4)N2—N3—C21—C22179.6 (2)
C10—C11—C12—C3178.8 (3)N3—C21—C22—C23173.8 (3)
C13—C11—C12—C32.5 (4)N3—C21—C22—C273.6 (5)
C10—C11—C12—C70.7 (5)C27—C22—C23—C242.0 (5)
C13—C11—C12—C7178.0 (3)C21—C22—C23—C24175.5 (3)
C4—C3—C12—C11178.7 (3)C22—C23—C24—C250.7 (5)
C2—C3—C12—C113.3 (5)C23—C24—C25—C260.3 (5)
C4—C3—C12—C71.8 (5)C23—C24—C25—N4177.2 (3)
C2—C3—C12—C7176.2 (3)C24—C25—C26—C270.1 (5)
C8—C7—C12—C110.7 (5)N4—C25—C26—C27177.5 (3)
C6—C7—C12—C11178.2 (3)C25—C26—C27—C221.2 (5)
C8—C7—C12—C3178.8 (3)C23—C22—C27—C262.2 (5)
C6—C7—C12—C32.3 (5)C21—C22—C27—C26175.3 (3)
C2—N1—C13—O2179.9 (3)C24—C25—N4—O60.8 (5)
C14—N1—C13—O22.1 (5)C26—C25—N4—O6178.5 (4)
C2—N1—C13—C111.1 (5)C24—C25—N4—O5177.4 (4)
C14—N1—C13—C11176.9 (3)C26—C25—N4—O50.3 (5)
C10—C11—C13—O22.5 (5)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the p-nitrophenyl (C22–C27) ring.
D—H···AD—HH···AD···AD—H···A
N2—H2N···O1S0.801.992.764 (4)163
C8—H8···Cgi0.932.903.799 (6)162
Symmetry code: (i) x+2, y+2, z+2.

Experimental details

Crystal data
Chemical formulaC26H18N4O6S·C2H6OS
Mr592.63
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.152 (1), 11.971 (1), 13.910 (1)
α, β, γ (°)107.268 (7), 101.789 (7), 96.319 (8)
V3)1400.6 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.50 × 0.16 × 0.13
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5055, 4737, 3075
Rint0.017
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.163, 1.04
No. of reflections4737
No. of parameters371
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.73, 0.43

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), HELENA (Spek, 1996), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the p-nitrophenyl (C22–C27) ring.
D—H···AD—HH···AD···AD—H···A
N2—H2N···O1S0.801.992.764 (4)163
C8—H8···Cgi0.932.9033.799 (6)162
Symmetry code: (i) x+2, y+2, z+2.
 

Acknowledgements

The authors thank CAPES and CNPq for financial support.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBraña, M. F., Cacho, M., Gradillas, A., Pascual-Teresa, B. & Ramos, A. (2001). Curr. Pharm. 7, 1745–1780.  Google Scholar
First citationBraña, M. F. & Ramos, A. (2001). Curr. Med. Chem. 1, 237–255.  Google Scholar
First citationCechinel Filho, V., Campos, F., Corrêa, R., Yunes, R. A. & Nunes, R. J. (2003). Quim. Nova, 26, 230–241.  Web of Science CrossRef CAS Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFrlan, R., Kovac, A., Blanot, D., Gobec, S., Pecar, S. & Obreza, A. (2008). Molecules, 13, 11–30.  Web of Science CrossRef PubMed CAS Google Scholar
First citationIngrassia, L., Lefranc, F., Kiss, R. & Mijatovic, T. (2009). Curr. Med. Chem. 16, 1192–1213.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKendall, J. D., Rewcastle, G. W., Frederick, R., Mawson, R., Denny, W. A., Marshall, E. S., Baguley, B. C., Chaussade, C., Jackson, S. P. & Shepherd, P. R. (2007). Bioorg. Med. Chem. 15, 7677–7687.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLima, L. M., Ormelli, C. B., Miranda, A. L. P., Brito, F. F., Fraga, C. A. M. & Barreiro, E. J. (1999). Pharm. Pharmacol. Commun. 5, 673–678.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNorton, J. T., Witschi, M. A., Luong, L., Kawamura, A., Ghosh, S., Stack, M. S., Sim, E., Avram, M. J., Appella, D. H. & Huang, S. (2008). Anticancer Drugs, 19, 23–36.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOliveira, K. N. & Nunes, R. J. (2006). Synth. Commun. 36, 3401–3409.  Google Scholar
First citationRollas, S., Gulerman, N. & Erdeniz, H. (2002). Farmaco, 57, 171–174.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSadek, H., Hannack, B., Choe, E., Wang, J., Latif, S., Garry, M. G., Garry, D. J., Longgood, J., Frantz, D. E., Olson, E. N., Hsieh, J. & Schneider, J. W. (2008). PNAS, 105, 6063–6068.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSilva, L. L., Oliveira, K. N. & Nunes, R. J. (2006). Arkivoc, xiii, 124–129.  CrossRef Google Scholar
First citationSondhi, S. M., Dinodia, M. & Kumar, A. (2006). Bioorg. Med. Chem. 14, 4657–4663.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (1996). HELENA. University of Utrecht, The Netherlands.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuárez, A. I. T. & Sánchez, M. A. C. (1992). Farmaco, 47, 497–508.  PubMed Google Scholar
First citationWalter, M. E., Mora, C., Mundstock, K., Souza, M. M., Pinheiro, A. O., Yunes, R. A. & Nunes, R. J. (2002). Arch. Pharm. Pharm. Med. Chem. 337, 201–206.  Web of Science CrossRef Google Scholar
First citationWu, A., Xu, Y. & Qian, X. (2009). Bioorg. Med. Chem. 17, 592–599.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 3| March 2011| Pages o627-o628
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds