organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 3| March 2011| Pages o645-o646

(1S,3R,8R)-9-(1-Amino­ethyl­­idene)-2,2-di­chloro-3,7,7-tri­methyl­tri­cyclo­[6.4.0.01,3]undecan-10-one

aLaboratoire de Chimie Biomoléculaires, Substances Naturelles et Réactivité, URAC16, Faculté des Sciences, Semlalia, BP 2390 Bd My Abdellah, 40000 Marrakech, Morocco, and bUniversité Blaise Pascal, Laboratoire des Matériaux Inorganiques, UMR CNRS 6002, 24 Avenue des Landais, 63177 Aubière, France
*Correspondence e-mail: elassaba@gmail.com

(Received 9 February 2011; accepted 12 February 2011; online 16 February 2011)

The title compound, C16H23Cl2NO, was synthesised from β-himachalene (3,5,5,9-tetra­methyl-2,4a,5,6,7,8-hexa­hydro-1H-benzocyclo­heptene), which was isolated from the essential oil of the Atlas cedar (Cedrus Atlantica). The mol­ecule contains a seven membered ring, which is fused to a five- and a three-membered ring. The five-membered ring has a twisted conformation, whereas the seven-membered ring displays a chair conformation. The dihedral angle between the five- and seven-membered rings is 45.26 (9)°. The absolute structure was established unambiguously from anomalous dispersion effects. In the crystal, mol­ecules are linked into chains propagating along the b axis by inter­molecular N—H⋯O hydrogen bonds; an intramolecular N—H⋯O link also occurs.

Related literature

For the isolation of β-himachalene, see: Joseph & Dev (1968[Joseph, T. C. & Dev, S. (1968). Tetrahedron, 24, 3841-3859.]); Plattier & Teisseire (1974[Plattier, M. & Teisseire, P. (1974). Recherche, 19, 131-144.]). For the reactivity of β-himachalene, see: Lassaba et al. (1998[Lassaba, E., Eljamili, H., Chekroun, A., Benharref, A., Chiaroni, A., Riche, C. & Lavergne, J.-P. (1998). Synth. Commun. 28, 2641-2651.]); Chekroun et al. (2000[Chekroun, A., Jarid, A., Benharref, A. & Boutalib, A. (2000). J. Org. Chem. 65, 4431-4434.]); El Jamili et al. (2002[El Jamili, H., Auhmani, A., Dakir, M., Lassaba, E., Benharref, A., Pierrot, M., Chiaroni, A. & Riche, C. (2002). Tetrahedron Lett. 43, 6645-6648.]); Dakir et al. (2004[Dakir, M., Auhmani, A., Ait Itto, M. Y., Mazoir, N., Akssira, M., Pierrot, M. & Benharref, A. (2004). Synth. Commun. 34, 2001-2008.]). For the biological activity of β-himachalene, see: Daoubi et al. (2004[Daoubi, M., Duran-Patron, R., Hmamouchi, M., Hernandez-Galan, R., Benharref, A. & Isidro, G. C. (2004). Pest Manag. Sci. 60, 927-932.]). For conformational analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C16H23Cl2NO

  • Mr = 316.25

  • Monoclinic, P 21

  • a = 7.7570 (7) Å

  • b = 9.7041 (9) Å

  • c = 10.6901 (10) Å

  • β = 93.432 (3)°

  • V = 803.25 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.40 mm−1

  • T = 298 K

  • 0.41 × 0.33 × 0.26 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 4954 measured reflections

  • 2355 independent reflections

  • 2297 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.080

  • S = 1.08

  • 2355 reflections

  • 193 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.22 e Å−3

  • Absolute structure: Flack & Bernardinelli (2000[Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143-1148.]), 614 Friedel pairs

  • Flack parameter: −0.02 (5)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H2⋯O1i 0.85 (3) 2.03 (3) 2.865 (3) 170 (2)
N1—H1⋯O1 0.83 (4) 1.98 (4) 2.672 (3) 140 (3)
Symmetry code: (i) [-x+2, y-{\script{1\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2009[Bruker (2009). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The essential oil of the Alas cedar (Cedrus atlantica) consist mainly (50%) of a bicyclic hydrocarbon called β-himachalene (Joseph & Dev (1968); Plattier & Teisseire(1974)). The reactivity of this sesquiterpene and its derivatives has been studied extensively by our team in order to prepare new products having biological proprieties (Lassaba et al., 1998; Chekroun et al., 2000; El Jamili et al., 2002; Dakir et al., 2004). Indeed, these compounds were tested, using the food poisoning technique, for their potential antifungal activity against phytopathogen Botrytis cinerea (Daoubi et al., 2004). Thus the action of one equivalent of dichlorocarbene, generated in situ from chloroform in the presence of sodium hydroxide as base and n-benzyltriethylammonium chloride as catalyst, on β-himachalene produces only (1S,3R,8R)-2,2-dichloro-3,7,7,10- tetramethyltricyclo[6.4.0.01,3] dodec-9-ene (El Jamili et al., 2002). Treatment of the latter by two equivalents of N-bromosccinimide (NBS) give (1S, 3R, 8R, 11R)-2,2-dichloro-3,7,7,10-tetralethyltricyclo[6.4.0.01,3] dodec-9-en-11-one(Dakir et al., 2004). This enone was treated with the sodium azide in trifluoroacetic acide medium, give with a yield (60%) (1S, 3R, 8R) -9-(1-aminoethylidene)-2,2-dichloro-3,7,7- trimethyltricyclo[6.3.0.01,3]undecan -10-one. The structure of this new product was determined by NMR spectral analysis of 1H, 13 C and mass spectroscopy and confirmed by its single-crystal X-ray structure. The molecule is built up from two fused five-membered and seven-membered rings (Fig. 1). The five-membered ring adopts a twisted conformation,as indicated by Cremer & Pople (1975) puckering parameters Q = 0.2822 (2) Å and ϕ = 199.2 (4)°. The seven-membered ring displays a chair conformation with QT = 0.7470 (2) Å, θ2 = 27.72 (2)°, ϕ2 = -51.85 (14)° and ϕ3 =-78.15 (2)°. In the crystal structure, molecules are linked into chains (Fig. 2) running along the b axis by intermolecular N—H···O hydrogen bonds (Table 1) involving the O1 and N atoms. Owing to the presence of Cl atoms, the absolute configuration could be fully confirmed, by refining the Flack parameter (Flack & Bernardinelli (2000)) as C1(S), C3(R)and C8(R).

Related literature top

For the isolation of β-himachalene, see: Joseph & Dev (1968); Plattier & Teisseire (1974). For the reactivity of β-himachalene, see: Lassaba et al. (1998); Chekroun et al. (2000); El Jamili et al. (2002); Dakir et al. (2004). For the biological activity of β-himachalene, see: Daoubi et al. (2004). For conformational analysis, see: Cremer & Pople (1975).

Experimental top

To a solution of enone 1 g (3.32 mmol) in 20 ml of trifluoroacetic acid at 10 °C was added with stirring 1 g (15.38 mmol) of NaN3. After being stirred at room temperature for 24 h, the reaction mixture was neutralized with a solution of Na2CO3 (10%) and extracted three time with diethylether (3x20ml). The combined organic phases were dried on Na2SO4, filtred and concentrated at reduced pressure to give the crude product which was chromatographed on a silica gel column with hexane- ether as eluent (20/80) to give 630 mg(1.99 mmol) of (1S, 3R, 8R)-9-(1-aminoethylidene)-2,2-dichloro-3,7,7-trimethyltricyclo [6.3.0.01,3]undecan -10-one.The title compound was recrystallized in diethylether.

Refinement top

except H1 and H2,all H atoms were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl), 0.97 Å (methylene), 0.98Å (methine) with Uiso(H) = 1.2Ueq (methylene, methine) or Uiso(H) = 1.5Ueq (methyl).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT-Plus (Bruker, 2009); data reduction: SAINT-Plus (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. : Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability. level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. : Partial packing view showing the C—H···O interactions (dashed lines) and the formation of a chain parallel to the c axis. H atoms not involved in hydrogen bonding have been omitted for clarity. [Symmetry code:(i) 2 - y, x-y, z - 1/3]
(1S,3R,8R)-9-(1-Aminoethylidene)-2,2-dichloro-3,7,7- trimethyltricyclo[6.4.0.01,3]undecan-10-one top
Crystal data top
C16H23Cl2NOF(000) = 336
Mr = 316.25Dx = 1.308 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 4954 reflections
a = 7.7570 (7) Åθ = 3.4–26.4°
b = 9.7041 (9) ŵ = 0.40 mm1
c = 10.6901 (10) ÅT = 298 K
β = 93.432 (3)°Prism, colourless
V = 803.25 (13) Å30.41 × 0.33 × 0.26 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
2297 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.015
Graphite monochromatorθmax = 26.4°, θmin = 3.4°
ω and ϕ scansh = 99
4954 measured reflectionsk = 126
2355 independent reflectionsl = 1213
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.080 w = 1/[σ2(Fo2) + (0.0528P)2 + 0.0821P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
2355 reflectionsΔρmax = 0.24 e Å3
193 parametersΔρmin = 0.22 e Å3
1 restraintAbsolute structure: Flack & Bernardinelli (2000), 614 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (5)
Crystal data top
C16H23Cl2NOV = 803.25 (13) Å3
Mr = 316.25Z = 2
Monoclinic, P21Mo Kα radiation
a = 7.7570 (7) ŵ = 0.40 mm1
b = 9.7041 (9) ÅT = 298 K
c = 10.6901 (10) Å0.41 × 0.33 × 0.26 mm
β = 93.432 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
2297 reflections with I > 2σ(I)
4954 measured reflectionsRint = 0.015
2355 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.028H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.080Δρmax = 0.24 e Å3
S = 1.08Δρmin = 0.22 e Å3
2355 reflectionsAbsolute structure: Flack & Bernardinelli (2000), 614 Friedel pairs
193 parametersAbsolute structure parameter: 0.02 (5)
1 restraint
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
H21.000 (3)0.257 (3)0.553 (2)0.042 (6)*
H10.933 (3)0.125 (4)0.502 (3)0.050 (7)*
Cl10.88492 (8)0.36063 (7)0.85606 (7)0.06081 (18)
Cl20.79425 (7)0.12962 (6)1.00496 (4)0.05055 (16)
C90.7491 (2)0.0408 (2)0.66044 (16)0.0293 (4)
O10.8629 (2)0.07077 (17)0.48287 (13)0.0448 (4)
C80.6205 (2)0.0004 (2)0.75543 (15)0.0274 (4)
H80.65650.03830.83750.033*
C10.6443 (2)0.15793 (19)0.75843 (15)0.0297 (4)
C120.8402 (2)0.16350 (19)0.65295 (17)0.0321 (4)
C100.7797 (2)0.0713 (2)0.57971 (17)0.0333 (4)
N10.9341 (3)0.1878 (2)0.5548 (2)0.0444 (4)
C70.4310 (2)0.0475 (2)0.71640 (17)0.0357 (4)
C30.5434 (3)0.2575 (2)0.83808 (17)0.0362 (4)
C20.7312 (2)0.2285 (2)0.87178 (18)0.0363 (4)
C40.4090 (3)0.2029 (3)0.9238 (2)0.0462 (5)
H4A0.46560.14170.98520.055*
H4B0.36200.27970.96880.055*
C160.4318 (3)0.2036 (3)0.6976 (2)0.0451 (5)
H16A0.50820.22670.63330.068*
H16B0.31710.23440.67310.068*
H16C0.47070.24780.77450.068*
C110.7012 (3)0.2010 (2)0.62976 (17)0.0386 (5)
H11A0.60330.23110.57590.046*
H11B0.78550.27470.63710.046*
C140.4943 (4)0.3966 (3)0.7812 (2)0.0543 (6)
H14A0.58230.42610.72760.082*
H14B0.48340.46290.84690.082*
H14C0.38630.38870.73300.082*
C50.2612 (3)0.1259 (3)0.8557 (2)0.0551 (6)
H5A0.22600.17570.77980.066*
H5B0.16370.12420.90840.066*
C60.3060 (3)0.0212 (3)0.8212 (2)0.0491 (5)
H6A0.19860.06810.79750.059*
H6B0.35450.06570.89660.059*
C150.3604 (3)0.0199 (3)0.5944 (2)0.0512 (6)
H15A0.35400.11780.60580.077*
H15B0.24720.01570.57210.077*
H15C0.43580.00030.52870.077*
C130.8492 (3)0.2716 (3)0.7522 (2)0.0488 (5)
H13A0.96730.29810.77000.073*
H13B0.78320.35040.72360.073*
H13C0.80280.23580.82680.073*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0562 (3)0.0361 (3)0.0907 (4)0.0136 (3)0.0093 (3)0.0118 (3)
Cl20.0568 (3)0.0510 (3)0.0424 (2)0.0037 (3)0.0094 (2)0.0038 (2)
C90.0310 (8)0.0247 (9)0.0331 (8)0.0017 (7)0.0087 (6)0.0004 (7)
O10.0579 (9)0.0357 (8)0.0439 (7)0.0015 (7)0.0276 (6)0.0035 (6)
C80.0315 (8)0.0246 (9)0.0266 (7)0.0005 (7)0.0060 (6)0.0011 (6)
C10.0335 (8)0.0239 (10)0.0326 (8)0.0028 (7)0.0085 (6)0.0003 (7)
C120.0317 (8)0.0242 (11)0.0406 (9)0.0021 (7)0.0043 (7)0.0033 (7)
C100.0380 (9)0.0274 (10)0.0354 (8)0.0023 (8)0.0103 (7)0.0017 (7)
N10.0467 (10)0.0312 (10)0.0571 (11)0.0074 (9)0.0187 (8)0.0038 (10)
C70.0328 (9)0.0380 (11)0.0365 (9)0.0049 (8)0.0048 (7)0.0009 (8)
C30.0429 (10)0.0292 (10)0.0372 (9)0.0069 (8)0.0097 (7)0.0042 (8)
C20.0410 (10)0.0262 (10)0.0419 (9)0.0012 (8)0.0055 (8)0.0051 (8)
C40.0469 (11)0.0492 (14)0.0444 (10)0.0094 (10)0.0175 (8)0.0066 (10)
C160.0449 (11)0.0412 (13)0.0493 (11)0.0131 (10)0.0039 (9)0.0024 (10)
C110.0546 (12)0.0245 (10)0.0382 (9)0.0020 (8)0.0159 (8)0.0049 (8)
C140.0698 (15)0.0353 (13)0.0589 (13)0.0194 (11)0.0119 (11)0.0001 (11)
C50.0365 (10)0.0652 (17)0.0656 (12)0.0064 (12)0.0196 (9)0.0057 (14)
C60.0361 (10)0.0549 (15)0.0579 (12)0.0084 (10)0.0156 (9)0.0035 (11)
C150.0459 (12)0.0577 (16)0.0484 (11)0.0006 (11)0.0093 (9)0.0019 (11)
C130.0531 (12)0.0324 (12)0.0613 (12)0.0075 (10)0.0052 (10)0.0115 (10)
Geometric parameters (Å, º) top
Cl1—C21.766 (2)C4—C51.517 (4)
Cl2—C21.762 (2)C4—H4A0.9700
C9—C121.389 (3)C4—H4B0.9700
C9—C101.418 (3)C16—H16A0.9600
C9—C81.519 (2)C16—H16B0.9600
O1—C101.253 (2)C16—H16C0.9600
C8—C11.539 (3)C11—H11A0.9700
C8—C71.574 (2)C11—H11B0.9700
C8—H80.9800C14—H14A0.9600
C1—C21.515 (3)C14—H14B0.9600
C1—C111.528 (2)C14—H14C0.9600
C1—C31.533 (2)C5—C61.519 (4)
C12—N11.334 (3)C5—H5A0.9700
C12—C131.490 (3)C5—H5B0.9700
C10—C111.509 (3)C6—H6A0.9700
N1—H20.84 (3)C6—H6B0.9700
N1—H10.83 (3)C15—H15A0.9600
C7—C161.528 (3)C15—H15B0.9600
C7—C151.531 (3)C15—H15C0.9600
C7—C61.546 (3)C13—H13A0.9600
C3—C21.506 (3)C13—H13B0.9600
C3—C141.520 (3)C13—H13C0.9600
C3—C41.524 (3)
C12—C9—C10121.23 (16)C5—C4—H4B108.7
C12—C9—C8128.39 (17)C3—C4—H4B108.7
C10—C9—C8110.19 (16)H4A—C4—H4B107.6
C9—C8—C1101.12 (14)C7—C16—H16A109.5
C9—C8—C7112.64 (14)C7—C16—H16B109.5
C1—C8—C7114.08 (16)H16A—C16—H16B109.5
C9—C8—H8109.6C7—C16—H16C109.5
C1—C8—H8109.6H16A—C16—H16C109.5
C7—C8—H8109.6H16B—C16—H16C109.5
C2—C1—C11117.28 (17)C10—C11—C1103.64 (15)
C2—C1—C359.21 (12)C10—C11—H11A111.0
C11—C1—C3120.82 (16)C1—C11—H11A111.0
C2—C1—C8120.85 (16)C10—C11—H11B111.0
C11—C1—C8107.05 (14)C1—C11—H11B111.0
C3—C1—C8124.93 (16)H11A—C11—H11B109.0
N1—C12—C9120.03 (19)C3—C14—H14A109.5
N1—C12—C13115.56 (19)C3—C14—H14B109.5
C9—C12—C13124.34 (17)H14A—C14—H14B109.5
O1—C10—C9127.82 (19)C3—C14—H14C109.5
O1—C10—C11122.38 (17)H14A—C14—H14C109.5
C9—C10—C11109.76 (15)H14B—C14—H14C109.5
C12—N1—H2120.9 (16)C4—C5—C6113.71 (19)
C12—N1—H1115.2 (19)C4—C5—H5A108.8
H2—N1—H1123 (2)C6—C5—H5A108.8
C16—C7—C15108.37 (18)C4—C5—H5B108.8
C16—C7—C6105.49 (18)C6—C5—H5B108.8
C15—C7—C6109.80 (18)H5A—C5—H5B107.7
C16—C7—C8108.48 (17)C5—C6—C7119.6 (2)
C15—C7—C8112.35 (17)C5—C6—H6A107.4
C6—C7—C8112.04 (16)C7—C6—H6A107.4
C2—C3—C14118.5 (2)C5—C6—H6B107.4
C2—C3—C4118.56 (17)C7—C6—H6B107.4
C14—C3—C4112.69 (18)H6A—C6—H6B107.0
C2—C3—C159.77 (12)C7—C15—H15A109.5
C14—C3—C1117.47 (17)C7—C15—H15B109.5
C4—C3—C1120.35 (18)H15A—C15—H15B109.5
C3—C2—C161.01 (12)C7—C15—H15C109.5
C3—C2—Cl2120.86 (14)H15A—C15—H15C109.5
C1—C2—Cl2119.26 (15)H15B—C15—H15C109.5
C3—C2—Cl1119.40 (16)C12—C13—H13A109.5
C1—C2—Cl1121.53 (14)C12—C13—H13B109.5
Cl2—C2—Cl1108.41 (11)H13A—C13—H13B109.5
C5—C4—C3114.04 (18)C12—C13—H13C109.5
C5—C4—H4A108.7H13A—C13—H13C109.5
C3—C4—H4A108.7H13B—C13—H13C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H2···O1i0.85 (3)2.03 (3)2.865 (3)170 (2)
N1—H1···O10.83 (4)1.98 (4)2.672 (3)140 (3)
Symmetry code: (i) x+2, y1/2, z+1.

Experimental details

Crystal data
Chemical formulaC16H23Cl2NO
Mr316.25
Crystal system, space groupMonoclinic, P21
Temperature (K)298
a, b, c (Å)7.7570 (7), 9.7041 (9), 10.6901 (10)
β (°) 93.432 (3)
V3)803.25 (13)
Z2
Radiation typeMo Kα
µ (mm1)0.40
Crystal size (mm)0.41 × 0.33 × 0.26
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4954, 2355, 2297
Rint0.015
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.080, 1.08
No. of reflections2355
No. of parameters193
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.22
Absolute structureFlack & Bernardinelli (2000), 614 Friedel pairs
Absolute structure parameter0.02 (5)

Computer programs: APEX2 (Bruker, 2009), SAINT-Plus (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H2···O1i0.85 (3)2.03 (3)2.865 (3)170 (2)
N1—H1···O10.83 (4)1.98 (4)2.672 (3)140 (3)
Symmetry code: (i) x+2, y1/2, z+1.
 

Acknowledgements

We thank the National Center of Scientific and Technolog­ical Research (CNRST) which supports our scientific research.

References

First citationBruker (2009). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChekroun, A., Jarid, A., Benharref, A. & Boutalib, A. (2000). J. Org. Chem. 65, 4431–4434.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDakir, M., Auhmani, A., Ait Itto, M. Y., Mazoir, N., Akssira, M., Pierrot, M. & Benharref, A. (2004). Synth. Commun. 34, 2001–2008.  Web of Science CrossRef CAS Google Scholar
First citationDaoubi, M., Duran-Patron, R., Hmamouchi, M., Hernandez-Galan, R., Benharref, A. & Isidro, G. C. (2004). Pest Manag. Sci. 60, 927–932.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEl Jamili, H., Auhmani, A., Dakir, M., Lassaba, E., Benharref, A., Pierrot, M., Chiaroni, A. & Riche, C. (2002). Tetrahedron Lett. 43, 6645–6648.  CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143–1148.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJoseph, T. C. & Dev, S. (1968). Tetrahedron, 24, 3841–3859.  CrossRef CAS Web of Science Google Scholar
First citationLassaba, E., Eljamili, H., Chekroun, A., Benharref, A., Chiaroni, A., Riche, C. & Lavergne, J.-P. (1998). Synth. Commun. 28, 2641–2651.  Web of Science CrossRef CAS Google Scholar
First citationPlattier, M. & Teisseire, P. (1974). Recherche, 19, 131–144.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 3| March 2011| Pages o645-o646
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds