metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Two-dimensional polymeric [Hg4(μ2-I)6I2(μ2-C4S6)]n

aInstitut UTINAM UMR CNRS 6213, Université de Franche-Comté, 16 Route de Gray, La Bouloie, 25030 Besançon, France, and bAnorganische Chemie, Technische Universität Dortmund, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany
*Correspondence e-mail: mail@carsten-strohmann.de

(Received 25 January 2011; accepted 21 February 2011; online 26 February 2011)

The title compound, poly[(μ2-2H,5H-1,3-dithiolo[4,5-d][1,3]di­thiole-2,5-dithione)hexa-μ2-iodido-diiodidotetra­mercury(II)], [Hg4I8(C4S6)]n, represents the first example of a coordination polymer assembled by the α,α-C4S6 dithione ligand. The HgII ions are four-coordinated in a distorted tetra­hedral geometry, the coordination demand being satisfied either by four bridging iodide ligands or by three iodide ligands (one terminal and two bridging) and a thio­carbonyl S atom. Due to the bridging nature of the dithione ligand, the coordination polymer has a two-dimensional structure, built up of undulated layers parallel to (001). There is an inversion center at the mid-point of the central C=C double bond.

Related literature

For the synthesis and structure of the α,α-C4S6 ligand, see: Krug et al. (1977[Krug, W. P., Bloch, A. N. & Cowan, D. O. (1977). J. Chem. Soc. Chem. Commun. p. 660.]); Beck et al. (2006[Beck, J., Daniels, J., Roloff, A. & Wagner, N. (2006). Dalton Trans. pp. 1174-1180.]). For related studies on polymeric binary carbon sulfides, see: Galloway et al. (1994[Galloway, C. P., Doxsee, D. D., Fenske, D., Rauchfuss, T. B., Wilson, S. R. & Yang, X. (1994). Inorg. Chem. 33, 4537-4544.]). For the synthesis and structures of coordination polymers with sulfur-rich ligands, see: Peindy et al. (2005[Peindy, H. A., Guyon, F., Knorr, M., Smith, A. B., Farouq, J. A., Islas, S. A., Rabinovich, D., Golen, J. A. & Strohmann, C. (2005). Inorg. Chem. Commun. 8, 479-478.]); Hameau et al. (2006[Hameau, A., Guyon, F., Knorr, M., Enescu, M. & Strohmann, C. (2006). Monatsh. Chem. 137, 545-555.]); Ndiaye et al. (2007[Ndiaye, A. L., Guyon, F., Knorr, M., Huch, V. & Veith, M. (2007). Z. Anorg. Allg. Chem. 633, 1959-1963.]); Guyon et al. (2008[Guyon, F., Hameau, A., Khatyr, A., Knorr, M., Amrouche, H., Fortin, D., Harvey, P. D., Strohmann, C., Ndiaye, A. L., Huch, V., Veith, M. & Avarvari, N. (2008). Inorg. Chem. 47, 7483-7492.]).

[Scheme 1]

Experimental

Crystal data
  • [Hg4I8(C4S6)]

  • Mr = 1028.98

  • Monoclinic, P 21 /c

  • a = 8.5502 (6) Å

  • b = 11.2156 (8) Å

  • c = 13.4634 (9) Å

  • β = 91.343 (1)°

  • V = 1290.73 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 33.76 mm−1

  • T = 173 K

  • 0.30 × 0.10 × 0.10 mm

Data collection
  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999[Bruker (1999). SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.035, Tmax = 0.133

  • 24415 measured reflections

  • 2543 independent reflections

  • 2337 reflections with I > 2σ(I)

  • Rint = 0.086

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.114

  • S = 1.03

  • 2543 reflections

  • 100 parameters

  • Δρmax = 3.56 e Å−3

  • Δρmin = −3.29 e Å−3

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 1999[Bruker (1999). SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Molecular and polymeric binary carbon sulfides have been the subject of numerous studies (see for example Galloway et al., 1994). In the context of our interest in using sulfur-rich ligands to synthesize coordination polymers (Peindy et al., 2005; Hameau et al., 2006; Ndiaye et al. 2007; Guyon et al. 2008), carbon sulfides and especially 1,3-dithiolo-(4,5-d)-1,3-dithiol-2,5-dithione (α,α-C4S6) appears attractive due to the presence of two potentially coordinating thiocarbonyl sulfur atoms. The α,α-C4S6 carbon sulfide compound, first prepared in 1977 (Krug et al., 1977), reacts with HgI2 to afford the coordination polymer [Hg4I8(C4S6)]n (1). As shown in Fig.1, the monomeric unit has a centrosymmetrical tetranuclear structure which is formed by one α,α-C4S6 ligand linking two Hg2I4 fragments with an inversion centre located at the mid-point of the central CC bond. Each mercury(II) centre is arranged in a distorted tetrahedral manner. The Hg1 atom is coordinated by one terminal iodine atom (I1), two bridging iodine atoms (I2 and I4iii) and the sulfur of the thiocarbonyl function S2 whereas the coordination sphere of Hg2 involves only bridging iodo ligands (I2, I3, I3ii and I4). Note however that the bridging contribution of I4 is weak since the Hg1iii-I4 distance (3.423 (1) Å) is quite long compared to that of Hg2—I4 (2.6497 (8) Å). The CS bond of α,α-C4S6 is weakly affected by coordination of the sulfur atom on Hg1 (1.671 (10) Å versus 1.645 (2) in the free ligand, Beck et al., 2006). The Hg1—S2 distance of 2.697 (3) Å is somewhat longer than that reported for 4,5-bis(methylthio)-1,3-dithiole-2-thione on HgI2 (Hameau et al., 2006). The α,α-C4S6 ligands connect the inorganic chains built upon the alternance of 8-membered Hg4I4 and 4-membered Hg2I2 cycles to form a two-dimensional framework. Note that there are no S—S interactions inferior to the sum of the van der Waals radii of two S atoms in the solid state.

Related literature top

For the synthesis and structure of the α,α-C4S6 ligand, see: Krug et al. (1977); Beck et al. (2006). For related studies on polymeric binary carbon sulfides, see: Galloway et al. (1994). For the synthesis and structures of coordination polymers with sulfur-rich ligands, see: Peindy et al. (2005); Hameau et al. (2006); Ndiaye et al. (2007); Guyon et al. (2008).

Experimental top

The α,α-C4S6 ligand was prepared as described previously (Beck et al., 2006). To the α,α-C4S6 dithione (14 mg, 58 µmol) dissolved in 13.5 ml of a solvent mixture (toluene/acetonitrile/chlorobenzene in 2/1/1 ratio) was added upon stirring a solution of HgI2 (53 mg, 116 µmol) in toluene (10 ml). The resulting solution was refluxed for 0.2 h., then allowed to reach room temperature and filtered. Dark red crystals suitable for X-ray analysis were obtained by slow evaporation of the solution (yield 85%). IR (KBr): ν CS = 1036 cm-1.

Refinement top

The largest Fourier peak/hole (3.56 and –3.29 e/Å3, respectively) are found 0.95 and 0.68Å from Hg1 (see even extra table).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound along (001). Displacement ellipsoids are drawn at the 50% probability level. Symmetry operations: (i) -x, -y+2, -z+2; (ii) -x, -y+1, -z+2; (iii) -x+1, -y+1, -z+2.
Poly[(µ2-2H,5H-1,3-dithiolo[4,5-d][1,3]dithiole- 2,5-dithione)hexa-µ2-iodido-diiodidotetramercury(II)] top
Crystal data top
[Hg4I8(C4S6)]F(000) = 1728
Mr = 1028.98Dx = 5.295 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8987 reflections
a = 8.5502 (6) Åθ = 2.4–26°
b = 11.2156 (8) ŵ = 33.76 mm1
c = 13.4634 (9) ÅT = 173 K
β = 91.343 (1)°Needle, dark red
V = 1290.73 (16) Å30.30 × 0.10 × 0.10 mm
Z = 4
Data collection top
Bruker APEX CCD
diffractometer
2543 independent reflections
Radiation source: fine-focus sealed tube2337 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.086
ω scansθmax = 26.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 1010
Tmin = 0.035, Tmax = 0.133k = 1313
24415 measured reflectionsl = 1616
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.039Secondary atom site location: difference Fourier map
wR(F2) = 0.114 w = 1/[σ2(Fo2) + (0.077P)2 + 7.1937P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
2543 reflectionsΔρmax = 3.56 e Å3
100 parametersΔρmin = 3.29 e Å3
Crystal data top
[Hg4I8(C4S6)]V = 1290.73 (16) Å3
Mr = 1028.98Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.5502 (6) ŵ = 33.76 mm1
b = 11.2156 (8) ÅT = 173 K
c = 13.4634 (9) Å0.30 × 0.10 × 0.10 mm
β = 91.343 (1)°
Data collection top
Bruker APEX CCD
diffractometer
2543 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
2337 reflections with I > 2σ(I)
Tmin = 0.035, Tmax = 0.133Rint = 0.086
24415 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.039100 parameters
wR(F2) = 0.1140 restraints
S = 1.03Δρmax = 3.56 e Å3
2543 reflectionsΔρmin = 3.29 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0263 (12)0.9542 (9)1.0288 (7)0.029 (2)
C20.2439 (12)0.9942 (9)0.9076 (8)0.033 (2)
Hg10.51629 (6)0.77041 (5)0.83365 (5)0.05585 (19)
Hg20.22624 (7)0.46970 (6)0.97826 (5)0.0672 (2)
I10.82359 (9)0.77867 (6)0.83985 (5)0.0374 (2)
I20.25603 (8)0.64475 (6)0.79810 (5)0.0372 (2)
I30.08558 (9)0.60123 (6)1.11662 (5)0.03616 (19)
I40.45656 (8)0.32667 (6)0.92556 (5)0.03444 (19)
S10.2076 (3)0.8973 (2)1.0033 (2)0.0374 (6)
S20.4123 (3)0.9968 (3)0.8465 (2)0.0427 (6)
S30.0987 (3)0.9043 (2)1.1185 (2)0.0363 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.025 (5)0.035 (5)0.028 (5)0.001 (4)0.003 (4)0.002 (4)
C20.031 (5)0.029 (5)0.039 (5)0.002 (4)0.003 (4)0.001 (4)
Hg10.0325 (3)0.0672 (4)0.0682 (4)0.0029 (2)0.0078 (2)0.0044 (3)
Hg20.0477 (4)0.0668 (4)0.0881 (5)0.0157 (3)0.0243 (3)0.0110 (3)
I10.0303 (4)0.0452 (4)0.0369 (4)0.0012 (3)0.0048 (3)0.0032 (3)
I20.0332 (4)0.0424 (4)0.0359 (4)0.0019 (3)0.0013 (3)0.0038 (3)
I30.0351 (4)0.0365 (4)0.0369 (4)0.0014 (3)0.0029 (3)0.0047 (3)
I40.0305 (4)0.0404 (4)0.0326 (4)0.0048 (3)0.0041 (3)0.0024 (3)
S10.0310 (14)0.0406 (14)0.0410 (14)0.0074 (11)0.0101 (11)0.0073 (11)
S20.0350 (15)0.0365 (13)0.0576 (17)0.0020 (11)0.0205 (13)0.0038 (12)
S30.0339 (14)0.0372 (13)0.0383 (13)0.0051 (10)0.0128 (11)0.0067 (11)
Geometric parameters (Å, º) top
C1—C1i1.36 (2)Hg1—S22.697 (3)
C1—S11.718 (11)Hg2—I42.6496 (9)
C1—S31.724 (11)Hg2—I32.6828 (9)
C2—S21.675 (11)Hg2—I3ii3.0353 (10)
C2—S3i1.715 (11)Hg2—I23.1357 (10)
C2—S11.720 (11)I3—Hg2ii3.0353 (10)
Hg1—I12.6285 (9)S3—C2i1.715 (11)
Hg1—I22.6678 (9)
C1i—C1—S1117.1 (11)I4—Hg2—I3ii112.31 (3)
C1i—C1—S3116.3 (11)I3—Hg2—I3ii91.87 (3)
S1—C1—S3126.6 (6)I4—Hg2—I295.60 (3)
S2—C2—S3i121.0 (6)I3—Hg2—I2103.81 (3)
S2—C2—S1123.4 (6)I3ii—Hg2—I285.70 (3)
S3i—C2—S1115.5 (6)Hg1—I2—Hg2105.93 (3)
I1—Hg1—I2148.57 (3)Hg2—I3—Hg2ii88.13 (3)
I1—Hg1—S2107.19 (7)C1—S1—C295.4 (5)
I2—Hg1—S2103.53 (7)C2—S2—Hg1107.7 (4)
I4—Hg2—I3150.11 (4)C2i—S3—C195.7 (5)
Symmetry codes: (i) x, y+2, z+2; (ii) x, y+1, z+2.

Experimental details

Crystal data
Chemical formula[Hg4I8(C4S6)]
Mr1028.98
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)8.5502 (6), 11.2156 (8), 13.4634 (9)
β (°) 91.343 (1)
V3)1290.73 (16)
Z4
Radiation typeMo Kα
µ (mm1)33.76
Crystal size (mm)0.30 × 0.10 × 0.10
Data collection
DiffractometerBruker APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.035, 0.133
No. of measured, independent and
observed [I > 2σ(I)] reflections
24415, 2543, 2337
Rint0.086
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.114, 1.03
No. of reflections2543
No. of parameters100
Δρmax, Δρmin (e Å3)3.56, 3.29

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Final difference electron densities top
Qxnearest atomdistancevalue
-Q1Hg10.68-3.29
Q1Hg10.9513.56
Q2Hg20.9941.67
Q3Hg20.7701.49
Q4I30.7971.07
Q5Hg11.2560.92
Q6I30.6880.92
 

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie.

References

First citationBeck, J., Daniels, J., Roloff, A. & Wagner, N. (2006). Dalton Trans. pp. 1174–1180.  Web of Science CSD CrossRef Google Scholar
First citationBruker (1999). SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGalloway, C. P., Doxsee, D. D., Fenske, D., Rauchfuss, T. B., Wilson, S. R. & Yang, X. (1994). Inorg. Chem. 33, 4537–4544.  CSD CrossRef CAS Web of Science Google Scholar
First citationGuyon, F., Hameau, A., Khatyr, A., Knorr, M., Amrouche, H., Fortin, D., Harvey, P. D., Strohmann, C., Ndiaye, A. L., Huch, V., Veith, M. & Avarvari, N. (2008). Inorg. Chem. 47, 7483–7492.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHameau, A., Guyon, F., Knorr, M., Enescu, M. & Strohmann, C. (2006). Monatsh. Chem. 137, 545–555.  Web of Science CSD CrossRef CAS Google Scholar
First citationKrug, W. P., Bloch, A. N. & Cowan, D. O. (1977). J. Chem. Soc. Chem. Commun. p. 660.  CrossRef Google Scholar
First citationNdiaye, A. L., Guyon, F., Knorr, M., Huch, V. & Veith, M. (2007). Z. Anorg. Allg. Chem. 633, 1959–1963.  Web of Science CSD CrossRef CAS Google Scholar
First citationPeindy, H. A., Guyon, F., Knorr, M., Smith, A. B., Farouq, J. A., Islas, S. A., Rabinovich, D., Golen, J. A. & Strohmann, C. (2005). Inorg. Chem. Commun. 8, 479–478.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds