metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 3| March 2011| Pages m323-m324

Di­chlorido(3,5,5′-tri­methyl-1,3′-bi-1H-pyrazole-κ2N2,N2′)copper(II)

aLaboratoire de Chimie Organique Hétérocyclique, Pôle de Compétences, Pharmacochimie, Av Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V-Agdal, Rabat, Morocco, bLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco, and cLaboratoire de Chimie Bio Organique Appliquée, Faculté des Sciences, Université Ibn Zohr, Agadir, Morocco
*Correspondence e-mail: m_tjiou@yahoo.fr

(Received 10 January 2011; accepted 5 February 2011; online 12 February 2011)

In the title complex, [CuCl2(C9H12N4)], the CuII atom exhibits a distorted square-planar coordination geometry involving two chloride ions and two N-atom donors from the bipyrazole ligand. The chelate ring including the CuII atom is essentially planar, with a maximum deviation of 0.0181 (17) Å for one of the coordinated N atoms. This plane forms a dihedral angle of 30.75 (6)° with the CuCl2 plane. In the crystal, each pair of adjacent mol­ecules is linked into a centrosymmetric dimer by N—H⋯Cl hydrogen bonds. The crystal structure is stabilized by inter­molecular C—H⋯N and C—H⋯Cl hydrogen bonds and weak slipped ππ stacking inter­actions between symmetry-related mol­ecules, with an inter­planar separation of 3.439 (19) Å and a centroid–centroid distance of 3.581 (19) Å.

Related literature

For the preparation of biheterocyclic complexes, see: Juanes et al. (1985[Juanes, O., De Mendoza, J. & Rodriguez-Ubis, J. C. (1985). J. Chem. Soc. Chem. Commun. 24, 1765-1766.]); Arrieta et al. (1998[Arrieta, A., Cardillo, J. R., Cossio, F. P., Diaz-Ortiz, A., de la JoséGomez-Escalouilla, M., Hoz, A., Langa, F. & Morèno, A. (1998). Tetrahedron, 54, 13167-13180.]); El Ghayati et al. (2010[El Ghayati, L., Tjiou, E. M. & El Ammari, L. (2010). Acta Cryst. E66, m134-m135.]); Cohen-Fernandez et al. (1979[Cohen-Fernandez, P., Erkelens, C., Van Eendenburg, C. G. M., Verhoeven, J. J. & Harbaken, C. L. (1979). J. Org. Chem. 44, 4156-4160.]); Tarrago et al. (1980[Tarrago, G., Ramdani, A., Elguero, J. & Espada, M. (1980). J. Heterocycl. Chem. 17, 137-142.]). For applications of transition metal complexes with biheterocyclic ligands, see: Bekhit & Abdel-Aziem (2004[Bekhit, A. A. & Abdel-Aziem, T. (2004). Bioorg. Med. Chem. 12, 1935-1945.]); Benabdallah et al. (2007[Benabdallah, M., Touzani, R., Dafali, A., Hammouti, B. & El Kadiri, S. (2007). Mater. Lett. 61, 1197-1204.]); Das & Mittra (1978[Das, N. B. & Mittra, A. S. (1978). J. Indian Chem. Soc. 55, 829-831.]); Sendai et al. (2000[Sendai, H. O., Togane, T. I., Yachimata, K. S. & Sakura, T. O. (2000). US Patent No. 6 121 305.]); Attayibat et al. (2006[Attayibat, A., Radi, S., Lekchiri, Y. A., Hacht, B., Morcellet, M., Bacquet, M. & Willai, S. (2006). J. Chem. Res. 10, 655-657.]).

[Scheme 1]

Experimental

Crystal data
  • [CuCl2(C9H12N4)]

  • Mr = 310.67

  • Triclinic, [P \overline 1]

  • a = 8.5475 (2) Å

  • b = 9.3475 (3) Å

  • c = 9.3512 (3) Å

  • α = 66.379 (2)°

  • β = 62.876 (1)°

  • γ = 78.065 (2)°

  • V = 608.99 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.21 mm−1

  • T = 296 K

  • 0.26 × 0.16 × 0.08 mm

Data collection
  • Bruker X8 APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.661, Tmax = 0.838

  • 19588 measured reflections

  • 5535 independent reflections

  • 4468 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.096

  • S = 1.04

  • 5535 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.78 e Å−3

  • Δρmin = −0.53 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4⋯Cl1i 0.86 2.38 3.1587 (12) 150
C7—H7B⋯N1ii 0.96 2.61 3.483 (2) 151
C9—H9B⋯Cl1iii 0.96 2.79 3.5377 (19) 135
Symmetry codes: (i) -x, -y+1, -z; (ii) -x, -y+1, -z+1; (iii) -x+1, -y, -z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia,1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The 1,1'-bipyrazoles and 3,4'-bipyrazoles have been the subject of several studies (Juanes et al. (1985); Arrieta et al. (1998); El Ghayati et al. (2010). A particular interest has been brought to 1,3'-bipyrazoles which present, contrary to those cited above, a carbon– nitrogen bond between the two pyrazoles (Cohen-Fernandez et al. (1979); Tarrago et al. 1980).

The ability of biheterocycles to form biochemically interesting complexes, with transition metals has prompted several researchers to test them in some areas: medicine (Bekhit & Abdel-Aziem, (2004); Sendai et al. 2000), agriculture (Das & Mittra, 1978) corrosion (Benabdallah et al. 2007) and as extractors of metals such as Cu2+, Cd2+ and Pb2+ (Attayibat et al. 2006). To better understand the interactions between the bipyrazoles and transition metals we have chosen to study some copper complex of bipyrazole possessing a Carbone-nitrogen bond between the two pyrazolics cycles.

The title molecule is built up from two interconnected five-membered rings as schown in Fig.1. Each of the two heterocyclic rings and the linked carbon are almost planar with a maximum deviations of -0.0101 (15) Å and -0.0107 (15) Å from N1 and N3 respectively. The dihedral angle between them is about 3.80 (9)°. The CuII ion is surrounded by two nitrogen atoms belonging to the organic molecule and two chlorides which form a very distorted square planar.The values of adjacent angles around the CuII ions are in the range 78.14 (5)–98.297 (16)° and 151.99 (4)–161.72 (4)° (Table 1), which confirms the distorted square-planar geometry. The chelate ring (N1—N2—C4—N3) and the copper atom are almost planar with a maximum deviations of 0.0181 (17) Å from C4 and build dihedral angle of 30.75 (6)° with the plane through the three ions: CuII+ and two Cl-.

In the crystal, each pair of molecules linked by N4—H4···Cl1 hydrogen bonds form a dimer as schown in Fig.2 and table 2. The structure is held together by weak slipped π-π stacking between symmetry related molecules (N3—N4—C4—C5—C6 rings) with interplanar distance of 3.439 (19) Å and centroid to centroid vector of 3.581 (19) Å (Fig. 2). The crystal structure is also stabilized by an intermolecular C7—H7B···N1 and C9—H9B···Cl1 hydrogen bonds as schown in Fig.2 and Table 2.

Related literature top

For the preparation of biheterocyclic complexes, see: Juanes et al. (1985); Arrieta et al. (1998); El Ghayati et al. (2010); Cohen-Fernandez et al. (1979); Tarrago et al. (1980). For applications of transition metal complexes with biheterocyclic ligands, see: Bekhit & Abdel-Aziem (2004); Benabdallah et al. (2007); Das & Mittra (1978); Sendai et al. (2000); Attayibat et al. (2006).

Experimental top

The title compound was synthesized by mixing a solution of bipyrazole in methanol and an aqueous solution of cupric chloride with ligand/metal ratio of 2. Heating was maintaind for few minutes.Then a pinch of NaCl was added and heating was continued until the solution became clear. After a long time, green crystals were collected and dried over P2O5.

Refinement top

The C-bound H atoms were positioned geometrically [C—H = 0.93–0.96 Å] and refined using a riding model with Uiso(H) = 1.2 and 1.5 for methylene and methyl. Reflections 2–43 110, 250, 3–21, 114 and 1–31 were omitted because of the large difference between their calculated and observed intensities.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia,1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, with the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Packing diagram showing hydrogen-bonded (dashed lines) complex molecules and distance between centroids.
Dichlorido(3,5,5'-trimethyl-1,3'-bi-1H-pyrazole- κ2N2,N2')copper(II) top
Crystal data top
[CuCl2(C9H12N4)]Z = 2
Mr = 310.67F(000) = 314
Triclinic, P1Dx = 1.694 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.5475 (2) ÅCell parameters from 5535 reflections
b = 9.3475 (3) Åθ = 2.9–35.5°
c = 9.3512 (3) ŵ = 2.21 mm1
α = 66.379 (2)°T = 296 K
β = 62.876 (1)°Prism, clear green
γ = 78.065 (2)°0.26 × 0.16 × 0.08 mm
V = 608.99 (3) Å3
Data collection top
Bruker X8 APEXII area-detector
diffractometer
5535 independent reflections
Radiation source: fine-focus sealed tube4468 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ϕ and ω scansθmax = 35.5°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1313
Tmin = 0.661, Tmax = 0.838k = 1515
19588 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.053P)2 + 0.1288P]
where P = (Fo2 + 2Fc2)/3
5535 reflections(Δ/σ)max = 0.001
145 parametersΔρmax = 0.78 e Å3
0 restraintsΔρmin = 0.53 e Å3
Crystal data top
[CuCl2(C9H12N4)]γ = 78.065 (2)°
Mr = 310.67V = 608.99 (3) Å3
Triclinic, P1Z = 2
a = 8.5475 (2) ÅMo Kα radiation
b = 9.3475 (3) ŵ = 2.21 mm1
c = 9.3512 (3) ÅT = 296 K
α = 66.379 (2)°0.26 × 0.16 × 0.08 mm
β = 62.876 (1)°
Data collection top
Bruker X8 APEXII area-detector
diffractometer
5535 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
4468 reflections with I > 2σ(I)
Tmin = 0.661, Tmax = 0.838Rint = 0.020
19588 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.096H-atom parameters constrained
S = 1.04Δρmax = 0.78 e Å3
5535 reflectionsΔρmin = 0.53 e Å3
145 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.15845 (2)0.378309 (18)0.126139 (19)0.03371 (6)
Cl10.32602 (6)0.27845 (5)0.07595 (5)0.04576 (10)
Cl20.17371 (7)0.63132 (4)0.04198 (5)0.05123 (11)
N10.19189 (18)0.19578 (13)0.32890 (15)0.0350 (2)
N20.06621 (18)0.19922 (13)0.48517 (14)0.0338 (2)
N30.03865 (17)0.41525 (14)0.32360 (14)0.0341 (2)
N40.16369 (17)0.52865 (15)0.34407 (15)0.0357 (2)
H40.17820.60550.26090.043*
C10.2969 (2)0.07094 (17)0.3644 (2)0.0415 (3)
C20.2341 (3)0.00505 (18)0.5432 (2)0.0471 (4)
H20.28240.09520.60080.056*
C30.0881 (3)0.07866 (16)0.61715 (19)0.0406 (3)
C40.05733 (19)0.32244 (15)0.48068 (15)0.0304 (2)
C50.1967 (2)0.37413 (18)0.60475 (17)0.0368 (3)
H50.23600.32970.72340.044*
C60.26295 (19)0.50668 (17)0.51088 (18)0.0344 (2)
C70.4133 (2)0.6144 (2)0.5670 (2)0.0456 (3)
H7A0.42350.69540.46800.068*
H7B0.39360.66020.63260.068*
H7C0.51990.55710.63660.068*
C80.0262 (4)0.0550 (2)0.8008 (2)0.0576 (5)
H8A0.11760.13470.80900.086*
H8B0.04290.06070.85530.086*
H8C0.07790.04570.85670.086*
C90.4575 (3)0.0306 (3)0.2294 (3)0.0605 (6)
H9A0.46770.10290.11840.091*
H9B0.44950.07350.23720.091*
H9C0.55910.03620.24530.091*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.04382 (11)0.02877 (8)0.02047 (8)0.00351 (6)0.00980 (7)0.00738 (5)
Cl10.0559 (2)0.04221 (17)0.02692 (14)0.01764 (15)0.01377 (14)0.01382 (13)
Cl20.0665 (3)0.03027 (15)0.03254 (17)0.00083 (15)0.00632 (17)0.00494 (12)
N10.0460 (7)0.0321 (5)0.0255 (5)0.0042 (4)0.0167 (5)0.0094 (4)
N20.0466 (7)0.0307 (5)0.0221 (4)0.0015 (4)0.0159 (4)0.0052 (4)
N30.0410 (6)0.0351 (5)0.0211 (4)0.0044 (4)0.0124 (4)0.0083 (4)
N40.0386 (6)0.0383 (5)0.0261 (5)0.0048 (4)0.0128 (4)0.0112 (4)
C10.0589 (10)0.0325 (6)0.0408 (7)0.0091 (6)0.0303 (7)0.0141 (5)
C20.0759 (12)0.0306 (6)0.0423 (8)0.0058 (6)0.0376 (8)0.0085 (5)
C30.0649 (10)0.0296 (5)0.0295 (6)0.0066 (6)0.0262 (7)0.0023 (5)
C40.0375 (6)0.0313 (5)0.0207 (5)0.0060 (4)0.0111 (4)0.0062 (4)
C50.0420 (7)0.0409 (6)0.0217 (5)0.0071 (5)0.0074 (5)0.0096 (5)
C60.0332 (6)0.0398 (6)0.0288 (6)0.0058 (5)0.0075 (5)0.0147 (5)
C70.0378 (8)0.0488 (8)0.0470 (9)0.0006 (6)0.0081 (6)0.0253 (7)
C80.0937 (16)0.0430 (8)0.0262 (6)0.0065 (9)0.0249 (8)0.0007 (6)
C90.0735 (14)0.0597 (11)0.0552 (11)0.0337 (10)0.0389 (11)0.0298 (9)
Geometric parameters (Å, º) top
Cu1—N31.9496 (12)C2—H20.9300
Cu1—N12.0707 (11)C3—C81.485 (2)
Cu1—Cl12.2106 (4)C4—C51.396 (2)
Cu1—Cl22.2456 (4)C5—C61.385 (2)
N1—C11.3436 (18)C5—H50.9300
N1—N21.3720 (17)C6—C71.488 (2)
N2—C31.3552 (17)C7—H7A0.9600
N2—C41.3935 (18)C7—H7B0.9600
N3—C41.3260 (16)C7—H7C0.9600
N3—N41.3453 (17)C8—H8A0.9600
N4—C61.3431 (18)C8—H8B0.9600
N4—H40.8600C8—H8C0.9600
C1—C21.406 (2)C9—H9A0.9600
C1—C91.486 (3)C9—H9B0.9600
C2—C31.375 (3)C9—H9C0.9600
N3—Cu1—N178.14 (5)N3—C4—C5111.28 (12)
N3—Cu1—Cl1161.72 (4)N3—C4—N2114.03 (12)
N1—Cu1—Cl197.11 (3)C5—C4—N2134.67 (12)
N3—Cu1—Cl293.55 (4)C6—C5—C4104.26 (12)
N1—Cu1—Cl2151.99 (4)C6—C5—H5127.9
Cl1—Cu1—Cl298.297 (16)C4—C5—H5127.9
C1—N1—N2105.58 (12)N4—C6—C5107.30 (13)
C1—N1—Cu1142.15 (11)N4—C6—C7121.67 (14)
N2—N1—Cu1112.27 (8)C5—C6—C7131.03 (14)
C3—N2—N1111.92 (13)C6—C7—H7A109.5
C3—N2—C4132.08 (13)C6—C7—H7B109.5
N1—N2—C4116.00 (10)H7A—C7—H7B109.5
C4—N3—N4105.72 (11)C6—C7—H7C109.5
C4—N3—Cu1119.46 (10)H7A—C7—H7C109.5
N4—N3—Cu1134.50 (9)H7B—C7—H7C109.5
C6—N4—N3111.41 (12)C3—C8—H8A109.5
C6—N4—H4124.3C3—C8—H8B109.5
N3—N4—H4124.3H8A—C8—H8B109.5
N1—C1—C2109.39 (15)C3—C8—H8C109.5
N1—C1—C9122.85 (15)H8A—C8—H8C109.5
C2—C1—C9127.70 (14)H8B—C8—H8C109.5
C3—C2—C1107.25 (13)C1—C9—H9A109.5
C3—C2—H2126.4C1—C9—H9B109.5
C1—C2—H2126.4H9A—C9—H9B109.5
N2—C3—C2105.86 (14)C1—C9—H9C109.5
N2—C3—C8123.69 (16)H9A—C9—H9C109.5
C2—C3—C8130.41 (15)H9B—C9—H9C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···Cl1i0.862.383.1587 (12)150
C7—H7B···N1ii0.962.613.483 (2)151
C9—H9B···Cl1iii0.962.793.5377 (19)135
Symmetry codes: (i) x, y+1, z; (ii) x, y+1, z+1; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formula[CuCl2(C9H12N4)]
Mr310.67
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)8.5475 (2), 9.3475 (3), 9.3512 (3)
α, β, γ (°)66.379 (2), 62.876 (1), 78.065 (2)
V3)608.99 (3)
Z2
Radiation typeMo Kα
µ (mm1)2.21
Crystal size (mm)0.26 × 0.16 × 0.08
Data collection
DiffractometerBruker X8 APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.661, 0.838
No. of measured, independent and
observed [I > 2σ(I)] reflections
19588, 5535, 4468
Rint0.020
(sin θ/λ)max1)0.817
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.096, 1.04
No. of reflections5535
No. of parameters145
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.78, 0.53

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia,1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···Cl1i0.862.383.1587 (12)150
C7—H7B···N1ii0.962.613.483 (2)151
C9—H9B···Cl1iii0.962.793.5377 (19)135
Symmetry codes: (i) x, y+1, z; (ii) x, y+1, z+1; (iii) x+1, y, z.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

References

First citationArrieta, A., Cardillo, J. R., Cossio, F. P., Diaz-Ortiz, A., de la JoséGomez-Escalouilla, M., Hoz, A., Langa, F. & Morèno, A. (1998). Tetrahedron, 54, 13167–13180.  Web of Science CrossRef CAS Google Scholar
First citationAttayibat, A., Radi, S., Lekchiri, Y. A., Hacht, B., Morcellet, M., Bacquet, M. & Willai, S. (2006). J. Chem. Res. 10, 655–657.  CrossRef Google Scholar
First citationBekhit, A. A. & Abdel-Aziem, T. (2004). Bioorg. Med. Chem. 12, 1935–1945.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBenabdallah, M., Touzani, R., Dafali, A., Hammouti, B. & El Kadiri, S. (2007). Mater. Lett. 61, 1197–1204.  Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCohen-Fernandez, P., Erkelens, C., Van Eendenburg, C. G. M., Verhoeven, J. J. & Harbaken, C. L. (1979). J. Org. Chem. 44, 4156–4160.  Google Scholar
First citationDas, N. B. & Mittra, A. S. (1978). J. Indian Chem. Soc. 55, 829–831.  CAS Google Scholar
First citationEl Ghayati, L., Tjiou, E. M. & El Ammari, L. (2010). Acta Cryst. E66, m134–m135.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationJuanes, O., De Mendoza, J. & Rodriguez-Ubis, J. C. (1985). J. Chem. Soc. Chem. Commun. 24, 1765–1766.  CrossRef Web of Science Google Scholar
First citationSendai, H. O., Togane, T. I., Yachimata, K. S. & Sakura, T. O. (2000). US Patent No. 6 121 305.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTarrago, G., Ramdani, A., Elguero, J. & Espada, M. (1980). J. Heterocycl. Chem. 17, 137–142.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 3| March 2011| Pages m323-m324
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds