organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2Z,3E)-2-{[1-(4-Chloro­benz­yl)-1H-indol-3-yl]methyl­­idene}quinuclidin-3-one oxime

aDepartment of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA, and bDepartment of Chemistry, University of Kentucky, Lexington, KY 40506, USA
*Correspondence e-mail: pcrooks@uky.edu

(Received 7 December 2010; accepted 17 February 2011; online 26 February 2011)

In the title compound, C23H22ClN3O, the benzene ring of the 4-chorobenzyl group makes a dihedral angle of 78.56 (6)° with the best plane of the indole ring. The double bond connecting the aza­bicyclic and indole groups adopts a Z geometry. The geometry adopted by the C=N bond with respect to the N—OH bond is trans. The absolute configuration of the compound was determined from refinement of the Flack parameter.

Related literature

For 2-indol-3-yl-methyl­enequinuclidin-3-ols and NADPH oxidase activity, see: Sekhar et al. (2003[Sekhar, K. R., Crooks, P. A., Sonar, V. N., Friedman, D. B., Chan, J. Y., Meredith, M. J., Stames, J. H., Kelton, K. R., Summar, S. R., Sasi, S. & Freeman, M. L. (2003). Cancer Res. 63, 5636-5645.]) and for novel substituted (Z)-2-(N-benzyl­indol-3-yl­methyl­ene)quinuclidin-3-one and (Z)-(±)-2-(N-benzyl­indol-3-yl­methyl­ene)quinuc­lidin-3-ol derivatives as potent thermal sensitizing agents, see: Sonar et al. (2007[Sonar, V. N., Reddy, Y. T., Sekhar, K. R., Sowmya, S., Freeman, M. L. & Crooks, P. A. (2007). Bioorg. Med. Chem. Lett. 17, 6821-6824.]). For di- and triindolyl­methanes: mol­ecular structures, see: Mason et al. (2003[Mason, M. R., Barnard, T. S., Segla, M. F., Xie, B. & Kirschbaum, K. (2003). J. Chem. Crystallogr. 33, 531-540.]) and for structures of 1H-indole-3-ethyl­ene-3′-meth­oxy­salicylaldimine and 3-[3′-aza­pentyl-3′-en-4′-(2′′-hy­droxy­phen­yl)]indole, see: Zarza et al. (1988[Zarza, P. M., Gill, P., Díaz González, M. C., Martin Reyes, M. G., Arrieta, J. M., Nastopoulos, V., Germain, G. & Debaerdemaeker, T. (1988). Acta Cryst. C44, 678-681.]). For the radio-sensitization activity associated with N-benzyl­indolyl-1-aza­bicyclo­[2.2.2]octan-3-ones, see: Sonar et al. (2003[Sonar, V. N., Parkin, S. & Crooks, P. A. (2003). Acta Cryst. E59, o1478-o1480.]).

[Scheme 1]

Experimental

Crystal data
  • C23H22ClN3O

  • Mr = 391.89

  • Orthorhombic, P 21 21 21

  • a = 5.8382 (1) Å

  • b = 10.7005 (2) Å

  • c = 30.9451 (6) Å

  • V = 1933.19 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 90 K

  • 0.40 × 0.12 × 0.08 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.918, Tmax = 0.983

  • 37270 measured reflections

  • 4433 independent reflections

  • 3150 reflections with I > 2σ(I)

  • Rint = 0.103

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.137

  • S = 1.06

  • 4433 reflections

  • 254 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.24 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1853 Friedel pairs

  • Flack parameter: −0.03 (4)

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97 and local procedures.

Supporting information


Comment top

In view of the radio-sensitization activity associated with N-benzylindolyl-1-azabicyclo[2.2.2]octan-3-ones (Sonar et al., 2007), we have undertaken the synthesis and structural analysis of a series of (2Z,3E)-2-((1-benzyl-1H-indol-3-yl)methylene) quinuclidin-3-one oximes. Systematic structural modification of the active molecule (Z)-2-(1-benzyl-1H-indol-3-ylmethylene)1- azabicyclo[2.2.2]octan-3-ol, was carried out, and the title compound was synthesized as its structural analogue. The X-ray analysis of the title compound was carried out to confirm the double-bond geometry of the molecule, and to determine the molecular conformation in the crystal structure.

X-ray crystallography confirmed the molecular structure and atom connectivity for title compound, as illustrated in Fig. 1. The indole ring is planar, with bond distances and angles comparable with those previously reported for other indole derivatives (Mason et al.., 2003; Zarza et al.., 1988). The benzene ring of the benzyl group linked to the N1 position of the indole ring is slightly twisted, making a dihedral angle of 78.56 (6)° with the plane of the indole ring system.

The title compound is the Z isomer, with the C10—C11 bond in a trans disposition with respect to the C8—C9 bond. The double bond has a nearly planar arrangement, since the r.m.s. deviation from the best plane passing through atoms N2/C10/ C11/C9/C8 is 0.0143 (15) Å. The azabicyclic system presents very small distortions around atoms N2, C14, C13, C12, C16 and C11. The value of the C1=C8—C9=C10 torsion angle -13.87° indicates the deviation of the indole ring from the plane of the double bond connected to the azabicyclic ring.

Related literature top

For 2-indol-3-yl-methylenequinuclidin-3-ols and NADPH oxidase activity, see: Sekhar et al. (2003) and for novel substituted (Z)-2-(N-benzylindol-3-ylmethylene)quinuclidin-3-one and (Z)-(±)-2-(N-benzylindol-3-ylmethylene)quinuclidin-3-ol derivatives as potent thermal sensitizing agents, see: Sonar et al. (2007). Di- and triindolylmethanes: molecular structures have been described by Mason et al. (2003); structures of 1H-indole-3-ethylene-3'-methoxysalicylaldimine and 3-[3'-azapentyl-3'-en-4'-(2''-hydroxyphenyl)]indole were described by Zarza, et al. (1988). For the radio-sensitization activity associated with N-benzylindolyl-1-azabicyclo[2.2.2]octan-3-ones, see: Sonar et al. (2003).

Experimental top

Compound 2-((1-(4-chlorobenzyl)-1H-indol-3-yl)methylene) quinuclidin-3-one was prepared by aldol condensation of 1-(4-chlorobenzyl-indole-3-carboxaldehyde with 1-azabicyclo[2.2.2]octan- 3-one to afford (Z)-2-(1-(4-chlorobenzyl-1H-indol-3-yl methylene)-1-azabicyclo[2.2.2]octan-3-one, as a single geometric isomer, according to the previously reported procedure of Sonar et al. (2003). A mixture (Z)-2-(1-(4-chlorobenzyl-1H-indol-3-yl methylene)1-azabicyclo[2.2.2]octan-3-one (0.5 g, 1.32 mmol), hydroxylamine hydrocloride (0.18 g, 2.65 mmol) and sodium acetate trihydrate (0.36 g, 2.65 mmol) was stirred in methanol (25 ml) under reflux for 8 hrs. The reaction mixture was cooled to room temperature, diluted with water (15 ml), and the light yellow solid that separated was collected by filtration, washed with water and dried, to afford the the crude product. Crystallization from methanol gave a colorless crystalline product of (2Z,3E)-2- ((1-(4-chlorobenzyl)-1H-indol-3-yl)methylene) quinuclidin-3-one oxime that was suitable for X-ray analysis. 1H NMR (CDCl3): δ 1.76–1.79 (m, 4H), 2.91–3.09 (m, 4H), 3.67–3.69 (m, 1H), 5.34 (s, 2H), 7.01–7.04 (d, 2H), 7.10 (s, 1H), 7.14–7.25 (m, 5H), 7.30 (bs, 1H), 7.79–7.83 (d, 1H), 8.21 (s, 1H) p.p.m.; 13C NMR (DMSO d6): δ 24.46, 25.87, 47.77, 50.06, 109.92, 110.45, 111.47, 119.34, 120.34, 122.39, 128.05, 128.63, 129.09, 131.27, 133.54, 135.80, 135.98, 138.23, 161.31 p.p.m..

Refinement top

H atoms were found in difference Fourier maps and subsequently placed in idealized positions with constrained distances of 0.99 Å (R2CH2), 1.00 Å (R3CH), 0.95 Å (CArH), 0.84 Å (O—H), and with Uiso(H) values set to either 1.2Ueq or 1.5Ueq (OH) of the attached atom.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and local procedures.

Figures top
[Figure 1] Fig. 1. A view of the molecule with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
(2Z,3E)-2-{[1-(4-Chlorobenzyl)-1H-indol-3- yl]methylidene}quinuclidin-3-one oxime top
Crystal data top
C23H22ClN3OF(000) = 824
Mr = 391.89Dx = 1.346 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2610 reflections
a = 5.8382 (1) Åθ = 1.0–27.5°
b = 10.7005 (2) ŵ = 0.22 mm1
c = 30.9451 (6) ÅT = 90 K
V = 1933.19 (6) Å3Plate, colourless
Z = 40.40 × 0.12 × 0.08 mm
Data collection top
Nonius KappaCCD
diffractometer
4433 independent reflections
Radiation source: fine-focus sealed tube3150 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.103
Detector resolution: 9.1 pixels mm-1θmax = 27.5°, θmin = 1.3°
ω scans at fixed χ = 55°h = 77
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
k = 1313
Tmin = 0.918, Tmax = 0.983l = 3940
37270 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.137 w = 1/[σ2(Fo2) + (0.0788P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
4433 reflectionsΔρmax = 0.40 e Å3
254 parametersΔρmin = 0.24 e Å3
0 restraintsAbsolute structure: Flack (1983), 1853 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (4)
Crystal data top
C23H22ClN3OV = 1933.19 (6) Å3
Mr = 391.89Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.8382 (1) ŵ = 0.22 mm1
b = 10.7005 (2) ÅT = 90 K
c = 30.9451 (6) Å0.40 × 0.12 × 0.08 mm
Data collection top
Nonius KappaCCD
diffractometer
4433 independent reflections
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
3150 reflections with I > 2σ(I)
Tmin = 0.918, Tmax = 0.983Rint = 0.103
37270 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.137Δρmax = 0.40 e Å3
S = 1.06Δρmin = 0.24 e Å3
4433 reflectionsAbsolute structure: Flack (1983), 1853 Friedel pairs
254 parametersAbsolute structure parameter: 0.03 (4)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.1498 (4)0.0866 (2)0.89083 (7)0.0245 (5)
N20.0660 (4)0.1260 (2)0.75130 (7)0.0265 (5)
N30.3789 (4)0.4000 (2)0.71465 (7)0.0311 (6)
O10.3831 (4)0.45515 (18)0.67293 (6)0.0327 (5)
H1O0.47310.51640.67300.049*
Cl10.28052 (15)0.51575 (6)0.95786 (2)0.0408 (2)
C10.1254 (5)0.1143 (3)0.84757 (8)0.0263 (6)
H10.00910.08160.82930.032*
C20.3379 (5)0.1501 (2)0.90706 (9)0.0257 (6)
C30.4304 (5)0.1521 (2)0.94836 (9)0.0313 (7)
H30.36560.10400.97110.038*
C40.6191 (5)0.2263 (3)0.95518 (10)0.0338 (7)
H40.68230.23140.98340.041*
C50.7198 (5)0.2941 (2)0.92199 (9)0.0357 (7)
H50.85290.34250.92760.043*
C60.6283 (5)0.2917 (2)0.88076 (9)0.0303 (7)
H60.69750.33850.85820.036*
C70.4340 (5)0.2203 (2)0.87271 (9)0.0252 (6)
C80.2938 (5)0.1964 (2)0.83457 (8)0.0241 (6)
C90.3253 (5)0.2570 (2)0.79299 (9)0.0249 (6)
H90.43100.32450.79250.030*
C100.2250 (5)0.2300 (2)0.75544 (8)0.0232 (6)
C110.2554 (5)0.2987 (2)0.71447 (8)0.0254 (6)
C120.1228 (5)0.2401 (3)0.67821 (9)0.0307 (7)
H120.14830.28570.65040.037*
C130.1316 (5)0.2419 (3)0.69126 (10)0.0371 (7)
H13A0.22440.19720.66940.044*
H13B0.18720.32920.69310.044*
C140.1551 (5)0.1767 (3)0.73590 (9)0.0306 (7)
H14A0.21400.23760.75730.037*
H14B0.26770.10780.73360.037*
C150.1538 (5)0.0380 (2)0.71842 (8)0.0297 (7)
H15A0.04150.03030.71430.036*
H15B0.29840.00040.72890.036*
C160.1976 (6)0.1027 (3)0.67474 (9)0.0355 (7)
H16A0.36240.09800.66740.043*
H16B0.10960.06030.65170.043*
C170.0065 (5)0.0109 (2)0.91598 (9)0.0283 (6)
H17A0.15310.00460.90010.034*
H17B0.03800.05460.94350.034*
C180.0755 (5)0.1200 (3)0.92624 (8)0.0256 (6)
C190.0692 (5)0.1968 (3)0.95003 (8)0.0289 (6)
H190.21200.16490.95970.035*
C200.0099 (5)0.3190 (2)0.95994 (9)0.0295 (6)
H200.11050.37100.97600.035*
C210.1993 (5)0.3631 (2)0.94579 (9)0.0291 (7)
C220.3478 (5)0.2890 (2)0.92239 (8)0.0292 (7)
H220.49160.32090.91310.035*
C230.2838 (5)0.1665 (2)0.91249 (8)0.0263 (6)
H230.38410.11480.89620.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0254 (13)0.0248 (12)0.0232 (12)0.0017 (10)0.0011 (10)0.0014 (9)
N20.0248 (13)0.0252 (12)0.0297 (13)0.0052 (11)0.0008 (11)0.0003 (10)
N30.0348 (15)0.0266 (12)0.0321 (13)0.0075 (11)0.0085 (12)0.0067 (10)
O10.0341 (13)0.0300 (11)0.0340 (11)0.0025 (9)0.0030 (9)0.0037 (8)
Cl10.0491 (5)0.0268 (4)0.0464 (4)0.0042 (4)0.0006 (4)0.0036 (3)
C10.0252 (15)0.0261 (13)0.0277 (15)0.0036 (12)0.0044 (12)0.0025 (12)
C20.0287 (17)0.0232 (14)0.0252 (14)0.0076 (12)0.0020 (12)0.0046 (11)
C30.0337 (17)0.0270 (15)0.0332 (17)0.0081 (13)0.0022 (14)0.0056 (12)
C40.0417 (19)0.0278 (14)0.0318 (16)0.0108 (14)0.0103 (15)0.0074 (13)
C50.0348 (18)0.0264 (14)0.0460 (18)0.0022 (14)0.0096 (15)0.0120 (13)
C60.0320 (17)0.0222 (14)0.0367 (17)0.0010 (13)0.0031 (14)0.0031 (12)
C70.0217 (15)0.0228 (14)0.0311 (15)0.0027 (12)0.0008 (12)0.0048 (12)
C80.0264 (15)0.0173 (12)0.0287 (14)0.0014 (12)0.0010 (12)0.0016 (10)
C90.0198 (14)0.0208 (12)0.0342 (15)0.0015 (12)0.0011 (12)0.0005 (11)
C100.0175 (14)0.0199 (12)0.0323 (15)0.0013 (12)0.0050 (12)0.0021 (11)
C110.0221 (15)0.0217 (13)0.0325 (15)0.0015 (12)0.0029 (13)0.0031 (11)
C120.0309 (17)0.0337 (16)0.0275 (16)0.0038 (14)0.0004 (13)0.0065 (12)
C130.0264 (17)0.0386 (17)0.0462 (18)0.0001 (14)0.0041 (15)0.0116 (14)
C140.0216 (16)0.0336 (15)0.0368 (17)0.0003 (13)0.0009 (13)0.0009 (13)
C150.0326 (17)0.0222 (13)0.0342 (16)0.0013 (13)0.0030 (13)0.0045 (12)
C160.0412 (19)0.0346 (16)0.0306 (16)0.0054 (15)0.0029 (14)0.0057 (13)
C170.0265 (16)0.0286 (15)0.0298 (15)0.0020 (13)0.0035 (12)0.0011 (12)
C180.0261 (15)0.0285 (14)0.0224 (14)0.0010 (13)0.0023 (12)0.0018 (11)
C190.0289 (16)0.0324 (15)0.0254 (15)0.0032 (13)0.0012 (13)0.0002 (12)
C200.0311 (17)0.0284 (14)0.0288 (15)0.0034 (13)0.0066 (13)0.0033 (13)
C210.0377 (18)0.0229 (13)0.0268 (14)0.0035 (13)0.0051 (13)0.0020 (11)
C220.0308 (17)0.0297 (15)0.0270 (15)0.0041 (13)0.0003 (13)0.0038 (12)
C230.0255 (16)0.0289 (14)0.0247 (14)0.0023 (13)0.0022 (13)0.0009 (11)
Geometric parameters (Å, º) top
N1—C11.379 (3)C11—C121.500 (4)
N1—C21.385 (4)C12—C161.538 (4)
N1—C171.448 (3)C12—C131.539 (4)
N2—C101.455 (3)C12—H121.0000
N2—C151.479 (3)C13—C141.554 (4)
N2—C141.479 (4)C13—H13A0.9900
N3—C111.302 (4)C13—H13B0.9900
N3—O11.420 (3)C14—H14A0.9900
O1—H1O0.8400C14—H14B0.9900
Cl1—C211.741 (3)C15—C161.540 (4)
C1—C81.378 (4)C15—H15A0.9900
C1—H10.9500C15—H15B0.9900
C2—C31.387 (4)C16—H16A0.9900
C2—C71.418 (4)C16—H16B0.9900
C3—C41.374 (4)C17—C181.514 (4)
C3—H30.9500C17—H17A0.9900
C4—C51.388 (4)C17—H17B0.9900
C4—H40.9500C18—C231.381 (4)
C5—C61.383 (4)C18—C191.389 (4)
C5—H50.9500C19—C201.387 (4)
C6—C71.390 (4)C19—H190.9500
C6—H60.9500C20—C211.380 (4)
C7—C81.459 (4)C20—H200.9500
C8—C91.453 (4)C21—C221.381 (4)
C9—C101.333 (3)C22—C231.397 (4)
C9—H90.9500C22—H220.9500
C10—C111.476 (3)C23—H230.9500
C1—N1—C2109.2 (2)C12—C13—H13A110.1
C1—N1—C17125.3 (2)C14—C13—H13A110.1
C2—N1—C17125.4 (2)C12—C13—H13B110.1
C10—N2—C15109.1 (2)C14—C13—H13B110.1
C10—N2—C14107.7 (2)H13A—C13—H13B108.4
C15—N2—C14108.3 (2)N2—C14—C13112.0 (2)
C11—N3—O1110.6 (2)N2—C14—H14A109.2
N3—O1—H1O109.5C13—C14—H14A109.2
C8—C1—N1110.3 (2)N2—C14—H14B109.2
C8—C1—H1124.9C13—C14—H14B109.2
N1—C1—H1124.9H14A—C14—H14B107.9
N1—C2—C3130.6 (3)N2—C15—C16112.0 (2)
N1—C2—C7107.6 (2)N2—C15—H15A109.2
C3—C2—C7121.9 (3)C16—C15—H15A109.2
C4—C3—C2117.6 (3)N2—C15—H15B109.2
C4—C3—H3121.2C16—C15—H15B109.2
C2—C3—H3121.2H15A—C15—H15B107.9
C3—C4—C5121.8 (3)C12—C16—C15108.8 (2)
C3—C4—H4119.1C12—C16—H16A109.9
C5—C4—H4119.1C15—C16—H16A109.9
C6—C5—C4120.6 (3)C12—C16—H16B109.9
C6—C5—H5119.7C15—C16—H16B109.9
C4—C5—H5119.7H16A—C16—H16B108.3
C5—C6—C7119.4 (3)N1—C17—C18115.6 (2)
C5—C6—H6120.3N1—C17—H17A108.4
C7—C6—H6120.3C18—C17—H17A108.4
C6—C7—C2118.7 (3)N1—C17—H17B108.4
C6—C7—C8134.4 (3)C18—C17—H17B108.4
C2—C7—C8106.9 (2)H17A—C17—H17B107.4
C1—C8—C9129.3 (3)C23—C18—C19119.0 (3)
C1—C8—C7106.0 (2)C23—C18—C17123.2 (3)
C9—C8—C7124.5 (2)C19—C18—C17117.8 (3)
C10—C9—C8128.3 (3)C20—C19—C18121.5 (3)
C10—C9—H9115.9C20—C19—H19119.2
C8—C9—H9115.9C18—C19—H19119.2
C9—C10—N2121.5 (2)C21—C20—C19118.2 (3)
C9—C10—C11126.0 (2)C21—C20—H20120.9
N2—C10—C11112.5 (2)C19—C20—H20120.9
N3—C11—C10118.5 (2)C20—C21—C22121.7 (3)
N3—C11—C12129.5 (2)C20—C21—Cl1119.6 (2)
C10—C11—C12111.9 (2)C22—C21—Cl1118.7 (2)
C11—C12—C16107.8 (2)C21—C22—C23119.0 (3)
C11—C12—C13107.3 (2)C21—C22—H22120.5
C16—C12—C13107.7 (3)C23—C22—H22120.5
C11—C12—H12111.3C18—C23—C22120.4 (3)
C16—C12—H12111.3C18—C23—H23119.8
C13—C12—H12111.3C22—C23—H23119.8
C12—C13—C14108.2 (2)
C2—N1—C1—C80.5 (3)C9—C10—C11—N34.8 (4)
C17—N1—C1—C8175.3 (2)N2—C10—C11—N3174.5 (2)
C1—N1—C2—C3180.0 (3)C9—C10—C11—C12178.1 (3)
C17—N1—C2—C34.3 (4)N2—C10—C11—C122.7 (3)
C1—N1—C2—C70.2 (3)N3—C11—C12—C16127.3 (3)
C17—N1—C2—C7175.5 (2)C10—C11—C12—C1655.9 (3)
N1—C2—C3—C4179.1 (3)N3—C11—C12—C13117.0 (3)
C7—C2—C3—C40.7 (4)C10—C11—C12—C1359.8 (3)
C2—C3—C4—C52.1 (4)C11—C12—C13—C1454.6 (3)
C3—C4—C5—C61.9 (4)C16—C12—C13—C1461.1 (3)
C4—C5—C6—C70.2 (4)C10—N2—C14—C1360.5 (3)
C5—C6—C7—C21.1 (4)C15—N2—C14—C1357.4 (3)
C5—C6—C7—C8179.7 (3)C12—C13—C14—N23.5 (4)
N1—C2—C7—C6179.3 (2)C10—N2—C15—C1655.6 (3)
C3—C2—C7—C60.9 (4)C14—N2—C15—C1661.4 (3)
N1—C2—C7—C80.1 (3)C11—C12—C16—C1557.8 (3)
C3—C2—C7—C8179.7 (2)C13—C12—C16—C1557.6 (3)
N1—C1—C8—C9175.4 (2)N2—C15—C16—C123.0 (3)
N1—C1—C8—C70.5 (3)C1—N1—C17—C18104.6 (3)
C6—C7—C8—C1178.9 (3)C2—N1—C17—C1880.3 (3)
C2—C7—C8—C10.4 (3)N1—C17—C18—C230.6 (4)
C6—C7—C8—C95.0 (5)N1—C17—C18—C19179.5 (2)
C2—C7—C8—C9175.8 (2)C23—C18—C19—C200.5 (4)
C1—C8—C9—C1013.9 (5)C17—C18—C19—C20178.4 (2)
C7—C8—C9—C10170.9 (3)C18—C19—C20—C210.5 (4)
C8—C9—C10—N22.2 (4)C19—C20—C21—C220.0 (4)
C8—C9—C10—C11176.9 (3)C19—C20—C21—Cl1179.6 (2)
C15—N2—C10—C9121.0 (3)C20—C21—C22—C230.5 (4)
C14—N2—C10—C9121.6 (3)Cl1—C21—C22—C23179.9 (2)
C15—N2—C10—C1159.7 (3)C19—C18—C23—C220.0 (4)
C14—N2—C10—C1157.7 (3)C17—C18—C23—C22178.9 (3)
O1—N3—C11—C10178.2 (2)C21—C22—C23—C180.5 (4)
O1—N3—C11—C121.6 (4)

Experimental details

Crystal data
Chemical formulaC23H22ClN3O
Mr391.89
Crystal system, space groupOrthorhombic, P212121
Temperature (K)90
a, b, c (Å)5.8382 (1), 10.7005 (2), 30.9451 (6)
V3)1933.19 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.40 × 0.12 × 0.08
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.918, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
37270, 4433, 3150
Rint0.103
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.137, 1.06
No. of reflections4433
No. of parameters254
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.24
Absolute structureFlack (1983), 1853 Friedel pairs
Absolute structure parameter0.03 (4)

Computer programs: COLLECT (Nonius, 1998), SCALEPACK (Otwinowski & Minor, 1997), DENZO-SMN (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and local procedures.

 

Acknowledgements

We are grateful to the NCI/NIH for their financial support under grant No. CA 140409.

References

First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMason, M. R., Barnard, T. S., Segla, M. F., Xie, B. & Kirschbaum, K. (2003). J. Chem. Crystallogr. 33, 531–540.  Web of Science CSD CrossRef CAS Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSekhar, K. R., Crooks, P. A., Sonar, V. N., Friedman, D. B., Chan, J. Y., Meredith, M. J., Stames, J. H., Kelton, K. R., Summar, S. R., Sasi, S. & Freeman, M. L. (2003). Cancer Res. 63, 5636–5645.  Web of Science PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSonar, V. N., Parkin, S. & Crooks, P. A. (2003). Acta Cryst. E59, o1478–o1480.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSonar, V. N., Reddy, Y. T., Sekhar, K. R., Sowmya, S., Freeman, M. L. & Crooks, P. A. (2007). Bioorg. Med. Chem. Lett. 17, 6821–6824.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZarza, P. M., Gill, P., Díaz González, M. C., Martin Reyes, M. G., Arrieta, J. M., Nastopoulos, V., Germain, G. & Debaerdemaeker, T. (1988). Acta Cryst. C44, 678–681.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds