organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 3| March 2011| Pages o599-o600

5-Di­ethyl­amino-2-[(E)-(4-eth­­oxy­phen­yl)imino­meth­yl]phenol

aDepartment of Physics, Ondokuz Mayıs University, TR-55139 Samsun, Turkey, bSinop Faculty of Education, Sinop University, Sinop, Turkey, and cChemistry Programme, Denizli Higher Vocational School, Pamukkale University, TR-20159 Denizli, Turkey
*Correspondence e-mail: orhanb@omu.edu.tr

(Received 24 January 2011; accepted 7 February 2011; online 12 February 2011)

The title compound, C19H24N2O2, adopts the phenol–imine tautomeric form. An intra­molecular O—H⋯N hydrogen bond results in the formation of a six-membered ring. The aromatic rings are oriented at a dihedral angle of 17.33 (16)°. Inter­molecular C—H⋯π inter­actions occur in the crystal.

Related literature

For general background to Schiff bases, see: Hadjoudis et al. (1987[Hadjoudis, E., Vitterakis, M. & Maviridis, I. M. (1987). Tetrahedron, 43, 1345-1360.]); Hodnett & Dunn (1970[Hodnett, E. M. & Dunn, W. J. (1970). J. Med. Chem. 13, 768-770.]); Misra et al. (1981[Misra, V. S., Singh, S., Agarwal, R. & Chaudhary, K. C. (1981). J. Chem. Soc. Pak. 3, 209-213.]); Agarwal et al. (1983[Agarwal, R., Chaudhary, K. C. & Misra, V. S. (1983). Indian J. Chem. Sect. B, 22, 308-310.]); Varma et al. (1986[Varma, R. S., Prakash, R., Khan, M. M. & Ali, A. (1986). Indian Drugs, 23, 345-349.]); Singh & Dash (1988[Singh, W. M. & Dash, B. C. (1988). Pesticides, 22, 33-37.]); Pandeya et al. (1999[Pandeya, S. N., Sriram, D., Nath, G. & De Clercq, E. (1999). Farmaco, 54, 624-628.]); El-Masry et al. (2000[El-Masry, A. H., Fahmy, H. H. & Abdelwahed, S. H. A. (2000). Molecules, 5, 1429-1438.]); Cohen et al. (1964[Cohen, M. D., Schmidt, G. M. J. & Flavian, J. (1964). J. Chem. Soc. pp. 2041-2051.]); Moustakali-Mavridis et al. (1978[Moustakali-Mavridis, I., Hadjoudis, E. & Mavridis, A. (1978). Acta Cryst. B34, 3709-3715.]) Kaitner & Pavlovic (1996[Kaitner, B. & Pavlovic, G. (1996). Acta Cryst. C52, 2573-2575.]); Yıldız et al. (1998[Yıldız, M., Kılıç, Z. & Hökelek, T. (1998). J. Mol. Struct. 441, 1-10.]). For related structures, see: Odabaşoğlu et al. (2003[Odabaşoğlu, M., Albayrak, Ç., Büyükgüngör, O. & Goesmann, H. (2003). Acta Cryst. C59, o234-o236.]); Hökelek et al. (2000[Hökelek, T., Kılıç, Z., Işıklan, M. & Toy, M. (2000). J. Mol. Struct. 523, 61-69.]); Bingöl Alpaslan et al. (2010[Bingöl Alpaslan, Y., Alpaslan, G., Ağar, A. & Işık, Ş. (2010). Acta Cryst. E66, o510.]).

[Scheme 1]

Experimental

Crystal data
  • C19H24N2O2

  • Mr = 312.40

  • Monoclinic, C 2/c

  • a = 29.4936 (13) Å

  • b = 7.8546 (2) Å

  • c = 16.7146 (7) Å

  • β = 115.093 (3)°

  • V = 3506.7 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.76 × 0.59 × 0.28 mm

Data collection
  • Stoe IPDS 2 diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.944, Tmax = 0.979

  • 22701 measured reflections

  • 3625 independent reflections

  • 2383 reflections with I > 2σ(I)

  • Rint = 0.073

Refinement
  • R[F2 > 2σ(F2)] = 0.080

  • wR(F2) = 0.260

  • S = 1.10

  • 3625 reflections

  • 208 parameters

  • 4 restraints

  • H-atom parameters constrained

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of C8–C13 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.88 2.610 (3) 148
C2—H2⋯Cg1i 0.93 2.85 3.681 (4) 149
C17—H17ACg1ii 0.96 2.97 3.763 (6) 140
Symmetry codes: (i) [x, -y+1, z-{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Schiff bases are used as substrates in the preparation of number of industrial and biologically active compounds via ring closure, cycloaddition and replacement reactions. Some Schiff base derivatives are also known to have biological activities such as antimicrobial (El-Masry et al., 2000; Pandeya et al., 1999); antifungal (Singh & Dash 1988; Varma et al., 1986) and antitumor (Hodnett & Dunn 1970; Misra et al., 1981; Agarwal et al., 1983). There are two characteristic properties of Schiff bases, viz. photochromism and thermochromism (Cohen et al., 1964; Moustakali-Mavridis et al., 1978). Schiff bases display two possible tautomeric form, namely the phenol-imine (O—H···N) and keto-amine (N—H···O) forms. In the solid state, the keto-amine tautomer has been found in naphthaldimines (Hökelek et al., 2000; Odabaşoğlu et al., 2003), while the phenol-imine form exists in salicylaldimine Schiff bases (Kaitner & Pavlovic, 1996; Yıldız et al., 1998).

In the title compound, (I), the phenol-imine tautomer is favoured over the keto-amine form, and there is an intramolecular O—H···N hydrogen bond (Fig. 1 and Table 1). It is known that Schiff bases may exhibit thermochromism or photochromism, depending on the planarity or non-planarity of the molecule, respectively. This planarity of the molecule allows the H atom to be transferred through the hydrogen bond in the ground state with a low energy requirement (Hadjoudis et al., 1987). Therefore, one can expect thermochromic properties in (I) caused by planarity of the molecule: the dihedral angle between rings A (C1—C6) and B (C8—C13) is 17.33 (16)° (Fig. 1). In (I), the C8—C7, C4—N1, C7=N1 and O1—C13 bond lengths of 1.441 (4), 1.417 (3), 1.263 (3) and 1.338 (3) Å, respectively are in good agreement with those observed in (E)-2[(3-Fluoropheng)iminomethy]-4-(trifluoromethoxy)phenol [1.447 (4), 1.420 (3), 1.268 (3) and 1.343 (3) Å, Bingöl Alpaslan et al., 2010]. The C5—C4—N1=C7 and N1=C7—C8—C13 torsion angles are -19.0 (5)° and 1.2 (5)°, respectively. In crystal packing, the interactions [C2—H2···Cg1(x, 1 - y, z - 1/2)] and [C17—H17A···Cg1(1/2 - x, 1/2 + y, 3/2 - z)] are effective (Table 1 and Fig. 2.)

Related literature top

For general background to Schiff bases, see: Hadjoudis et al. (1987); Hodnett & Dunn (1970); Misra et al. (1981); Agarwal et al. (1983); Varma et al. (1986); Singh & Dash (1988); Pandeya et al. (1999); El-Masry et al. (2000); Cohen et al. (1964); Moustakali-Mavridis et al. (1978) Kaitner & Pavlovic (1996); Yıldız et al. (1998). For related structures, see: Odabaşoğlu et al. (2003); Hökelek et al. (2000); Bingöl Alpaslan et al. (2010).

Experimental top

The title compound was prepared by refluxing a mixture of a solution containing 5-(diethylamino)-2-hydroxybenzaldehyde (0.5 g, 2.59 mmol) in 20 ml e thanol and a solution containing 4-ethoxyaniline (0.4 g, 2.59 mmol) in 20 ml e thanol. The reaction mixture was stirred for 1 h under reflux. The crystals of (E)-5-(diethylamino)-2-[(4-ethoxyphenylimino)methyl]phenol suitable for x-ray analysis were obtained by slow evaporation from ethyl alcohol (yield % 82;).

Refinement top

All H atoms were refined using a riding model with O—H=0.82 Å and C—H = 0.93 to 0.97 Å, and with Uiso(H) = 1.2–1.5 Ueq (C,O).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. An ORTEP view of (I), with the atom-numbering scheme and 30% probability displacement ellipsoids. The dashed line indicates the intramolecular hydrogen bond.
[Figure 2] Fig. 2. A packing diagram for (I). C—H···π interactions are drawn as dashed lines. [Symmetry codes: (i) x, 1 - y, -1/2 + z; (ii) 1/2 - x, 1/2 + y, 3/2 - z]
5-Diethylamino-2-[(E)-(4-ethoxyphenyl)iminomethyl]phenol top
Crystal data top
C19H24N2O2F(000) = 1344
Mr = 312.40Dx = 1.183 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 18643 reflections
a = 29.4936 (13) Åθ = 1.5–28.0°
b = 7.8546 (2) ŵ = 0.08 mm1
c = 16.7146 (7) ÅT = 296 K
β = 115.093 (3)°Prism, yellow
V = 3506.7 (2) Å30.76 × 0.59 × 0.28 mm
Z = 8
Data collection top
Stoe IPDS 2
diffractometer
3625 independent reflections
Radiation source: fine-focus sealed tube2383 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.073
Detector resolution: 6.67 pixels mm-1θmax = 26.5°, θmin = 1.5°
rotation method scansh = 3636
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 99
Tmin = 0.944, Tmax = 0.979l = 2020
22701 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.080Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.260H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.1257P)2 + 1.7422P]
where P = (Fo2 + 2Fc2)/3
3625 reflections(Δ/σ)max < 0.001
208 parametersΔρmax = 0.56 e Å3
4 restraintsΔρmin = 0.28 e Å3
Crystal data top
C19H24N2O2V = 3506.7 (2) Å3
Mr = 312.40Z = 8
Monoclinic, C2/cMo Kα radiation
a = 29.4936 (13) ŵ = 0.08 mm1
b = 7.8546 (2) ÅT = 296 K
c = 16.7146 (7) Å0.76 × 0.59 × 0.28 mm
β = 115.093 (3)°
Data collection top
Stoe IPDS 2
diffractometer
3625 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
2383 reflections with I > 2σ(I)
Tmin = 0.944, Tmax = 0.979Rint = 0.073
22701 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0804 restraints
wR(F2) = 0.260H-atom parameters constrained
S = 1.10Δρmax = 0.56 e Å3
3625 reflectionsΔρmin = 0.28 e Å3
208 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.55509 (10)0.2708 (3)0.09804 (16)0.0622 (7)
C20.59206 (13)0.3870 (4)0.14442 (19)0.0790 (9)
H20.60320.46360.11430.095*
C30.61234 (13)0.3892 (4)0.23535 (19)0.0788 (9)
H30.63740.46770.26580.095*
C40.59672 (10)0.2789 (4)0.28250 (17)0.0633 (7)
C50.55981 (11)0.1594 (4)0.23483 (18)0.0700 (7)
H50.54890.08150.26480.084*
C60.53963 (10)0.1569 (4)0.14410 (17)0.0688 (7)
H60.51520.07700.11330.083*
C70.60388 (11)0.2229 (4)0.42580 (18)0.0677 (7)
H70.57300.16840.39990.081*
C80.62939 (10)0.2270 (3)0.52080 (17)0.0634 (7)
C90.60954 (11)0.1486 (4)0.57326 (18)0.0734 (8)
H90.57860.09500.54590.088*
C100.63345 (11)0.1467 (4)0.66328 (18)0.0706 (8)
H100.61900.09040.69570.085*
C110.68015 (11)0.2300 (4)0.70765 (17)0.0663 (7)
C120.69978 (11)0.3123 (4)0.65580 (18)0.0737 (8)
H120.72990.37060.68320.088*
C130.67567 (11)0.3099 (4)0.56443 (17)0.0668 (7)
C140.68851 (12)0.1161 (5)0.85131 (19)0.0863 (10)
H14A0.71780.08290.90370.104*
H14B0.67390.01370.81790.104*
C150.65140 (15)0.1970 (5)0.8787 (3)0.1017 (12)
H15A0.64270.11820.91390.153*
H15B0.62190.22720.82710.153*
H15C0.66580.29750.91270.153*
C160.74589 (14)0.3596 (6)0.8467 (2)0.1112 (14)
H16A0.74070.46190.81140.133*
H16B0.74530.39060.90240.133*
C170.79396 (19)0.2842 (7)0.8626 (3)0.1395 (18)
H17A0.82020.36450.89310.209*
H17B0.79440.25460.80730.209*
H17C0.79900.18360.89810.209*
C180.54784 (14)0.3722 (5)0.04086 (19)0.0911 (10)
H18A0.58350.36290.02400.109*
H18B0.54060.48770.02930.109*
C190.51921 (17)0.3309 (6)0.1370 (2)0.1181 (15)
H19A0.52860.40880.17160.177*
H19B0.48400.34090.15310.177*
H19C0.52670.21670.14780.177*
N10.62123 (9)0.2895 (3)0.37583 (14)0.0701 (6)
N20.70399 (10)0.2291 (4)0.79754 (15)0.0912 (9)
O10.69745 (9)0.3886 (3)0.51884 (14)0.1011 (9)
H10.67980.37870.46580.152*
O20.53303 (8)0.2546 (3)0.00831 (12)0.0780 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0630 (15)0.0717 (16)0.0496 (13)0.0059 (13)0.0218 (11)0.0012 (11)
C20.100 (2)0.0798 (19)0.0593 (16)0.0170 (17)0.0355 (16)0.0001 (13)
C30.093 (2)0.0834 (19)0.0564 (15)0.0248 (17)0.0281 (14)0.0084 (14)
C40.0642 (15)0.0705 (16)0.0532 (14)0.0001 (13)0.0230 (12)0.0035 (11)
C50.0692 (16)0.0829 (18)0.0597 (15)0.0066 (14)0.0291 (13)0.0031 (13)
C60.0581 (15)0.0851 (19)0.0577 (15)0.0057 (13)0.0191 (12)0.0052 (13)
C70.0663 (16)0.0733 (17)0.0603 (15)0.0030 (13)0.0237 (13)0.0049 (13)
C80.0670 (16)0.0653 (15)0.0553 (14)0.0001 (12)0.0232 (12)0.0032 (11)
C90.0678 (17)0.088 (2)0.0616 (16)0.0118 (15)0.0251 (13)0.0030 (14)
C100.0711 (17)0.0843 (19)0.0556 (14)0.0087 (14)0.0260 (13)0.0004 (13)
C110.0744 (17)0.0709 (16)0.0517 (14)0.0023 (13)0.0249 (13)0.0013 (12)
C120.0741 (18)0.0820 (19)0.0599 (16)0.0155 (15)0.0234 (14)0.0037 (14)
C130.0798 (18)0.0651 (15)0.0578 (15)0.0106 (13)0.0315 (14)0.0003 (12)
C140.085 (2)0.109 (2)0.0555 (15)0.0049 (18)0.0209 (15)0.0098 (16)
C150.124 (3)0.105 (3)0.089 (2)0.011 (2)0.058 (2)0.000 (2)
C160.088 (2)0.166 (4)0.0653 (19)0.036 (2)0.0193 (17)0.011 (2)
C170.133 (4)0.130 (4)0.129 (4)0.008 (3)0.030 (3)0.023 (3)
C180.109 (3)0.106 (2)0.0574 (16)0.002 (2)0.0342 (17)0.0046 (16)
C190.136 (3)0.154 (4)0.0554 (18)0.009 (3)0.031 (2)0.001 (2)
N10.0841 (16)0.0725 (14)0.0520 (12)0.0050 (12)0.0273 (12)0.0018 (10)
N20.0797 (16)0.137 (2)0.0484 (13)0.0196 (15)0.0187 (11)0.0094 (13)
O10.1140 (18)0.1272 (19)0.0608 (12)0.0550 (16)0.0358 (12)0.0062 (12)
O20.0849 (14)0.0925 (14)0.0498 (10)0.0046 (11)0.0220 (9)0.0006 (9)
Geometric parameters (Å, º) top
C1—O21.364 (3)C12—H120.9300
C1—C61.378 (4)C13—O11.338 (3)
C1—C21.381 (4)C14—N21.467 (4)
C2—C31.377 (4)C14—C151.495 (5)
C2—H20.9300C14—H14A0.9700
C3—C41.375 (4)C14—H14B0.9700
C3—H30.9300C15—H15A0.9600
C4—C51.402 (4)C15—H15B0.9600
C4—N11.417 (3)C15—H15C0.9600
C5—C61.374 (4)C16—C171.453 (5)
C5—H50.9300C16—N21.547 (5)
C6—H60.9300C16—H16A0.9700
C7—N11.263 (4)C16—H16B0.9700
C7—C81.441 (4)C17—H17A0.9600
C7—H70.9300C17—H17B0.9600
C8—C91.388 (4)C17—H17C0.9600
C8—C131.405 (4)C18—O21.423 (4)
C9—C101.364 (4)C18—C191.499 (4)
C9—H90.9300C18—H18A0.9700
C10—C111.417 (4)C18—H18B0.9700
C10—H100.9300C19—H19A0.9600
C11—N21.362 (3)C19—H19B0.9600
C11—C121.389 (4)C19—H19C0.9600
C12—C131.385 (4)O1—H10.8200
O2—C1—C6115.9 (2)C15—C14—H14A109.0
O2—C1—C2125.0 (3)N2—C14—H14B109.0
C6—C1—C2119.0 (2)C15—C14—H14B109.0
C3—C2—C1119.9 (3)H14A—C14—H14B107.8
C3—C2—H2120.1C14—C15—H15A109.5
C1—C2—H2120.1C14—C15—H15B109.5
C4—C3—C2122.0 (3)H15A—C15—H15B109.5
C4—C3—H3119.0C14—C15—H15C109.5
C2—C3—H3119.0H15A—C15—H15C109.5
C3—C4—C5117.7 (2)H15B—C15—H15C109.5
C3—C4—N1117.1 (2)C17—C16—N2109.0 (4)
C5—C4—N1125.2 (3)C17—C16—H16A109.9
C6—C5—C4120.4 (3)N2—C16—H16A109.9
C6—C5—H5119.8C17—C16—H16B109.9
C4—C5—H5119.8N2—C16—H16B109.9
C5—C6—C1121.1 (3)H16A—C16—H16B108.3
C5—C6—H6119.5C16—C17—H17A109.5
C1—C6—H6119.5C16—C17—H17B109.5
N1—C7—C8123.4 (3)H17A—C17—H17B109.5
N1—C7—H7118.3C16—C17—H17C109.5
C8—C7—H7118.3H17A—C17—H17C109.5
C9—C8—C13117.1 (2)H17B—C17—H17C109.5
C9—C8—C7121.6 (3)O2—C18—C19107.9 (3)
C13—C8—C7121.4 (3)O2—C18—H18A110.1
C10—C9—C8122.8 (3)C19—C18—H18A110.1
C10—C9—H9118.6O2—C18—H18B110.1
C8—C9—H9118.6C19—C18—H18B110.1
C9—C10—C11120.3 (3)H18A—C18—H18B108.4
C9—C10—H10119.8C18—C19—H19A109.5
C11—C10—H10119.8C18—C19—H19B109.5
N2—C11—C12122.3 (3)H19A—C19—H19B109.5
N2—C11—C10120.5 (3)C18—C19—H19C109.5
C12—C11—C10117.3 (2)H19A—C19—H19C109.5
C13—C12—C11121.8 (3)H19B—C19—H19C109.5
C13—C12—H12119.1C7—N1—C4122.9 (3)
C11—C12—H12119.1C11—N2—C14122.0 (3)
O1—C13—C12118.4 (3)C11—N2—C16120.3 (3)
O1—C13—C8120.9 (2)C14—N2—C16117.5 (2)
C12—C13—C8120.7 (3)C13—O1—H1109.5
N2—C14—C15112.9 (3)C1—O2—C18117.0 (2)
N2—C14—H14A109.0
O2—C1—C2—C3178.6 (3)C11—C12—C13—C81.7 (5)
C6—C1—C2—C31.0 (5)C9—C8—C13—O1179.9 (3)
C1—C2—C3—C40.4 (5)C7—C8—C13—O10.3 (4)
C2—C3—C4—C51.5 (5)C9—C8—C13—C120.2 (4)
C2—C3—C4—N1178.2 (3)C7—C8—C13—C12179.8 (3)
C3—C4—C5—C61.3 (4)C8—C7—N1—C4177.4 (3)
N1—C4—C5—C6177.8 (3)C3—C4—N1—C7164.5 (3)
C4—C5—C6—C10.0 (5)C5—C4—N1—C719.0 (5)
O2—C1—C6—C5179.0 (3)C12—C11—N2—C14167.9 (3)
C2—C1—C6—C51.1 (4)C10—C11—N2—C1412.7 (5)
N1—C7—C8—C9178.4 (3)C12—C11—N2—C1617.2 (5)
N1—C7—C8—C131.2 (5)C10—C11—N2—C16162.2 (3)
C13—C8—C9—C101.4 (4)C15—C14—N2—C1192.0 (4)
C7—C8—C9—C10178.3 (3)C15—C14—N2—C1683.0 (4)
C8—C9—C10—C111.4 (5)C17—C16—N2—C1193.3 (4)
C9—C10—C11—N2179.6 (3)C17—C16—N2—C1491.6 (4)
C9—C10—C11—C120.2 (4)C6—C1—O2—C18179.2 (3)
N2—C11—C12—C13178.9 (3)C2—C1—O2—C183.1 (4)
C10—C11—C12—C131.7 (5)C19—C18—O2—C1179.9 (3)
C11—C12—C13—O1178.4 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of C8–C13 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.882.610 (3)148
C2—H2···Cg1i0.932.853.681 (4)149
C17—H17A···Cg1ii0.962.973.763 (6)140
Symmetry codes: (i) x, y+1, z1/2; (ii) x+1/2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC19H24N2O2
Mr312.40
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)29.4936 (13), 7.8546 (2), 16.7146 (7)
β (°) 115.093 (3)
V3)3506.7 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.76 × 0.59 × 0.28
Data collection
DiffractometerStoe IPDS 2
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.944, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
22701, 3625, 2383
Rint0.073
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.080, 0.260, 1.10
No. of reflections3625
No. of parameters208
No. of restraints4
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.56, 0.28

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of C8–C13 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.882.610 (3)148
C2—H2···Cg1i0.932.853.681 (4)149
C17—H17A···Cg1ii0.962.973.763 (6)140
Symmetry codes: (i) x, y+1, z1/2; (ii) x+1/2, y+1/2, z+3/2.
 

Acknowledgements

The authors wish to acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant No. F279 of the University Research Fund).

References

First citationAgarwal, R., Chaudhary, K. C. & Misra, V. S. (1983). Indian J. Chem. Sect. B, 22, 308–310.  Google Scholar
First citationBingöl Alpaslan, Y., Alpaslan, G., Ağar, A. & Işık, Ş. (2010). Acta Cryst. E66, o510.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCohen, M. D., Schmidt, G. M. J. & Flavian, J. (1964). J. Chem. Soc. pp. 2041–2051.  CrossRef Web of Science Google Scholar
First citationEl-Masry, A. H., Fahmy, H. H. & Abdelwahed, S. H. A. (2000). Molecules, 5, 1429–1438.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHadjoudis, E., Vitterakis, M. & Maviridis, I. M. (1987). Tetrahedron, 43, 1345–1360.  CrossRef CAS Web of Science Google Scholar
First citationHodnett, E. M. & Dunn, W. J. (1970). J. Med. Chem. 13, 768–770.  CrossRef CAS PubMed Web of Science Google Scholar
First citationHökelek, T., Kılıç, Z., Işıklan, M. & Toy, M. (2000). J. Mol. Struct. 523, 61–69.  Web of Science CSD CrossRef CAS Google Scholar
First citationKaitner, B. & Pavlovic, G. (1996). Acta Cryst. C52, 2573–2575.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMisra, V. S., Singh, S., Agarwal, R. & Chaudhary, K. C. (1981). J. Chem. Soc. Pak. 3, 209–213.  CAS Google Scholar
First citationMoustakali-Mavridis, I., Hadjoudis, E. & Mavridis, A. (1978). Acta Cryst. B34, 3709–3715.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationOdabaşoğlu, M., Albayrak, Ç., Büyükgüngör, O. & Goesmann, H. (2003). Acta Cryst. C59, o234–o236.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPandeya, S. N., Sriram, D., Nath, G. & De Clercq, E. (1999). Farmaco, 54, 624–628.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, W. M. & Dash, B. C. (1988). Pesticides, 22, 33–37.  Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationVarma, R. S., Prakash, R., Khan, M. M. & Ali, A. (1986). Indian Drugs, 23, 345–349.  CAS Google Scholar
First citationYıldız, M., Kılıç, Z. & Hökelek, T. (1998). J. Mol. Struct. 441, 1–10.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 3| March 2011| Pages o599-o600
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds