organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(3,6-Dimeth­­oxy­naphthalen-2-yl)(phen­yl)methanone

aDepartment of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture & Technology, 2-24-16 Naka-machi, Koganei, Tokyo 184-8588, Japan
*Correspondence e-mail: aokamoto@cc.tuat.ac.jp

(Received 12 February 2011; accepted 15 February 2011; online 19 February 2011)

In the title compound, C19H16O3, the dihedral angle between the naphthalene ring system and the phenyl ring is 68.32 (5)°. The bridging carbonyl C—C(=O)—C plane makes a dihedral angle of 54.32 (5)° with the naphthalene ring system and 21.45 (6)° with the phenyl ring. An inter­molecular C—H⋯O hydrogen bond exists between the H atom of one meth­oxy group and the O atom of the second meth­oxy group in an adjacent mol­ecule. The crystal packing is additionally stabilized by a weak C—H⋯O inter­molecular inter­action between an H atom of the naphthalene ring and the O atom of the carbonyl group.

Related literature

For electrophilic aromatic substitution of naphthalene deriv­atives affording peri-aroylated compounds regioselectively, see: Okamoto & Yonezawa (2009[Okamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914-915.]). For the structures of closely related compounds, see: Kataoka et al. (2010[Kataoka, K., Nishijima, T., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2972.]); Kato et al. (2010[Kato, Y., Nagasawa, A., Hijikata, D., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2659.]); Muto et al. (2010[Muto, T., Kato, Y., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2752.]); Nakaema, Okamoto et al. (2008[Nakaema, K., Okamoto, A., Imaizumi, M., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o612.]); Nakaema, Watanabe et al. (2008[Nakaema, K., Watanabe, S., Okamoto, A., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o807.]); Nishijima et al. (2010[Nishijima, T., Kataoka, K., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2904-o2905.]); Watanabe et al. (2010[Watanabe, S., Muto, T., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o712.]).

[Scheme 1]

Experimental

Crystal data
  • C19H16O3

  • Mr = 292.32

  • Monoclinic, P 21 /c

  • a = 8.7186 (2) Å

  • b = 20.4650 (4) Å

  • c = 8.5675 (2) Å

  • β = 102.475 (1)°

  • V = 1492.57 (6) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.71 mm−1

  • T = 193 K

  • 0.60 × 0.50 × 0.20 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.677, Tmax = 0.872

  • 26682 measured reflections

  • 2735 independent reflections

  • 2509 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.098

  • S = 1.06

  • 2735 reflections

  • 202 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O1i 0.95 2.58 3.4439 (13) 151
C18—H18B⋯O3ii 0.98 2.42 3.3742 (15) 164
Symmetry codes: (i) -x+2, -y, -z+1; (ii) x-1, y, z-1.

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); program(s) used to solve structure: Il Milione (Burla et al., 2007[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609-613.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the course of our study on selective electrophilic aromatic aroylation of 2,7-dimethoxynaphthalene, peri-aroylnaphthalene compounds have proved to be formed regioselectively with the aid of suitable acidic mediator (Okamoto & Yonezawa, 2009). Recently, we have reported the structures of 1,8-diaroyl-2,7-dimethoxynaphthalenes such as 1,8-bis(4-methylbenzoyl)-2,7-dimethoxynaphthalene (Muto et al., 2010) and 1,8-bis(4-aminobenzoyl)-2,7-dimethoxynaphthalene (Nishijima et al., 2010). The aroyl groups at the 1,8-positions of the naphthalene rings in these compounds are bonded in a nearly perpendicular manner but the benzene rings of the aroyl groups tilt slightly toward the exo sides of the naphthalene rings. Such 1-aroylnaphthalene homologues as (2,7-dimethoxynaphthalen-1-yl)(3-nitrophenyl)methanone (Kataoka et al., 2010) are also revealed to have essentially the same non-coplanar structure as observed for 1,8-diaroylated naphthalenes. Furthermore, we reported the crystal structure analysis of the corresponding β-isomers of 3-aroyl-2,7-dimethoxynaphthalenes such as 2-(4-chlorobenzoyl)-3,6-dimethoxynaphthalene (Nakaema, Okamoto et al., 2008) and (4-fluorophenyl) (3,6-dimethoxy-2-naphthyl)methanone (Watanabe et al., 2010). In the 3-aroylated naphthalenes, which are generally regarded to be thermodynamically more stable than the corresponding 1-positioned isomeric molecules, the aroyl groups are connected to the naphthalene rings in a moderately twisted fashion. On the other hand, there are several unique structural features in the benzoylated naphthalene homologues, 1-benzoyl-2,7-dimethoxynaphthalene (Kato et al., 2010) and 1,8-dibenzoyl-2,7-dimethoxynaphthalene (Nakaema, Watanabe et al., 2008). 1-Benzoyl-2,7-dimethoxynaphthalene contains three independent conformers and each of them forms a columnar structure, respectively. As a part of our ongoing study on the synthesis and structure of these homologous molecules, the crystal structure analysis of the title compound, a 3-monoaroylnaphthalene, is discussed in this article.

The molecular structure of the title molecule is displayed in Fig. 1. The benzene group is bonded to the naphthalene ring with a non-coplanar configuration. The dihedral angle between the best planes of the benzene ring (C12—C17) and the naphthalene ring (C1—C10) is 68.32 (5)°. The bridging carbonyl plane (O1—C3—C11—C12) makes a relatively large dihedral angle of 54.32 (5)° with the naphthalene ring (C1—C10) [C2—C3—C11—O1 torsion angle = -125.86 (12)°], whereas it makes a rather small dihedral angle of 21.45 (6)° with benzene ring (C12—C17) [O1—C11—C12—C13 torsion angle = -156.47 (11)°].

The crystal packing exhibits a weak C—H···O intermolecular interaction between the oxygen atom of the carbonyl group and the hydrogen atom of the naphthalene ring (Table 1, Fig. 2). The packing is additionally stabilized by a C—H···O hydrogen bond between the hydrogen of the 2-methoxy group, which is situated adjacent to the benzoyl group, and the ethereal oxygen atom of the 7-methoxy group in the neighboring molecule (Table 1, Fig. 3).

Related literature top

For electrophilic aromatic substitution of naphthalene derivatives affording peri-aroylated compounds regioselectively, see: Okamoto & Yonezawa (2009). For the structures of closely related compounds, see: Kataoka et al. (2010); Kato et al. (2010); Muto et al. (2010); Nakaema, Okamoto et al. (2008); Nakaema, Watanabe et al. (2008); Nishijima et al. (2010); Watanabe et al. (2010).

Experimental top

A mixture of 2,7-dimethoxynaphthalene (3.74 g, 19.9 mmol), FeCl3 (4.95 g, 37.1 mmol), trichloromethylbenzene (2.9 ml, 20 mmol) and dichloromethane (50 ml) was stirred at 293 K for 6 h, and the reaction mixture was poured into ice-cooled water followed by extraction with CHCl3 (30 ml × 3). The combined extracts were washed with 2 M aqueous NaOH followed by washing with brine. The organic layer thus obtained was dried over anhydrous MgSO4. The solvent was removed under reduced pressure to give cakes (yield 72%). The crude product was purified by flush silica gel chromatography (CHCl3). Colorless platelet single crystals suitable for X-ray diffraction were obtained by crystallization from hexane and chloroform (yield 21%).

Spectroscopic Data:

1H NMR δ (400 MHz, CDCl3); 3.83 (3H, s), 3.95 (3H, s), 7.05 (1H, dd, J = 2.4, 9.2 Hz), 7.11 (1H, d, J = 2.4 Hz), 7.14 (1H, s), 7.44 (2H, t, J = 8.0 Hz), 7.56 (1H, t, J = 7.6 Hz), 7.69 (1H, d, J = 9.2 Hz), 7.78 (1H, s), 7.83–7.85 (2H, m) p.p.m..

13C NMR δ (75 MHz, CDCl3); 55.34, 55.54, 105.00, 105.38, 117.02, 123.15, 127.89, 128.18, 129.93, 130.01, 130.07, 132.87, 137.11, 138.06, 155.83, 159.30, 196.02 p.p.m..

IR (KBr): 1627 (CO), 1580, 1502 (Ar, naphthalene), 1213 cm-1.

HRMS (m/z): [M + H]+ Calcd for C19H17O3, 293.1178; found, 293.1203.

m.p. = 438.7–441.5 K.

Refinement top

H atom positions were derived from geometrical considerations and were subsequently refined as riding atoms, with C—H = 0.95 (aromatic) and 0.98 (methyl) Å, and with Uiso(H) = 1.2Ueq(C) or 1.5(methyl).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku, 2010); program(s) used to solve structure: Il Milione (Burla et al., 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure with displacement ellipsoids at 50% probability level for non-H atoms.
[Figure 2] Fig. 2. The C4—H4···O1 intermolecular interaction [symmetry code: (i) – x + 2, – y, – z + 1].
[Figure 3] Fig. 3. The C18—H18B···O3 intermolecular interaction [symmetry code: (ii) x – 1, y, z – 1].
(3,6-Dimethoxynaphthalen-2-yl)(phenyl)methanone top
Crystal data top
C19H16O3F(000) = 616
Mr = 292.32Dx = 1.301 Mg m3
Monoclinic, P21/cMelting point = 438.7–441.5 K
Hall symbol: -P 2ybcCu Kα radiation, λ = 1.54187 Å
a = 8.7186 (2) ÅCell parameters from 16018 reflections
b = 20.4650 (4) Åθ = 4.3–68.2°
c = 8.5675 (2) ŵ = 0.71 mm1
β = 102.475 (1)°T = 193 K
V = 1492.57 (6) Å3Platelet, colorless
Z = 40.60 × 0.50 × 0.20 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2735 independent reflections
Radiation source: rotating anode2509 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
Detector resolution: 10.000 pixels mm-1θmax = 68.2°, θmin = 4.3°
ω scansh = 1010
Absorption correction: numerical
(NUMABS; Higashi, 1999)
k = 2424
Tmin = 0.677, Tmax = 0.872l = 1010
26682 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.0584P)2 + 0.2227P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
2735 reflectionsΔρmax = 0.23 e Å3
202 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0131 (8)
Crystal data top
C19H16O3V = 1492.57 (6) Å3
Mr = 292.32Z = 4
Monoclinic, P21/cCu Kα radiation
a = 8.7186 (2) ŵ = 0.71 mm1
b = 20.4650 (4) ÅT = 193 K
c = 8.5675 (2) Å0.60 × 0.50 × 0.20 mm
β = 102.475 (1)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2735 independent reflections
Absorption correction: numerical
(NUMABS; Higashi, 1999)
2509 reflections with I > 2σ(I)
Tmin = 0.677, Tmax = 0.872Rint = 0.044
26682 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.06Δρmax = 0.23 e Å3
2735 reflectionsΔρmin = 0.17 e Å3
202 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.78878 (10)0.03272 (4)0.31564 (10)0.0421 (2)
O20.82137 (9)0.20198 (4)0.16422 (9)0.0365 (2)
O31.49637 (9)0.28351 (4)0.80270 (10)0.0420 (2)
C11.04784 (12)0.23386 (5)0.36717 (13)0.0299 (2)
H11.03460.27860.33790.036*
C20.94725 (12)0.18810 (5)0.28459 (13)0.0297 (2)
C30.96544 (12)0.12068 (5)0.32677 (12)0.0301 (2)
C41.08301 (13)0.10241 (5)0.45329 (12)0.0314 (3)
H41.09310.05770.48340.038*
C51.18928 (12)0.14824 (5)0.53981 (12)0.0307 (3)
C61.31320 (13)0.13009 (5)0.66941 (13)0.0361 (3)
H61.32720.08540.69920.043*
C71.41212 (13)0.17582 (6)0.75144 (14)0.0378 (3)
H71.49480.16290.83740.045*
C81.39183 (12)0.24263 (6)0.70863 (13)0.0335 (3)
C91.27567 (12)0.26199 (5)0.58315 (13)0.0314 (3)
H91.26480.30690.55440.038*
C101.17134 (12)0.21514 (5)0.49575 (12)0.0288 (2)
C110.85594 (12)0.06982 (5)0.24066 (13)0.0312 (2)
C120.83398 (13)0.06328 (5)0.06375 (13)0.0320 (3)
C130.94512 (15)0.08664 (5)0.01647 (14)0.0386 (3)
H131.03560.10890.04080.046*
C140.92417 (18)0.07753 (6)0.18018 (15)0.0495 (3)
H141.00170.09250.23430.059*
C150.7911 (2)0.04677 (6)0.26460 (16)0.0550 (4)
H150.77570.04180.37720.066*
C160.67992 (18)0.02314 (7)0.18521 (16)0.0546 (4)
H160.58840.00180.24320.066*
C170.70235 (15)0.03068 (6)0.02102 (15)0.0436 (3)
H170.62740.01350.03370.052*
C180.78092 (13)0.26937 (5)0.13734 (15)0.0371 (3)
H18A0.76440.28900.23670.044*
H18B0.68430.27300.05450.044*
H18C0.86630.29230.10240.044*
C191.47866 (16)0.35166 (6)0.77225 (16)0.0468 (3)
H19A1.49490.36110.66480.056*
H19B1.55630.37570.85140.056*
H19C1.37270.36520.77950.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0504 (5)0.0376 (4)0.0393 (5)0.0111 (4)0.0122 (4)0.0032 (3)
O20.0385 (4)0.0293 (4)0.0366 (4)0.0020 (3)0.0034 (3)0.0004 (3)
O30.0390 (5)0.0418 (5)0.0411 (5)0.0081 (3)0.0008 (4)0.0024 (4)
C10.0344 (5)0.0250 (5)0.0309 (6)0.0011 (4)0.0086 (4)0.0016 (4)
C20.0317 (5)0.0303 (5)0.0273 (5)0.0022 (4)0.0067 (4)0.0012 (4)
C30.0344 (5)0.0282 (5)0.0291 (5)0.0002 (4)0.0095 (4)0.0009 (4)
C40.0376 (6)0.0267 (5)0.0308 (6)0.0017 (4)0.0096 (5)0.0024 (4)
C50.0327 (5)0.0311 (5)0.0293 (5)0.0015 (4)0.0091 (4)0.0016 (4)
C60.0387 (6)0.0333 (6)0.0353 (6)0.0025 (4)0.0053 (5)0.0056 (4)
C70.0348 (6)0.0421 (6)0.0341 (6)0.0019 (5)0.0022 (5)0.0048 (5)
C80.0305 (5)0.0392 (6)0.0314 (6)0.0038 (4)0.0079 (4)0.0028 (4)
C90.0329 (5)0.0298 (5)0.0324 (6)0.0009 (4)0.0093 (4)0.0000 (4)
C100.0298 (5)0.0305 (5)0.0278 (5)0.0005 (4)0.0099 (4)0.0000 (4)
C110.0330 (5)0.0262 (5)0.0345 (6)0.0018 (4)0.0076 (4)0.0019 (4)
C120.0375 (6)0.0243 (5)0.0330 (6)0.0023 (4)0.0053 (4)0.0010 (4)
C130.0491 (7)0.0298 (5)0.0386 (6)0.0008 (5)0.0135 (5)0.0006 (5)
C140.0766 (9)0.0365 (6)0.0407 (7)0.0071 (6)0.0247 (7)0.0016 (5)
C150.0892 (11)0.0407 (7)0.0322 (7)0.0188 (7)0.0062 (7)0.0044 (5)
C160.0614 (8)0.0492 (8)0.0447 (8)0.0046 (6)0.0076 (6)0.0125 (6)
C170.0428 (6)0.0416 (6)0.0438 (7)0.0027 (5)0.0034 (5)0.0060 (5)
C180.0373 (6)0.0318 (6)0.0390 (6)0.0040 (4)0.0014 (5)0.0045 (4)
C190.0488 (7)0.0413 (7)0.0480 (7)0.0118 (5)0.0053 (6)0.0059 (5)
Geometric parameters (Å, º) top
O1—C111.2224 (13)C9—C101.4188 (15)
O2—C21.3637 (13)C9—H90.9500
O2—C181.4299 (13)C11—C121.4921 (15)
O3—C81.3649 (13)C12—C131.3884 (16)
O3—C191.4211 (15)C12—C171.3891 (16)
C1—C21.3706 (15)C13—C141.3873 (17)
C1—C101.4168 (15)C13—H130.9500
C1—H10.9500C14—C151.379 (2)
C2—C31.4265 (14)C14—H140.9500
C3—C41.3731 (15)C15—C161.386 (2)
C3—C111.4948 (15)C15—H150.9500
C4—C51.4110 (15)C16—C171.3864 (18)
C4—H40.9500C16—H160.9500
C5—C101.4198 (14)C17—H170.9500
C5—C61.4212 (15)C18—H18A0.9800
C6—C71.3607 (17)C18—H18B0.9800
C6—H60.9500C18—H18C0.9800
C7—C81.4166 (16)C19—H19A0.9800
C7—H70.9500C19—H19B0.9800
C8—C91.3668 (16)C19—H19C0.9800
C2—O2—C18116.93 (8)O1—C11—C3120.03 (10)
C8—O3—C19117.45 (9)C12—C11—C3119.46 (9)
C2—C1—C10120.71 (9)C13—C12—C17119.52 (11)
C2—C1—H1119.6C13—C12—C11121.46 (10)
C10—C1—H1119.6C17—C12—C11118.97 (10)
O2—C2—C1124.67 (9)C14—C13—C12120.04 (12)
O2—C2—C3114.85 (9)C14—C13—H13120.0
C1—C2—C3120.42 (10)C12—C13—H13120.0
C4—C3—C2119.11 (10)C15—C14—C13120.24 (13)
C4—C3—C11119.23 (9)C15—C14—H14119.9
C2—C3—C11121.62 (9)C13—C14—H14119.9
C3—C4—C5121.82 (10)C14—C15—C16120.00 (12)
C3—C4—H4119.1C14—C15—H15120.0
C5—C4—H4119.1C16—C15—H15120.0
C4—C5—C10118.63 (10)C15—C16—C17119.92 (13)
C4—C5—C6122.61 (10)C15—C16—H16120.0
C10—C5—C6118.76 (10)C17—C16—H16120.0
C7—C6—C5120.92 (10)C16—C17—C12120.23 (12)
C7—C6—H6119.5C16—C17—H17119.9
C5—C6—H6119.5C12—C17—H17119.9
C6—C7—C8120.02 (10)O2—C18—H18A109.5
C6—C7—H7120.0O2—C18—H18B109.5
C8—C7—H7120.0H18A—C18—H18B109.5
O3—C8—C9125.00 (10)O2—C18—H18C109.5
O3—C8—C7114.12 (10)H18A—C18—H18C109.5
C9—C8—C7120.88 (10)H18B—C18—H18C109.5
C8—C9—C10120.06 (10)O3—C19—H19A109.5
C8—C9—H9120.0O3—C19—H19B109.5
C10—C9—H9120.0H19A—C19—H19B109.5
C1—C10—C9121.37 (10)O3—C19—H19C109.5
C1—C10—C5119.28 (10)H19A—C19—H19C109.5
C9—C10—C5119.34 (10)H19B—C19—H19C109.5
O1—C11—C12120.47 (10)
C18—O2—C2—C18.42 (15)C8—C9—C10—C1178.71 (10)
C18—O2—C2—C3168.77 (9)C8—C9—C10—C50.15 (15)
C10—C1—C2—O2176.97 (9)C4—C5—C10—C10.12 (15)
C10—C1—C2—C30.07 (16)C6—C5—C10—C1179.74 (9)
O2—C2—C3—C4175.98 (9)C4—C5—C10—C9179.01 (9)
C1—C2—C3—C41.34 (16)C6—C5—C10—C90.85 (15)
O2—C2—C3—C111.64 (14)C4—C3—C11—O151.76 (14)
C1—C2—C3—C11178.96 (9)C2—C3—C11—O1125.86 (11)
C2—C3—C4—C51.91 (16)C4—C3—C11—C12126.07 (10)
C11—C3—C4—C5179.58 (9)C2—C3—C11—C1256.32 (14)
C3—C4—C5—C101.18 (16)O1—C11—C12—C13156.48 (11)
C3—C4—C5—C6178.96 (10)C3—C11—C12—C1321.34 (15)
C4—C5—C6—C7179.10 (10)O1—C11—C12—C1720.86 (15)
C10—C5—C6—C70.75 (16)C3—C11—C12—C17161.33 (10)
C5—C6—C7—C80.35 (17)C17—C12—C13—C140.16 (17)
C19—O3—C8—C92.94 (16)C11—C12—C13—C14177.48 (10)
C19—O3—C8—C7176.95 (10)C12—C13—C14—C151.68 (18)
C6—C7—C8—O3178.50 (10)C13—C14—C15—C161.88 (19)
C6—C7—C8—C91.40 (17)C14—C15—C16—C170.2 (2)
O3—C8—C9—C10178.60 (9)C15—C16—C17—C121.61 (19)
C7—C8—C9—C101.28 (16)C13—C12—C17—C161.80 (17)
C2—C1—C10—C9179.52 (9)C11—C12—C17—C16179.19 (11)
C2—C1—C10—C50.65 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O1i0.952.583.4439 (13)151
C18—H18B···O3ii0.982.423.3742 (15)164
Symmetry codes: (i) x+2, y, z+1; (ii) x1, y, z1.

Experimental details

Crystal data
Chemical formulaC19H16O3
Mr292.32
Crystal system, space groupMonoclinic, P21/c
Temperature (K)193
a, b, c (Å)8.7186 (2), 20.4650 (4), 8.5675 (2)
β (°) 102.475 (1)
V3)1492.57 (6)
Z4
Radiation typeCu Kα
µ (mm1)0.71
Crystal size (mm)0.60 × 0.50 × 0.20
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionNumerical
(NUMABS; Higashi, 1999)
Tmin, Tmax0.677, 0.872
No. of measured, independent and
observed [I > 2σ(I)] reflections
26682, 2735, 2509
Rint0.044
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.098, 1.06
No. of reflections2735
No. of parameters202
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.17

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku, 2010), Il Milione (Burla et al., 2007), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O1i0.952.583.4439 (13)151
C18—H18B···O3ii0.982.423.3742 (15)164
Symmetry codes: (i) x+2, y, z+1; (ii) x1, y, z1.
 

Acknowledgements

The authors would express their gratitude to Professor Keiichi Noguchi, Instrumentation Analysis Center, Tokyo University of Agriculture & Technology, for technical advice. This work was partially supported by the Mukai Science and Technology Foundation, Tokyo, Japan.

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationHigashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKataoka, K., Nishijima, T., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2972.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKato, Y., Nagasawa, A., Hijikata, D., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2659.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMuto, T., Kato, Y., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2752.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNakaema, K., Okamoto, A., Imaizumi, M., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o612.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNakaema, K., Watanabe, S., Okamoto, A., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o807.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNishijima, T., Kataoka, K., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2904–o2905.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOkamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914–915.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatanabe, S., Muto, T., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o712.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds