organic compounds
6-Iodo-2-methyl-1,3-benzothiazole
aDepartment of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000 Zagreb, Croatia
*Correspondence e-mail: mdjakovic@chem.pmf.hr
The title compound, C8H6INS, is essentially planar, the largest deviation from the mean plane being for the I atom [0.075 (3) Å]. The is mainly stabilized by intermolecular C—I⋯N halogen bonds, forming zigzag supramolecular chains in [10]. Relatively short off-set π–π contacts [centroid–centroid distance = 3.758 (2) Å] between the thiazole rings of inversion-related molecules link neighbouring chains and provide the secondary interactions for building the crystal structure.
Related literature
For the application of benzothiazoles as biologically active compounds, see: Leong et al. (2004); Yildiz-Oren et al. (2004); Lockhart et al. (2005); Sheng et al. (2007). For the synthesis of the title compound, see: Racané et al. (2006, 2011). For related 1,3-benzothiazole structures, see: Matković-Čalogović et al. (2003); Pavlović et al. (2009); Đaković et al. (2009); Čičak et al. (2010). For graph-set theory, see: Etter (1990); Bernstein et al. (1995). For a description of the Cambridge Structural Database, see: Allen (2002).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536811004570/fj2389sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811004570/fj2389Isup2.hkl
Colourless single crystals of the title compound were obtained by slow evaporation of a dichloromethane solution.
All H atoms were placed in geometrically idealized positions and constrained to ride on their parent C atom at distances of 0.93 or 0.96 Å for aromatic or methyl H atoms, respectively, and with Uiso(H) = 1.2Ueq(C) (for aromatic H) or Uiso(H) = 1.5Ueq(C) (for methyl group).
Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell
CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).C8H6INS | F(000) = 520 |
Mr = 275.11 | Dx = 2.065 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 10010 reflections |
a = 8.3255 (3) Å | θ = 4.4–32.6° |
b = 7.6967 (3) Å | µ = 3.79 mm−1 |
c = 13.8083 (5) Å | T = 296 K |
β = 90.686 (4)° | Plate, colourless |
V = 884.76 (6) Å3 | 0.47 × 0.38 × 0.14 mm |
Z = 4 |
Oxford Diffraction Xcalibur diffractometer with a Saphire-3 CCD detector | 1928 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 1729 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.027 |
Detector resolution: 16.3426 pixels mm-1 | θmax = 27.0°, θmin = 4.6° |
CCD scans | h = −10→10 |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) | k = −9→9 |
Tmin = 0.253, Tmax = 0.658 | l = −17→17 |
13190 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.024 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.064 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0397P)2 + 0.4162P] where P = (Fo2 + 2Fc2)/3 |
1928 reflections | (Δ/σ)max = 0.001 |
101 parameters | Δρmax = 0.84 e Å−3 |
0 restraints | Δρmin = −0.72 e Å−3 |
C8H6INS | V = 884.76 (6) Å3 |
Mr = 275.11 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 8.3255 (3) Å | µ = 3.79 mm−1 |
b = 7.6967 (3) Å | T = 296 K |
c = 13.8083 (5) Å | 0.47 × 0.38 × 0.14 mm |
β = 90.686 (4)° |
Oxford Diffraction Xcalibur diffractometer with a Saphire-3 CCD detector | 1928 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) | 1729 reflections with I > 2σ(I) |
Tmin = 0.253, Tmax = 0.658 | Rint = 0.027 |
13190 measured reflections |
R[F2 > 2σ(F2)] = 0.024 | 0 restraints |
wR(F2) = 0.064 | H-atom parameters constrained |
S = 1.06 | Δρmax = 0.84 e Å−3 |
1928 reflections | Δρmin = −0.72 e Å−3 |
101 parameters |
Experimental. Solvent used: CH2Cl2 Crystal mount: glued on a glass fibre Mosaicity (°): 1.1 (1) Frames collected: 892 Seconds exposure per frame: 5 Degree rotation per frame: 1.0 Crystal-Detector distance (mm): 50.0. |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
I1 | 0.96733 (2) | 0.14994 (3) | 0.30624 (1) | 0.0485 (1) | |
S1 | 0.66879 (11) | 0.75187 (9) | 0.49021 (6) | 0.0518 (3) | |
N1 | 0.6453 (3) | 0.5615 (3) | 0.64355 (18) | 0.0447 (8) | |
C1 | 0.6117 (4) | 0.7135 (4) | 0.6097 (2) | 0.0457 (9) | |
C2 | 0.7440 (3) | 0.5425 (3) | 0.4842 (2) | 0.0392 (8) | |
C3 | 0.8155 (3) | 0.4585 (4) | 0.40718 (19) | 0.0430 (8) | |
C4 | 0.8633 (3) | 0.2887 (4) | 0.42068 (19) | 0.0399 (8) | |
C5 | 0.8427 (4) | 0.2058 (4) | 0.5097 (2) | 0.0452 (9) | |
C6 | 0.7728 (4) | 0.2900 (4) | 0.5857 (2) | 0.0467 (9) | |
C7 | 0.7211 (3) | 0.4614 (3) | 0.5734 (2) | 0.0386 (7) | |
C8 | 0.5343 (5) | 0.8546 (4) | 0.6669 (3) | 0.0600 (11) | |
H3 | 0.83070 | 0.51470 | 0.34840 | 0.0520* | |
H5 | 0.87710 | 0.09160 | 0.51740 | 0.0540* | |
H6 | 0.75980 | 0.23380 | 0.64480 | 0.0560* | |
H8A | 0.46780 | 0.80420 | 0.71580 | 0.0900* | |
H8B | 0.46950 | 0.92540 | 0.62460 | 0.0900* | |
H8C | 0.61580 | 0.92510 | 0.69710 | 0.0900* |
U11 | U22 | U33 | U12 | U13 | U23 | |
I1 | 0.0488 (1) | 0.0567 (2) | 0.0402 (1) | 0.0012 (1) | 0.0048 (1) | −0.0055 (1) |
S1 | 0.0658 (5) | 0.0376 (4) | 0.0518 (4) | 0.0063 (3) | −0.0035 (3) | 0.0058 (3) |
N1 | 0.0487 (13) | 0.0419 (13) | 0.0437 (13) | −0.0022 (10) | 0.0082 (10) | −0.0014 (10) |
C1 | 0.0416 (14) | 0.0411 (14) | 0.0543 (17) | −0.0019 (12) | −0.0027 (12) | −0.0054 (12) |
C2 | 0.0424 (14) | 0.0345 (12) | 0.0407 (13) | −0.0029 (11) | −0.0035 (11) | 0.0049 (11) |
C3 | 0.0482 (15) | 0.0457 (14) | 0.0351 (13) | −0.0040 (12) | −0.0001 (11) | 0.0075 (12) |
C4 | 0.0393 (14) | 0.0457 (14) | 0.0347 (13) | −0.0025 (11) | 0.0025 (11) | −0.0027 (11) |
C5 | 0.0536 (16) | 0.0347 (13) | 0.0474 (16) | 0.0044 (12) | 0.0043 (13) | 0.0030 (11) |
C6 | 0.0593 (18) | 0.0394 (13) | 0.0415 (15) | −0.0005 (13) | 0.0114 (13) | 0.0073 (12) |
C7 | 0.0396 (13) | 0.0364 (12) | 0.0399 (13) | −0.0035 (11) | 0.0037 (10) | 0.0013 (10) |
C8 | 0.062 (2) | 0.0511 (19) | 0.067 (2) | 0.0089 (15) | −0.0004 (17) | −0.0108 (15) |
I1—C4 | 2.103 (3) | C4—C5 | 1.397 (4) |
S1—C1 | 1.748 (3) | C5—C6 | 1.369 (4) |
S1—C2 | 1.731 (2) | C6—C7 | 1.397 (4) |
N1—C1 | 1.289 (4) | C3—H3 | 0.9300 |
N1—C7 | 1.395 (4) | C5—H5 | 0.9300 |
C1—C8 | 1.494 (5) | C6—H6 | 0.9300 |
C2—C3 | 1.385 (4) | C8—H8A | 0.9600 |
C2—C7 | 1.396 (4) | C8—H8B | 0.9600 |
C3—C4 | 1.378 (4) | C8—H8C | 0.9600 |
I1···C1i | 3.826 (3) | H3···H8Avii | 2.5800 |
I1···N1ii | 3.158 (2) | H5···S1viii | 3.1600 |
I1···H5iii | 3.3100 | H5···I1iii | 3.3100 |
S1···H5iv | 3.1600 | H5···H5iii | 2.5400 |
S1···H8Bv | 3.1600 | H8A···H3ix | 2.5800 |
N1···I1vi | 3.158 (2) | H8B···S1v | 3.1600 |
C1···I1i | 3.826 (3) | ||
C1—S1—C2 | 89.46 (14) | N1—C7—C6 | 125.3 (2) |
C1—N1—C7 | 110.3 (2) | C2—C7—C6 | 119.0 (2) |
S1—C1—N1 | 115.8 (2) | C2—C3—H3 | 121.00 |
S1—C1—C8 | 120.0 (2) | C4—C3—H3 | 121.00 |
N1—C1—C8 | 124.1 (3) | C4—C5—H5 | 119.00 |
S1—C2—C3 | 129.1 (2) | C6—C5—H5 | 120.00 |
S1—C2—C7 | 108.70 (19) | C5—C6—H6 | 120.00 |
C3—C2—C7 | 122.2 (2) | C7—C6—H6 | 120.00 |
C2—C3—C4 | 117.7 (2) | C1—C8—H8A | 110.00 |
I1—C4—C3 | 120.06 (19) | C1—C8—H8B | 110.00 |
I1—C4—C5 | 119.0 (2) | C1—C8—H8C | 109.00 |
C3—C4—C5 | 120.9 (3) | H8A—C8—H8B | 109.00 |
C4—C5—C6 | 121.1 (3) | H8A—C8—H8C | 109.00 |
C5—C6—C7 | 119.1 (3) | H8B—C8—H8C | 109.00 |
N1—C7—C2 | 115.7 (2) | ||
C2—S1—C1—N1 | 0.5 (3) | S1—C2—C7—C6 | 180.0 (2) |
C2—S1—C1—C8 | 178.5 (3) | C3—C2—C7—N1 | −179.1 (2) |
C1—S1—C2—C3 | 179.0 (3) | C3—C2—C7—C6 | 0.4 (4) |
C1—S1—C2—C7 | −0.6 (2) | C2—C3—C4—I1 | 178.41 (19) |
C7—N1—C1—S1 | −0.3 (3) | C2—C3—C4—C5 | −1.1 (4) |
C7—N1—C1—C8 | −178.2 (3) | I1—C4—C5—C6 | −178.8 (2) |
C1—N1—C7—C2 | −0.2 (3) | C3—C4—C5—C6 | 0.8 (5) |
C1—N1—C7—C6 | −179.6 (3) | C4—C5—C6—C7 | 0.2 (5) |
S1—C2—C3—C4 | −179.0 (2) | C5—C6—C7—N1 | 178.6 (3) |
C7—C2—C3—C4 | 0.6 (4) | C5—C6—C7—C2 | −0.8 (4) |
S1—C2—C7—N1 | 0.5 (3) |
Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) x+1/2, −y+1/2, z−1/2; (iii) −x+2, −y, −z+1; (iv) x, y+1, z; (v) −x+1, −y+2, −z+1; (vi) x−1/2, −y+1/2, z+1/2; (vii) x+1/2, −y+3/2, z−1/2; (viii) x, y−1, z; (ix) x−1/2, −y+3/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C8H6INS |
Mr | 275.11 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 296 |
a, b, c (Å) | 8.3255 (3), 7.6967 (3), 13.8083 (5) |
β (°) | 90.686 (4) |
V (Å3) | 884.76 (6) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 3.79 |
Crystal size (mm) | 0.47 × 0.38 × 0.14 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur diffractometer with a Saphire-3 CCD detector |
Absorption correction | Multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) |
Tmin, Tmax | 0.253, 0.658 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 13190, 1928, 1729 |
Rint | 0.027 |
(sin θ/λ)max (Å−1) | 0.639 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.024, 0.064, 1.06 |
No. of reflections | 1928 |
No. of parameters | 101 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.84, −0.72 |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).
C4—I1 | I1···N1i | C4···N1i | C4—I1···N1i | |
C4—I1···N1i | 2.103 (3) | 3.158 (2) | 5.257 (4) | 175.99 (9) |
Symmetry code: (i) 1/2 + x, 1/2–y, –1/2 + z. |
Acknowledgements
This research was supported by the Ministry of Science, Education and Sports of the Republic of Croatia, Zagreb (grant Nos. 119–1193079–1332 and 119–1191342–1339).
References
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Bernstein, J., Davies, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Čičak, H., Đaković, M., Mihalić, Z., Pavlović, G., Racané, L. & Tralić-Kulenović, V. (2010). J. Mol. Struct. 975, 115–127. Google Scholar
Đaković, M., Čičak, H., Soldin, Ž. & Tralić-Kulenović, V. (2009). J. Mol. Struct. 938, 125–132. Google Scholar
Etter, M. C. (1990). Acc. Chem. Res. 23, 120–126. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Leong, C. O., Suggitt, M., Swaine, D. J., Bibby, M. C., Stevens, M. F. G. & Bradshaw, T. D. (2004). Mol. Cancer Ther. 3, 1565–1575. Web of Science PubMed CAS Google Scholar
Lockhart, A., Ye, L., Judd, D. B., Merrittu, A. T., Lowe, P. N., Morgenstern, J. L., Hong, G., Gee, A. D. & Brown, J. (2005). J. Biol. Chem. 280, 7677–7684. Web of Science CrossRef PubMed CAS Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Matković-Čalogović, D., Popović, Z., Tralić-Kulenović, V., Racanè, L. & Karminski-Zamola, G. (2003). Acta Cryst. C59, o190–o191. Web of Science CSD CrossRef IUCr Journals Google Scholar
Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Pavlović, G., Racané, L. & Čičak, H. (2009). Dyes Pigments, 83, 354–362. Google Scholar
Racané, L., Čičak, H., Mihalić, Z., Karminski-Zamola, G. & Tralić-Kulenović, V. (2011). Tetrahedron Lett. In the press. Google Scholar
Racané, L., Tralić-Kulenović, V., Pavlović, G. & Karminski-Zamola, G. (2006). Heterocycles, 68, 1909–1916. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheng, C., Zhu, J., Zhang, W., Zhang, M., Ji, H., Song, Y., Xu, H., Yao, J., Miao, Z., Zhou, Y., Zhu, J. & Lü, J. (2007). Eur. J. Med. Chem. 42, 477–486. Web of Science CrossRef PubMed CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yildiz-Oren, I., Yalcin, I., Aki-Sener, E. & Ucarturk, N. (2004). Eur. J. Med. Chem. 39, 291–298. Web of Science PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
This work was a part of our preparative, structural, mechanistic and computational investigation of a series of substituted benzothiazoles (bta), which attract considerable interest due to their biological activities.
The molecule is almost ideally planar (r.m.s. deviation = 0.009 Å), with the largest deviation from the plane being that of atom I1 [0.075 (3) Å] (Fig.1). The geometry of the benzothiazole rings is consistent with other 1,3-benzothiazoles listed in the CSD base (Allen et al., 2002). The two S—C bonds of the thiazole ring [S1—C1 and S1—C2] differ with respect to each other, but both are within two bortherline cases, single S—C [1.82 Å] and double S=C [1.56 Å], while the endocyclic C—N bond is dominantly double in character. The differences in C—C bonds within benzene ring are common for such fused rings.
In the crystal structure halogen bonds are the principal specific interactions responsible for the crystal packing. There is only one short and directional C—I···N contact [C—I = 2.103 (3) Å] (see Table 1) that link the molecules into antiparallel zigzag C(7) chains (Etter, 1990; Bernstein et al., 1995) in [1 0 - 1] direction (Figs. 2 and 3).
Relatively short off-set π–π contacts [Cg···Cg = 3.758 (2) Å] between the thiazole rings, belonging to the molecules that are related by an inversion centre, link the neighboring supramolecular chains and provide the secondary interactions for building the crystal structure.
The structure of the title compound is one more example showing that halogen bonding is also as effective and reliable tool for assembling molecules into supramolecular architectures.