organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-Iodo-2-methyl-1,3-benzo­thia­zole

aDepartment of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000 Zagreb, Croatia
*Correspondence e-mail: mdjakovic@chem.pmf.hr

(Received 21 January 2011; accepted 7 February 2011; online 12 February 2011)

The title compound, C8H6INS, is essentially planar, the largest deviation from the mean plane being for the I atom [0.075 (3) Å]. The crystal structure is mainly stabilized by inter­molecular C—I⋯N halogen bonds, forming zigzag supra­molecular chains in [10[\overline{1}]]. Relatively short off-set ππ contacts [centroid–centroid distance = 3.758 (2) Å] between the thia­zole rings of inversion-related mol­ecules link neighbouring chains and provide the secondary inter­actions for building the crystal structure.

Related literature

For the application of benzothia­zoles as biologically active compounds, see: Leong et al. (2004[Leong, C. O., Suggitt, M., Swaine, D. J., Bibby, M. C., Stevens, M. F. G. & Bradshaw, T. D. (2004). Mol. Cancer Ther. 3, 1565-1575.]); Yildiz-Oren et al. (2004[Yildiz-Oren, I., Yalcin, I., Aki-Sener, E. & Ucarturk, N. (2004). Eur. J. Med. Chem. 39, 291-298.]); Lockhart et al. (2005[Lockhart, A., Ye, L., Judd, D. B., Merrittu, A. T., Lowe, P. N., Morgenstern, J. L., Hong, G., Gee, A. D. & Brown, J. (2005). J. Biol. Chem. 280, 7677-7684.]); Sheng et al. (2007[Sheng, C., Zhu, J., Zhang, W., Zhang, M., Ji, H., Song, Y., Xu, H., Yao, J., Miao, Z., Zhou, Y., Zhu, J. & Lü, J. (2007). Eur. J. Med. Chem. 42, 477-486.]). For the synthesis of the title compound, see: Racané et al. (2006[Racané, L., Tralić-Kulenović, V., Pavlović, G. & Karminski-Zamola, G. (2006). Heterocycles, 68, 1909-1916.], 2011[Racané, L., Čičak, H., Mihalić, Z., Karminski-Zamola, G. & Tralić-Kulenović, V. (2011). Tetrahedron Lett. In the press.]). For related 1,3-benzothia­zole structures, see: Matković-Čalogović et al. (2003[Matković-Čalogović, D., Popović, Z., Tralić-Kulenović, V., Racanè, L. & Karminski-Zamola, G. (2003). Acta Cryst. C59, o190-o191.]); Pavlović et al. (2009[Pavlović, G., Racané, L. & Čičak, H. (2009). Dyes Pigments, 83, 354-362.]); Đaković et al. (2009[Đaković, M., Čičak, H., Soldin, Ž. & Tralić-Kulenović, V. (2009). J. Mol. Struct. 938, 125-132.]); Čičak et al. (2010[Čičak, H., Đaković, M., Mihalić, Z., Pavlović, G., Racané, L. & Tralić-Kulenović, V. (2010). J. Mol. Struct. 975, 115-127.]). For graph-set theory, see: Etter (1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]); Bernstein et al. (1995[Bernstein, J., Davies, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C8H6INS

  • Mr = 275.11

  • Monoclinic, P 21 /n

  • a = 8.3255 (3) Å

  • b = 7.6967 (3) Å

  • c = 13.8083 (5) Å

  • β = 90.686 (4)°

  • V = 884.76 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.79 mm−1

  • T = 296 K

  • 0.47 × 0.38 × 0.14 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Saphire-3 CCD detector

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.253, Tmax = 0.658

  • 13190 measured reflections

  • 1928 independent reflections

  • 1729 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.064

  • S = 1.06

  • 1928 reflections

  • 101 parameters

  • H-atom parameters constrained

  • Δρmax = 0.84 e Å−3

  • Δρmin = −0.72 e Å−3

Table 1
Halogen-bond geometry (Å, °)

  C4—I1 I1⋯N1i C4⋯N1i C4—I1⋯N1i
C4—I1⋯N1i 2.103 (3) 3.158 (2) 5.257 (4) 175.99 (9)
Symmetry code: (i) [{1\over 2}+x, {1\over 2}-y, -{1\over 2}+z].

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

This work was a part of our preparative, structural, mechanistic and computational investigation of a series of substituted benzothiazoles (bta), which attract considerable interest due to their biological activities.

The molecule is almost ideally planar (r.m.s. deviation = 0.009 Å), with the largest deviation from the plane being that of atom I1 [0.075 (3) Å] (Fig.1). The geometry of the benzothiazole rings is consistent with other 1,3-benzothiazoles listed in the CSD base (Allen et al., 2002). The two S—C bonds of the thiazole ring [S1—C1 and S1—C2] differ with respect to each other, but both are within two bortherline cases, single S—C [1.82 Å] and double S=C [1.56 Å], while the endocyclic C—N bond is dominantly double in character. The differences in C—C bonds within benzene ring are common for such fused rings.

In the crystal structure halogen bonds are the principal specific interactions responsible for the crystal packing. There is only one short and directional C—I···N contact [C—I = 2.103 (3) Å] (see Table 1) that link the molecules into antiparallel zigzag C(7) chains (Etter, 1990; Bernstein et al., 1995) in [1 0 - 1] direction (Figs. 2 and 3).

Relatively short off-set ππ contacts [Cg···Cg = 3.758 (2) Å] between the thiazole rings, belonging to the molecules that are related by an inversion centre, link the neighboring supramolecular chains and provide the secondary interactions for building the crystal structure.

The structure of the title compound is one more example showing that halogen bonding is also as effective and reliable tool for assembling molecules into supramolecular architectures.

Related literature top

For the application of benzothiazoles as biologically active compounds, see: Leong et al. (2004); Yildiz-Oren et al. (2004); Lockhart et al. (2005); Sheng et al. (2007). For the synthesis of the title compound, see: Racané et al. (2006, 2011). For related 1,3-benzothiazole structures, see: Matković-Čalogović et al. (2003); Pavlović et al. (2009); Đaković et al. (2009); Čičak et al. (2010). For graph-set theory, see: Etter (1990); Bernstein et al. (1995). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

Colourless single crystals of the title compound were obtained by slow evaporation of a dichloromethane solution.

Refinement top

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent C atom at distances of 0.93 or 0.96 Å for aromatic or methyl H atoms, respectively, and with Uiso(H) = 1.2Ueq(C) (for aromatic H) or Uiso(H) = 1.5Ueq(C) (for methyl group).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with the atom labeling scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing of the title compound viewed down the b axis showing halogen bonds as dashed lines.
[Figure 3] Fig. 3. Spacefill representaton of a zigzag halogen bonding chain running in [1 0 - 1].
6-Iodo-2-methyl-1,3-benzothiazole top
Crystal data top
C8H6INSF(000) = 520
Mr = 275.11Dx = 2.065 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 10010 reflections
a = 8.3255 (3) Åθ = 4.4–32.6°
b = 7.6967 (3) ŵ = 3.79 mm1
c = 13.8083 (5) ÅT = 296 K
β = 90.686 (4)°Plate, colourless
V = 884.76 (6) Å30.47 × 0.38 × 0.14 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Saphire-3 CCD detector
1928 independent reflections
Radiation source: Enhance (Mo) X-ray Source1729 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 16.3426 pixels mm-1θmax = 27.0°, θmin = 4.6°
CCD scansh = 1010
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 99
Tmin = 0.253, Tmax = 0.658l = 1717
13190 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.064H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0397P)2 + 0.4162P]
where P = (Fo2 + 2Fc2)/3
1928 reflections(Δ/σ)max = 0.001
101 parametersΔρmax = 0.84 e Å3
0 restraintsΔρmin = 0.72 e Å3
Crystal data top
C8H6INSV = 884.76 (6) Å3
Mr = 275.11Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.3255 (3) ŵ = 3.79 mm1
b = 7.6967 (3) ÅT = 296 K
c = 13.8083 (5) Å0.47 × 0.38 × 0.14 mm
β = 90.686 (4)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Saphire-3 CCD detector
1928 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
1729 reflections with I > 2σ(I)
Tmin = 0.253, Tmax = 0.658Rint = 0.027
13190 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.064H-atom parameters constrained
S = 1.06Δρmax = 0.84 e Å3
1928 reflectionsΔρmin = 0.72 e Å3
101 parameters
Special details top

Experimental. Solvent used: CH2Cl2 Crystal mount: glued on a glass fibre Mosaicity (°): 1.1 (1) Frames collected: 892 Seconds exposure per frame: 5 Degree rotation per frame: 1.0 Crystal-Detector distance (mm): 50.0.

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.96733 (2)0.14994 (3)0.30624 (1)0.0485 (1)
S10.66879 (11)0.75187 (9)0.49021 (6)0.0518 (3)
N10.6453 (3)0.5615 (3)0.64355 (18)0.0447 (8)
C10.6117 (4)0.7135 (4)0.6097 (2)0.0457 (9)
C20.7440 (3)0.5425 (3)0.4842 (2)0.0392 (8)
C30.8155 (3)0.4585 (4)0.40718 (19)0.0430 (8)
C40.8633 (3)0.2887 (4)0.42068 (19)0.0399 (8)
C50.8427 (4)0.2058 (4)0.5097 (2)0.0452 (9)
C60.7728 (4)0.2900 (4)0.5857 (2)0.0467 (9)
C70.7211 (3)0.4614 (3)0.5734 (2)0.0386 (7)
C80.5343 (5)0.8546 (4)0.6669 (3)0.0600 (11)
H30.830700.514700.348400.0520*
H50.877100.091600.517400.0540*
H60.759800.233800.644800.0560*
H8A0.467800.804200.715800.0900*
H8B0.469500.925400.624600.0900*
H8C0.615800.925100.697100.0900*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0488 (1)0.0567 (2)0.0402 (1)0.0012 (1)0.0048 (1)0.0055 (1)
S10.0658 (5)0.0376 (4)0.0518 (4)0.0063 (3)0.0035 (3)0.0058 (3)
N10.0487 (13)0.0419 (13)0.0437 (13)0.0022 (10)0.0082 (10)0.0014 (10)
C10.0416 (14)0.0411 (14)0.0543 (17)0.0019 (12)0.0027 (12)0.0054 (12)
C20.0424 (14)0.0345 (12)0.0407 (13)0.0029 (11)0.0035 (11)0.0049 (11)
C30.0482 (15)0.0457 (14)0.0351 (13)0.0040 (12)0.0001 (11)0.0075 (12)
C40.0393 (14)0.0457 (14)0.0347 (13)0.0025 (11)0.0025 (11)0.0027 (11)
C50.0536 (16)0.0347 (13)0.0474 (16)0.0044 (12)0.0043 (13)0.0030 (11)
C60.0593 (18)0.0394 (13)0.0415 (15)0.0005 (13)0.0114 (13)0.0073 (12)
C70.0396 (13)0.0364 (12)0.0399 (13)0.0035 (11)0.0037 (10)0.0013 (10)
C80.062 (2)0.0511 (19)0.067 (2)0.0089 (15)0.0004 (17)0.0108 (15)
Geometric parameters (Å, º) top
I1—C42.103 (3)C4—C51.397 (4)
S1—C11.748 (3)C5—C61.369 (4)
S1—C21.731 (2)C6—C71.397 (4)
N1—C11.289 (4)C3—H30.9300
N1—C71.395 (4)C5—H50.9300
C1—C81.494 (5)C6—H60.9300
C2—C31.385 (4)C8—H8A0.9600
C2—C71.396 (4)C8—H8B0.9600
C3—C41.378 (4)C8—H8C0.9600
I1···C1i3.826 (3)H3···H8Avii2.5800
I1···N1ii3.158 (2)H5···S1viii3.1600
I1···H5iii3.3100H5···I1iii3.3100
S1···H5iv3.1600H5···H5iii2.5400
S1···H8Bv3.1600H8A···H3ix2.5800
N1···I1vi3.158 (2)H8B···S1v3.1600
C1···I1i3.826 (3)
C1—S1—C289.46 (14)N1—C7—C6125.3 (2)
C1—N1—C7110.3 (2)C2—C7—C6119.0 (2)
S1—C1—N1115.8 (2)C2—C3—H3121.00
S1—C1—C8120.0 (2)C4—C3—H3121.00
N1—C1—C8124.1 (3)C4—C5—H5119.00
S1—C2—C3129.1 (2)C6—C5—H5120.00
S1—C2—C7108.70 (19)C5—C6—H6120.00
C3—C2—C7122.2 (2)C7—C6—H6120.00
C2—C3—C4117.7 (2)C1—C8—H8A110.00
I1—C4—C3120.06 (19)C1—C8—H8B110.00
I1—C4—C5119.0 (2)C1—C8—H8C109.00
C3—C4—C5120.9 (3)H8A—C8—H8B109.00
C4—C5—C6121.1 (3)H8A—C8—H8C109.00
C5—C6—C7119.1 (3)H8B—C8—H8C109.00
N1—C7—C2115.7 (2)
C2—S1—C1—N10.5 (3)S1—C2—C7—C6180.0 (2)
C2—S1—C1—C8178.5 (3)C3—C2—C7—N1179.1 (2)
C1—S1—C2—C3179.0 (3)C3—C2—C7—C60.4 (4)
C1—S1—C2—C70.6 (2)C2—C3—C4—I1178.41 (19)
C7—N1—C1—S10.3 (3)C2—C3—C4—C51.1 (4)
C7—N1—C1—C8178.2 (3)I1—C4—C5—C6178.8 (2)
C1—N1—C7—C20.2 (3)C3—C4—C5—C60.8 (5)
C1—N1—C7—C6179.6 (3)C4—C5—C6—C70.2 (5)
S1—C2—C3—C4179.0 (2)C5—C6—C7—N1178.6 (3)
C7—C2—C3—C40.6 (4)C5—C6—C7—C20.8 (4)
S1—C2—C7—N10.5 (3)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1/2, y+1/2, z1/2; (iii) x+2, y, z+1; (iv) x, y+1, z; (v) x+1, y+2, z+1; (vi) x1/2, y+1/2, z+1/2; (vii) x+1/2, y+3/2, z1/2; (viii) x, y1, z; (ix) x1/2, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC8H6INS
Mr275.11
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)8.3255 (3), 7.6967 (3), 13.8083 (5)
β (°) 90.686 (4)
V3)884.76 (6)
Z4
Radiation typeMo Kα
µ (mm1)3.79
Crystal size (mm)0.47 × 0.38 × 0.14
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Saphire-3 CCD detector
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.253, 0.658
No. of measured, independent and
observed [I > 2σ(I)] reflections
13190, 1928, 1729
Rint0.027
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.064, 1.06
No. of reflections1928
No. of parameters101
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.84, 0.72

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Halogen-bond geometry (Å, °) top
C4—I1I1···N1iC4···N1iC4—I1···N1i
C4—I1···N1i2.103 (3)3.158 (2)5.257 (4)175.99 (9)
Symmetry code: (i) 1/2 + x, 1/2–y, –1/2 + z.
 

Acknowledgements

This research was supported by the Ministry of Science, Education and Sports of the Republic of Croatia, Zagreb (grant Nos. 119–1193079–1332 and 119–1191342–1339).

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davies, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationČičak, H., Đaković, M., Mihalić, Z., Pavlović, G., Racané, L. & Tralić-Kulenović, V. (2010). J. Mol. Struct. 975, 115–127.  Google Scholar
First citationĐaković, M., Čičak, H., Soldin, Ž. & Tralić-Kulenović, V. (2009). J. Mol. Struct. 938, 125–132.  Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationLeong, C. O., Suggitt, M., Swaine, D. J., Bibby, M. C., Stevens, M. F. G. & Bradshaw, T. D. (2004). Mol. Cancer Ther. 3, 1565–1575.  Web of Science PubMed CAS Google Scholar
First citationLockhart, A., Ye, L., Judd, D. B., Merrittu, A. T., Lowe, P. N., Morgenstern, J. L., Hong, G., Gee, A. D. & Brown, J. (2005). J. Biol. Chem. 280, 7677–7684.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMatković-Čalogović, D., Popović, Z., Tralić-Kulenović, V., Racanè, L. & Karminski-Zamola, G. (2003). Acta Cryst. C59, o190–o191.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPavlović, G., Racané, L. & Čičak, H. (2009). Dyes Pigments, 83, 354–362.  Google Scholar
First citationRacané, L., Čičak, H., Mihalić, Z., Karminski-Zamola, G. & Tralić-Kulenović, V. (2011). Tetrahedron Lett. In the press.  Google Scholar
First citationRacané, L., Tralić-Kulenović, V., Pavlović, G. & Karminski-Zamola, G. (2006). Heterocycles, 68, 1909–1916.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheng, C., Zhu, J., Zhang, W., Zhang, M., Ji, H., Song, Y., Xu, H., Yao, J., Miao, Z., Zhou, Y., Zhu, J. & Lü, J. (2007). Eur. J. Med. Chem. 42, 477–486.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYildiz-Oren, I., Yalcin, I., Aki-Sener, E. & Ucarturk, N. (2004). Eur. J. Med. Chem. 39, 291–298.  Web of Science PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds