metal-organic compounds
Dichlorido(3,5,5′-trimethyl-1,3′-bi-1H-pyrazole-κ2N2,N2′)copper(II)
aLaboratoire de Chimie Organique Hétérocyclique, Pôle de Compétences, Pharmacochimie, Av Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V-Agdal, Rabat, Morocco, bLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco, and cLaboratoire de Chimie Bio Organique Appliquée, Faculté des Sciences, Université Ibn Zohr, Agadir, Morocco
*Correspondence e-mail: m_tjiou@yahoo.fr
In the title complex, [CuCl2(C9H12N4)], the CuII atom exhibits a distorted square-planar coordination geometry involving two chloride ions and two N-atom donors from the bipyrazole ligand. The chelate ring including the CuII atom is essentially planar, with a maximum deviation of 0.0181 (17) Å for one of the coordinated N atoms. This plane forms a dihedral angle of 30.75 (6)° with the CuCl2 plane. In the crystal, each pair of adjacent molecules is linked into a centrosymmetric dimer by N—H⋯Cl hydrogen bonds. The is stabilized by intermolecular C—H⋯N and C—H⋯Cl hydrogen bonds and weak slipped π–π stacking interactions between symmetry-related molecules, with an interplanar separation of 3.439 (19) Å and a centroid–centroid distance of 3.581 (19) Å.
Related literature
For the preparation of biheterocyclic complexes, see: Juanes et al. (1985); Arrieta et al. (1998); El Ghayati et al. (2010); Cohen-Fernandez et al. (1979); Tarrago et al. (1980). For applications of transition metal complexes with biheterocyclic ligands, see: Bekhit & Abdel-Aziem (2004); Benabdallah et al. (2007); Das & Mittra (1978); Sendai et al. (2000); Attayibat et al. (2006).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2005); cell SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia,1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536811004375/fj2386sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811004375/fj2386Isup2.hkl
The title compound was synthesized by mixing a solution of bipyrazole in methanol and an aqueous solution of cupric chloride with ligand/metal ratio of 2. Heating was maintaind for few minutes.Then a pinch of NaCl was added and heating was continued until the solution became clear. After a long time, green crystals were collected and dried over P2O5.
The C-bound H atoms were positioned geometrically [C—H = 0.93–0.96 Å] and refined using a riding model with Uiso(H) = 1.2 and 1.5 for methylene and methyl. Reflections 2–43 110, 250, 3–21, 114 and 1–31 were omitted because of the large difference between their calculated and observed intensities.
Data collection: APEX2 (Bruker, 2005); cell
SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia,1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).[CuCl2(C9H12N4)] | Z = 2 |
Mr = 310.67 | F(000) = 314 |
Triclinic, P1 | Dx = 1.694 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 8.5475 (2) Å | Cell parameters from 5535 reflections |
b = 9.3475 (3) Å | θ = 2.9–35.5° |
c = 9.3512 (3) Å | µ = 2.21 mm−1 |
α = 66.379 (2)° | T = 296 K |
β = 62.876 (1)° | Prism, clear green |
γ = 78.065 (2)° | 0.26 × 0.16 × 0.08 mm |
V = 608.99 (3) Å3 |
Bruker X8 APEXII area-detector diffractometer | 5535 independent reflections |
Radiation source: fine-focus sealed tube | 4468 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.020 |
ϕ and ω scans | θmax = 35.5°, θmin = 2.9° |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | h = −13→13 |
Tmin = 0.661, Tmax = 0.838 | k = −15→15 |
19588 measured reflections | l = −15→15 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.030 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.096 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.053P)2 + 0.1288P] where P = (Fo2 + 2Fc2)/3 |
5535 reflections | (Δ/σ)max = 0.001 |
145 parameters | Δρmax = 0.78 e Å−3 |
0 restraints | Δρmin = −0.53 e Å−3 |
[CuCl2(C9H12N4)] | γ = 78.065 (2)° |
Mr = 310.67 | V = 608.99 (3) Å3 |
Triclinic, P1 | Z = 2 |
a = 8.5475 (2) Å | Mo Kα radiation |
b = 9.3475 (3) Å | µ = 2.21 mm−1 |
c = 9.3512 (3) Å | T = 296 K |
α = 66.379 (2)° | 0.26 × 0.16 × 0.08 mm |
β = 62.876 (1)° |
Bruker X8 APEXII area-detector diffractometer | 5535 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | 4468 reflections with I > 2σ(I) |
Tmin = 0.661, Tmax = 0.838 | Rint = 0.020 |
19588 measured reflections |
R[F2 > 2σ(F2)] = 0.030 | 0 restraints |
wR(F2) = 0.096 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.78 e Å−3 |
5535 reflections | Δρmin = −0.53 e Å−3 |
145 parameters |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.15845 (2) | 0.378309 (18) | 0.126139 (19) | 0.03371 (6) | |
Cl1 | 0.32602 (6) | 0.27845 (5) | −0.07595 (5) | 0.04576 (10) | |
Cl2 | 0.17371 (7) | 0.63132 (4) | −0.04198 (5) | 0.05123 (11) | |
N1 | 0.19189 (18) | 0.19578 (13) | 0.32890 (15) | 0.0350 (2) | |
N2 | 0.06621 (18) | 0.19922 (13) | 0.48517 (14) | 0.0338 (2) | |
N3 | −0.03865 (17) | 0.41525 (14) | 0.32360 (14) | 0.0341 (2) | |
N4 | −0.16369 (17) | 0.52865 (15) | 0.34407 (15) | 0.0357 (2) | |
H4 | −0.1782 | 0.6055 | 0.2609 | 0.043* | |
C1 | 0.2969 (2) | 0.07094 (17) | 0.3644 (2) | 0.0415 (3) | |
C2 | 0.2341 (3) | −0.00505 (18) | 0.5432 (2) | 0.0471 (4) | |
H2 | 0.2824 | −0.0952 | 0.6008 | 0.056* | |
C3 | 0.0881 (3) | 0.07866 (16) | 0.61715 (19) | 0.0406 (3) | |
C4 | −0.05733 (19) | 0.32244 (15) | 0.48068 (15) | 0.0304 (2) | |
C5 | −0.1967 (2) | 0.37413 (18) | 0.60475 (17) | 0.0368 (3) | |
H5 | −0.2360 | 0.3297 | 0.7234 | 0.044* | |
C6 | −0.26295 (19) | 0.50668 (17) | 0.51088 (18) | 0.0344 (2) | |
C7 | −0.4133 (2) | 0.6144 (2) | 0.5670 (2) | 0.0456 (3) | |
H7A | −0.4235 | 0.6954 | 0.4680 | 0.068* | |
H7B | −0.3936 | 0.6602 | 0.6326 | 0.068* | |
H7C | −0.5199 | 0.5571 | 0.6366 | 0.068* | |
C8 | −0.0262 (4) | 0.0550 (2) | 0.8008 (2) | 0.0576 (5) | |
H8A | −0.1176 | 0.1347 | 0.8090 | 0.086* | |
H8B | 0.0429 | 0.0607 | 0.8553 | 0.086* | |
H8C | −0.0779 | −0.0457 | 0.8567 | 0.086* | |
C9 | 0.4575 (3) | 0.0306 (3) | 0.2294 (3) | 0.0605 (6) | |
H9A | 0.4677 | 0.1029 | 0.1184 | 0.091* | |
H9B | 0.4495 | −0.0735 | 0.2372 | 0.091* | |
H9C | 0.5591 | 0.0362 | 0.2453 | 0.091* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.04382 (11) | 0.02877 (8) | 0.02047 (8) | 0.00351 (6) | −0.00980 (7) | −0.00738 (5) |
Cl1 | 0.0559 (2) | 0.04221 (17) | 0.02692 (14) | 0.01764 (15) | −0.01377 (14) | −0.01382 (13) |
Cl2 | 0.0665 (3) | 0.03027 (15) | 0.03254 (17) | −0.00083 (15) | −0.00632 (17) | −0.00494 (12) |
N1 | 0.0460 (7) | 0.0321 (5) | 0.0255 (5) | 0.0042 (4) | −0.0167 (5) | −0.0094 (4) |
N2 | 0.0466 (7) | 0.0307 (5) | 0.0221 (4) | −0.0015 (4) | −0.0159 (4) | −0.0052 (4) |
N3 | 0.0410 (6) | 0.0351 (5) | 0.0211 (4) | 0.0044 (4) | −0.0124 (4) | −0.0083 (4) |
N4 | 0.0386 (6) | 0.0383 (5) | 0.0261 (5) | 0.0048 (4) | −0.0128 (4) | −0.0112 (4) |
C1 | 0.0589 (10) | 0.0325 (6) | 0.0408 (7) | 0.0091 (6) | −0.0303 (7) | −0.0141 (5) |
C2 | 0.0759 (12) | 0.0306 (6) | 0.0423 (8) | 0.0058 (6) | −0.0376 (8) | −0.0085 (5) |
C3 | 0.0649 (10) | 0.0296 (5) | 0.0295 (6) | −0.0066 (6) | −0.0262 (7) | −0.0023 (5) |
C4 | 0.0375 (6) | 0.0313 (5) | 0.0207 (5) | −0.0060 (4) | −0.0111 (4) | −0.0062 (4) |
C5 | 0.0420 (7) | 0.0409 (6) | 0.0217 (5) | −0.0071 (5) | −0.0074 (5) | −0.0096 (5) |
C6 | 0.0332 (6) | 0.0398 (6) | 0.0288 (6) | −0.0058 (5) | −0.0075 (5) | −0.0147 (5) |
C7 | 0.0378 (8) | 0.0488 (8) | 0.0470 (9) | −0.0006 (6) | −0.0081 (6) | −0.0253 (7) |
C8 | 0.0937 (16) | 0.0430 (8) | 0.0262 (6) | −0.0065 (9) | −0.0249 (8) | −0.0007 (6) |
C9 | 0.0735 (14) | 0.0597 (11) | 0.0552 (11) | 0.0337 (10) | −0.0389 (11) | −0.0298 (9) |
Cu1—N3 | 1.9496 (12) | C2—H2 | 0.9300 |
Cu1—N1 | 2.0707 (11) | C3—C8 | 1.485 (2) |
Cu1—Cl1 | 2.2106 (4) | C4—C5 | 1.396 (2) |
Cu1—Cl2 | 2.2456 (4) | C5—C6 | 1.385 (2) |
N1—C1 | 1.3436 (18) | C5—H5 | 0.9300 |
N1—N2 | 1.3720 (17) | C6—C7 | 1.488 (2) |
N2—C3 | 1.3552 (17) | C7—H7A | 0.9600 |
N2—C4 | 1.3935 (18) | C7—H7B | 0.9600 |
N3—C4 | 1.3260 (16) | C7—H7C | 0.9600 |
N3—N4 | 1.3453 (17) | C8—H8A | 0.9600 |
N4—C6 | 1.3431 (18) | C8—H8B | 0.9600 |
N4—H4 | 0.8600 | C8—H8C | 0.9600 |
C1—C2 | 1.406 (2) | C9—H9A | 0.9600 |
C1—C9 | 1.486 (3) | C9—H9B | 0.9600 |
C2—C3 | 1.375 (3) | C9—H9C | 0.9600 |
N3—Cu1—N1 | 78.14 (5) | N3—C4—C5 | 111.28 (12) |
N3—Cu1—Cl1 | 161.72 (4) | N3—C4—N2 | 114.03 (12) |
N1—Cu1—Cl1 | 97.11 (3) | C5—C4—N2 | 134.67 (12) |
N3—Cu1—Cl2 | 93.55 (4) | C6—C5—C4 | 104.26 (12) |
N1—Cu1—Cl2 | 151.99 (4) | C6—C5—H5 | 127.9 |
Cl1—Cu1—Cl2 | 98.297 (16) | C4—C5—H5 | 127.9 |
C1—N1—N2 | 105.58 (12) | N4—C6—C5 | 107.30 (13) |
C1—N1—Cu1 | 142.15 (11) | N4—C6—C7 | 121.67 (14) |
N2—N1—Cu1 | 112.27 (8) | C5—C6—C7 | 131.03 (14) |
C3—N2—N1 | 111.92 (13) | C6—C7—H7A | 109.5 |
C3—N2—C4 | 132.08 (13) | C6—C7—H7B | 109.5 |
N1—N2—C4 | 116.00 (10) | H7A—C7—H7B | 109.5 |
C4—N3—N4 | 105.72 (11) | C6—C7—H7C | 109.5 |
C4—N3—Cu1 | 119.46 (10) | H7A—C7—H7C | 109.5 |
N4—N3—Cu1 | 134.50 (9) | H7B—C7—H7C | 109.5 |
C6—N4—N3 | 111.41 (12) | C3—C8—H8A | 109.5 |
C6—N4—H4 | 124.3 | C3—C8—H8B | 109.5 |
N3—N4—H4 | 124.3 | H8A—C8—H8B | 109.5 |
N1—C1—C2 | 109.39 (15) | C3—C8—H8C | 109.5 |
N1—C1—C9 | 122.85 (15) | H8A—C8—H8C | 109.5 |
C2—C1—C9 | 127.70 (14) | H8B—C8—H8C | 109.5 |
C3—C2—C1 | 107.25 (13) | C1—C9—H9A | 109.5 |
C3—C2—H2 | 126.4 | C1—C9—H9B | 109.5 |
C1—C2—H2 | 126.4 | H9A—C9—H9B | 109.5 |
N2—C3—C2 | 105.86 (14) | C1—C9—H9C | 109.5 |
N2—C3—C8 | 123.69 (16) | H9A—C9—H9C | 109.5 |
C2—C3—C8 | 130.41 (15) | H9B—C9—H9C | 109.5 |
D—H···A | D—H | H···A | D···A | D—H···A |
N4—H4···Cl1i | 0.86 | 2.38 | 3.1587 (12) | 150 |
C7—H7B···N1ii | 0.96 | 2.61 | 3.483 (2) | 151 |
C9—H9B···Cl1iii | 0.96 | 2.79 | 3.5377 (19) | 135 |
Symmetry codes: (i) −x, −y+1, −z; (ii) −x, −y+1, −z+1; (iii) −x+1, −y, −z. |
Experimental details
Crystal data | |
Chemical formula | [CuCl2(C9H12N4)] |
Mr | 310.67 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 296 |
a, b, c (Å) | 8.5475 (2), 9.3475 (3), 9.3512 (3) |
α, β, γ (°) | 66.379 (2), 62.876 (1), 78.065 (2) |
V (Å3) | 608.99 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 2.21 |
Crystal size (mm) | 0.26 × 0.16 × 0.08 |
Data collection | |
Diffractometer | Bruker X8 APEXII area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2005) |
Tmin, Tmax | 0.661, 0.838 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 19588, 5535, 4468 |
Rint | 0.020 |
(sin θ/λ)max (Å−1) | 0.817 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.030, 0.096, 1.04 |
No. of reflections | 5535 |
No. of parameters | 145 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.78, −0.53 |
Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia,1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
N4—H4···Cl1i | 0.86 | 2.38 | 3.1587 (12) | 150 |
C7—H7B···N1ii | 0.96 | 2.61 | 3.483 (2) | 151 |
C9—H9B···Cl1iii | 0.96 | 2.79 | 3.5377 (19) | 135 |
Symmetry codes: (i) −x, −y+1, −z; (ii) −x, −y+1, −z+1; (iii) −x+1, −y, −z. |
Acknowledgements
The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.
References
Arrieta, A., Cardillo, J. R., Cossio, F. P., Diaz-Ortiz, A., de la JoséGomez-Escalouilla, M., Hoz, A., Langa, F. & Morèno, A. (1998). Tetrahedron, 54, 13167–13180. Web of Science CrossRef CAS Google Scholar
Attayibat, A., Radi, S., Lekchiri, Y. A., Hacht, B., Morcellet, M., Bacquet, M. & Willai, S. (2006). J. Chem. Res. 10, 655–657. CrossRef Google Scholar
Bekhit, A. A. & Abdel-Aziem, T. (2004). Bioorg. Med. Chem. 12, 1935–1945. Web of Science CrossRef PubMed CAS Google Scholar
Benabdallah, M., Touzani, R., Dafali, A., Hammouti, B. & El Kadiri, S. (2007). Mater. Lett. 61, 1197–1204. Google Scholar
Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cohen-Fernandez, P., Erkelens, C., Van Eendenburg, C. G. M., Verhoeven, J. J. & Harbaken, C. L. (1979). J. Org. Chem. 44, 4156–4160. Google Scholar
Das, N. B. & Mittra, A. S. (1978). J. Indian Chem. Soc. 55, 829–831. CAS Google Scholar
El Ghayati, L., Tjiou, E. M. & El Ammari, L. (2010). Acta Cryst. E66, m134–m135. Web of Science CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Juanes, O., De Mendoza, J. & Rodriguez-Ubis, J. C. (1985). J. Chem. Soc. Chem. Commun. 24, 1765–1766. CrossRef Web of Science Google Scholar
Sendai, H. O., Togane, T. I., Yachimata, K. S. & Sakura, T. O. (2000). US Patent No. 6 121 305. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tarrago, G., Ramdani, A., Elguero, J. & Espada, M. (1980). J. Heterocycl. Chem. 17, 137–142. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The 1,1'-bipyrazoles and 3,4'-bipyrazoles have been the subject of several studies (Juanes et al. (1985); Arrieta et al. (1998); El Ghayati et al. (2010). A particular interest has been brought to 1,3'-bipyrazoles which present, contrary to those cited above, a carbon– nitrogen bond between the two pyrazoles (Cohen-Fernandez et al. (1979); Tarrago et al. 1980).
The ability of biheterocycles to form biochemically interesting complexes, with transition metals has prompted several researchers to test them in some areas: medicine (Bekhit & Abdel-Aziem, (2004); Sendai et al. 2000), agriculture (Das & Mittra, 1978) corrosion (Benabdallah et al. 2007) and as extractors of metals such as Cu2+, Cd2+ and Pb2+ (Attayibat et al. 2006). To better understand the interactions between the bipyrazoles and transition metals we have chosen to study some copper complex of bipyrazole possessing a Carbone-nitrogen bond between the two pyrazolics cycles.
The title molecule is built up from two interconnected five-membered rings as schown in Fig.1. Each of the two heterocyclic rings and the linked carbon are almost planar with a maximum deviations of -0.0101 (15) Å and -0.0107 (15) Å from N1 and N3 respectively. The dihedral angle between them is about 3.80 (9)°. The CuII ion is surrounded by two nitrogen atoms belonging to the organic molecule and two chlorides which form a very distorted square planar.The values of adjacent angles around the CuII ions are in the range 78.14 (5)–98.297 (16)° and 151.99 (4)–161.72 (4)° (Table 1), which confirms the distorted square-planar geometry. The chelate ring (N1—N2—C4—N3) and the copper atom are almost planar with a maximum deviations of 0.0181 (17) Å from C4 and build dihedral angle of 30.75 (6)° with the plane through the three ions: CuII+ and two Cl-.
In the crystal, each pair of molecules linked by N4—H4···Cl1 hydrogen bonds form a dimer as schown in Fig.2 and table 2. The structure is held together by weak slipped π-π stacking between symmetry related molecules (N3—N4—C4—C5—C6 rings) with interplanar distance of 3.439 (19) Å and centroid to centroid vector of 3.581 (19) Å (Fig. 2). The crystal structure is also stabilized by an intermolecular C7—H7B···N1 and C9—H9B···Cl1 hydrogen bonds as schown in Fig.2 and Table 2.