organic compounds
(3,6-Dimethoxynaphthalen-2-yl)(phenyl)methanone
aDepartment of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture & Technology, 2-24-16 Naka-machi, Koganei, Tokyo 184-8588, Japan
*Correspondence e-mail: aokamoto@cc.tuat.ac.jp
In the title compound, C19H16O3, the dihedral angle between the naphthalene ring system and the phenyl ring is 68.32 (5)°. The bridging carbonyl C—C(=O)—C plane makes a dihedral angle of 54.32 (5)° with the naphthalene ring system and 21.45 (6)° with the phenyl ring. An intermolecular C—H⋯O hydrogen bond exists between the H atom of one methoxy group and the O atom of the second methoxy group in an adjacent molecule. The crystal packing is additionally stabilized by a weak C—H⋯O intermolecular interaction between an H atom of the naphthalene ring and the O atom of the carbonyl group.
Related literature
For electrophilic aromatic substitution of naphthalene derivatives affording peri-aroylated compounds regioselectively, see: Okamoto & Yonezawa (2009). For the structures of closely related compounds, see: Kataoka et al. (2010); Kato et al. (2010); Muto et al. (2010); Nakaema, Okamoto et al. (2008); Nakaema, Watanabe et al. (2008); Nishijima et al. (2010); Watanabe et al. (2010).
Experimental
Crystal data
|
Refinement
|
Data collection: PROCESS-AUTO (Rigaku, 1998); cell PROCESS-AUTO; data reduction: CrystalStructure (Rigaku, 2010); program(s) used to solve structure: Il Milione (Burla et al., 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536811005630/fk2037sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811005630/fk2037Isup2.hkl
A mixture of 2,7-dimethoxynaphthalene (3.74 g, 19.9 mmol), FeCl3 (4.95 g, 37.1 mmol), trichloromethylbenzene (2.9 ml, 20 mmol) and dichloromethane (50 ml) was stirred at 293 K for 6 h, and the reaction mixture was poured into ice-cooled water followed by extraction with CHCl3 (30 ml × 3). The combined extracts were washed with 2 M aqueous NaOH followed by washing with brine. The organic layer thus obtained was dried over anhydrous MgSO4. The solvent was removed under reduced pressure to give cakes (yield 72%). The crude product was purified by flush silica gel
(CHCl3). Colorless platelet single crystals suitable for X-ray diffraction were obtained by crystallization from hexane and chloroform (yield 21%).Spectroscopic Data:
1H NMR δ (400 MHz, CDCl3); 3.83 (3H, s), 3.95 (3H, s), 7.05 (1H, dd, J = 2.4, 9.2 Hz), 7.11 (1H, d, J = 2.4 Hz), 7.14 (1H, s), 7.44 (2H, t, J = 8.0 Hz), 7.56 (1H, t, J = 7.6 Hz), 7.69 (1H, d, J = 9.2 Hz), 7.78 (1H, s), 7.83–7.85 (2H, m) p.p.m..
13C NMR δ (75 MHz, CDCl3); 55.34, 55.54, 105.00, 105.38, 117.02, 123.15, 127.89, 128.18, 129.93, 130.01, 130.07, 132.87, 137.11, 138.06, 155.83, 159.30, 196.02 p.p.m..
IR (KBr): 1627 (C═O), 1580, 1502 (Ar, naphthalene), 1213 cm-1.
HRMS (m/z): [M + H]+ Calcd for C19H17O3, 293.1178; found, 293.1203.
m.p. = 438.7–441.5 K.
H atom positions were derived from geometrical considerations and were subsequently refined as riding atoms, with C—H = 0.95 (aromatic) and 0.98 (methyl) Å, and with Uiso(H) = 1.2Ueq(C) or 1.5(methyl).
Data collection: PROCESS-AUTO (Rigaku, 1998); cell
PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku, 2010); program(s) used to solve structure: Il Milione (Burla et al., 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C19H16O3 | F(000) = 616 |
Mr = 292.32 | Dx = 1.301 Mg m−3 |
Monoclinic, P21/c | Melting point = 438.7–441.5 K |
Hall symbol: -P 2ybc | Cu Kα radiation, λ = 1.54187 Å |
a = 8.7186 (2) Å | Cell parameters from 16018 reflections |
b = 20.4650 (4) Å | θ = 4.3–68.2° |
c = 8.5675 (2) Å | µ = 0.71 mm−1 |
β = 102.475 (1)° | T = 193 K |
V = 1492.57 (6) Å3 | Platelet, colorless |
Z = 4 | 0.60 × 0.50 × 0.20 mm |
Rigaku R-AXIS RAPID diffractometer | 2735 independent reflections |
Radiation source: rotating anode | 2509 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.044 |
Detector resolution: 10.000 pixels mm-1 | θmax = 68.2°, θmin = 4.3° |
ω scans | h = −10→10 |
Absorption correction: numerical (NUMABS; Higashi, 1999) | k = −24→24 |
Tmin = 0.677, Tmax = 0.872 | l = −10→10 |
26682 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.034 | H-atom parameters constrained |
wR(F2) = 0.098 | w = 1/[σ2(Fo2) + (0.0584P)2 + 0.2227P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max = 0.001 |
2735 reflections | Δρmax = 0.23 e Å−3 |
202 parameters | Δρmin = −0.17 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0131 (8) |
C19H16O3 | V = 1492.57 (6) Å3 |
Mr = 292.32 | Z = 4 |
Monoclinic, P21/c | Cu Kα radiation |
a = 8.7186 (2) Å | µ = 0.71 mm−1 |
b = 20.4650 (4) Å | T = 193 K |
c = 8.5675 (2) Å | 0.60 × 0.50 × 0.20 mm |
β = 102.475 (1)° |
Rigaku R-AXIS RAPID diffractometer | 2735 independent reflections |
Absorption correction: numerical (NUMABS; Higashi, 1999) | 2509 reflections with I > 2σ(I) |
Tmin = 0.677, Tmax = 0.872 | Rint = 0.044 |
26682 measured reflections |
R[F2 > 2σ(F2)] = 0.034 | 0 restraints |
wR(F2) = 0.098 | H-atom parameters constrained |
S = 1.06 | Δρmax = 0.23 e Å−3 |
2735 reflections | Δρmin = −0.17 e Å−3 |
202 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.78878 (10) | 0.03272 (4) | 0.31564 (10) | 0.0421 (2) | |
O2 | 0.82137 (9) | 0.20198 (4) | 0.16422 (9) | 0.0365 (2) | |
O3 | 1.49637 (9) | 0.28351 (4) | 0.80270 (10) | 0.0420 (2) | |
C1 | 1.04784 (12) | 0.23386 (5) | 0.36717 (13) | 0.0299 (2) | |
H1 | 1.0346 | 0.2786 | 0.3379 | 0.036* | |
C2 | 0.94725 (12) | 0.18810 (5) | 0.28459 (13) | 0.0297 (2) | |
C3 | 0.96544 (12) | 0.12068 (5) | 0.32677 (12) | 0.0301 (2) | |
C4 | 1.08301 (13) | 0.10241 (5) | 0.45329 (12) | 0.0314 (3) | |
H4 | 1.0931 | 0.0577 | 0.4834 | 0.038* | |
C5 | 1.18928 (12) | 0.14824 (5) | 0.53981 (12) | 0.0307 (3) | |
C6 | 1.31320 (13) | 0.13009 (5) | 0.66941 (13) | 0.0361 (3) | |
H6 | 1.3272 | 0.0854 | 0.6992 | 0.043* | |
C7 | 1.41212 (13) | 0.17582 (6) | 0.75144 (14) | 0.0378 (3) | |
H7 | 1.4948 | 0.1629 | 0.8374 | 0.045* | |
C8 | 1.39183 (12) | 0.24263 (6) | 0.70863 (13) | 0.0335 (3) | |
C9 | 1.27567 (12) | 0.26199 (5) | 0.58315 (13) | 0.0314 (3) | |
H9 | 1.2648 | 0.3069 | 0.5544 | 0.038* | |
C10 | 1.17134 (12) | 0.21514 (5) | 0.49575 (12) | 0.0288 (2) | |
C11 | 0.85594 (12) | 0.06982 (5) | 0.24066 (13) | 0.0312 (2) | |
C12 | 0.83398 (13) | 0.06328 (5) | 0.06375 (13) | 0.0320 (3) | |
C13 | 0.94512 (15) | 0.08664 (5) | −0.01647 (14) | 0.0386 (3) | |
H13 | 1.0356 | 0.1089 | 0.0408 | 0.046* | |
C14 | 0.92417 (18) | 0.07753 (6) | −0.18018 (15) | 0.0495 (3) | |
H14 | 1.0017 | 0.0925 | −0.2343 | 0.059* | |
C15 | 0.7911 (2) | 0.04677 (6) | −0.26460 (16) | 0.0550 (4) | |
H15 | 0.7757 | 0.0418 | −0.3772 | 0.066* | |
C16 | 0.67992 (18) | 0.02314 (7) | −0.18521 (16) | 0.0546 (4) | |
H16 | 0.5884 | 0.0018 | −0.2432 | 0.066* | |
C17 | 0.70235 (15) | 0.03068 (6) | −0.02102 (15) | 0.0436 (3) | |
H17 | 0.6274 | 0.0135 | 0.0337 | 0.052* | |
C18 | 0.78092 (13) | 0.26937 (5) | 0.13734 (15) | 0.0371 (3) | |
H18A | 0.7644 | 0.2890 | 0.2367 | 0.044* | |
H18B | 0.6843 | 0.2730 | 0.0545 | 0.044* | |
H18C | 0.8663 | 0.2923 | 0.1024 | 0.044* | |
C19 | 1.47866 (16) | 0.35166 (6) | 0.77225 (16) | 0.0468 (3) | |
H19A | 1.4949 | 0.3611 | 0.6648 | 0.056* | |
H19B | 1.5563 | 0.3757 | 0.8514 | 0.056* | |
H19C | 1.3727 | 0.3652 | 0.7795 | 0.056* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0504 (5) | 0.0376 (4) | 0.0393 (5) | −0.0111 (4) | 0.0122 (4) | 0.0032 (3) |
O2 | 0.0385 (4) | 0.0293 (4) | 0.0366 (4) | 0.0020 (3) | −0.0034 (3) | −0.0004 (3) |
O3 | 0.0390 (5) | 0.0418 (5) | 0.0411 (5) | −0.0081 (3) | −0.0008 (4) | −0.0024 (4) |
C1 | 0.0344 (5) | 0.0250 (5) | 0.0309 (6) | 0.0011 (4) | 0.0086 (4) | 0.0016 (4) |
C2 | 0.0317 (5) | 0.0303 (5) | 0.0273 (5) | 0.0022 (4) | 0.0067 (4) | 0.0012 (4) |
C3 | 0.0344 (5) | 0.0282 (5) | 0.0291 (5) | −0.0002 (4) | 0.0095 (4) | −0.0009 (4) |
C4 | 0.0376 (6) | 0.0267 (5) | 0.0308 (6) | 0.0017 (4) | 0.0096 (5) | 0.0024 (4) |
C5 | 0.0327 (5) | 0.0311 (5) | 0.0293 (5) | 0.0015 (4) | 0.0091 (4) | 0.0016 (4) |
C6 | 0.0387 (6) | 0.0333 (6) | 0.0353 (6) | 0.0025 (4) | 0.0053 (5) | 0.0056 (4) |
C7 | 0.0348 (6) | 0.0421 (6) | 0.0341 (6) | 0.0019 (5) | 0.0022 (5) | 0.0048 (5) |
C8 | 0.0305 (5) | 0.0392 (6) | 0.0314 (6) | −0.0038 (4) | 0.0079 (4) | −0.0028 (4) |
C9 | 0.0329 (5) | 0.0298 (5) | 0.0324 (6) | −0.0009 (4) | 0.0093 (4) | 0.0000 (4) |
C10 | 0.0298 (5) | 0.0305 (5) | 0.0278 (5) | 0.0005 (4) | 0.0099 (4) | 0.0000 (4) |
C11 | 0.0330 (5) | 0.0262 (5) | 0.0345 (6) | 0.0018 (4) | 0.0076 (4) | 0.0019 (4) |
C12 | 0.0375 (6) | 0.0243 (5) | 0.0330 (6) | 0.0023 (4) | 0.0053 (4) | −0.0010 (4) |
C13 | 0.0491 (7) | 0.0298 (5) | 0.0386 (6) | −0.0008 (5) | 0.0135 (5) | −0.0006 (5) |
C14 | 0.0766 (9) | 0.0365 (6) | 0.0407 (7) | 0.0071 (6) | 0.0247 (7) | 0.0016 (5) |
C15 | 0.0892 (11) | 0.0407 (7) | 0.0322 (7) | 0.0188 (7) | 0.0062 (7) | −0.0044 (5) |
C16 | 0.0614 (8) | 0.0492 (8) | 0.0447 (8) | 0.0046 (6) | −0.0076 (6) | −0.0125 (6) |
C17 | 0.0428 (6) | 0.0416 (6) | 0.0438 (7) | −0.0027 (5) | 0.0034 (5) | −0.0060 (5) |
C18 | 0.0373 (6) | 0.0318 (6) | 0.0390 (6) | 0.0040 (4) | 0.0014 (5) | 0.0045 (4) |
C19 | 0.0488 (7) | 0.0413 (7) | 0.0480 (7) | −0.0118 (5) | 0.0053 (6) | −0.0059 (5) |
O1—C11 | 1.2224 (13) | C9—C10 | 1.4188 (15) |
O2—C2 | 1.3637 (13) | C9—H9 | 0.9500 |
O2—C18 | 1.4299 (13) | C11—C12 | 1.4921 (15) |
O3—C8 | 1.3649 (13) | C12—C13 | 1.3884 (16) |
O3—C19 | 1.4211 (15) | C12—C17 | 1.3891 (16) |
C1—C2 | 1.3706 (15) | C13—C14 | 1.3873 (17) |
C1—C10 | 1.4168 (15) | C13—H13 | 0.9500 |
C1—H1 | 0.9500 | C14—C15 | 1.379 (2) |
C2—C3 | 1.4265 (14) | C14—H14 | 0.9500 |
C3—C4 | 1.3731 (15) | C15—C16 | 1.386 (2) |
C3—C11 | 1.4948 (15) | C15—H15 | 0.9500 |
C4—C5 | 1.4110 (15) | C16—C17 | 1.3864 (18) |
C4—H4 | 0.9500 | C16—H16 | 0.9500 |
C5—C10 | 1.4198 (14) | C17—H17 | 0.9500 |
C5—C6 | 1.4212 (15) | C18—H18A | 0.9800 |
C6—C7 | 1.3607 (17) | C18—H18B | 0.9800 |
C6—H6 | 0.9500 | C18—H18C | 0.9800 |
C7—C8 | 1.4166 (16) | C19—H19A | 0.9800 |
C7—H7 | 0.9500 | C19—H19B | 0.9800 |
C8—C9 | 1.3668 (16) | C19—H19C | 0.9800 |
C2—O2—C18 | 116.93 (8) | O1—C11—C3 | 120.03 (10) |
C8—O3—C19 | 117.45 (9) | C12—C11—C3 | 119.46 (9) |
C2—C1—C10 | 120.71 (9) | C13—C12—C17 | 119.52 (11) |
C2—C1—H1 | 119.6 | C13—C12—C11 | 121.46 (10) |
C10—C1—H1 | 119.6 | C17—C12—C11 | 118.97 (10) |
O2—C2—C1 | 124.67 (9) | C14—C13—C12 | 120.04 (12) |
O2—C2—C3 | 114.85 (9) | C14—C13—H13 | 120.0 |
C1—C2—C3 | 120.42 (10) | C12—C13—H13 | 120.0 |
C4—C3—C2 | 119.11 (10) | C15—C14—C13 | 120.24 (13) |
C4—C3—C11 | 119.23 (9) | C15—C14—H14 | 119.9 |
C2—C3—C11 | 121.62 (9) | C13—C14—H14 | 119.9 |
C3—C4—C5 | 121.82 (10) | C14—C15—C16 | 120.00 (12) |
C3—C4—H4 | 119.1 | C14—C15—H15 | 120.0 |
C5—C4—H4 | 119.1 | C16—C15—H15 | 120.0 |
C4—C5—C10 | 118.63 (10) | C15—C16—C17 | 119.92 (13) |
C4—C5—C6 | 122.61 (10) | C15—C16—H16 | 120.0 |
C10—C5—C6 | 118.76 (10) | C17—C16—H16 | 120.0 |
C7—C6—C5 | 120.92 (10) | C16—C17—C12 | 120.23 (12) |
C7—C6—H6 | 119.5 | C16—C17—H17 | 119.9 |
C5—C6—H6 | 119.5 | C12—C17—H17 | 119.9 |
C6—C7—C8 | 120.02 (10) | O2—C18—H18A | 109.5 |
C6—C7—H7 | 120.0 | O2—C18—H18B | 109.5 |
C8—C7—H7 | 120.0 | H18A—C18—H18B | 109.5 |
O3—C8—C9 | 125.00 (10) | O2—C18—H18C | 109.5 |
O3—C8—C7 | 114.12 (10) | H18A—C18—H18C | 109.5 |
C9—C8—C7 | 120.88 (10) | H18B—C18—H18C | 109.5 |
C8—C9—C10 | 120.06 (10) | O3—C19—H19A | 109.5 |
C8—C9—H9 | 120.0 | O3—C19—H19B | 109.5 |
C10—C9—H9 | 120.0 | H19A—C19—H19B | 109.5 |
C1—C10—C9 | 121.37 (10) | O3—C19—H19C | 109.5 |
C1—C10—C5 | 119.28 (10) | H19A—C19—H19C | 109.5 |
C9—C10—C5 | 119.34 (10) | H19B—C19—H19C | 109.5 |
O1—C11—C12 | 120.47 (10) | ||
C18—O2—C2—C1 | −8.42 (15) | C8—C9—C10—C1 | 178.71 (10) |
C18—O2—C2—C3 | 168.77 (9) | C8—C9—C10—C5 | −0.15 (15) |
C10—C1—C2—O2 | 176.97 (9) | C4—C5—C10—C1 | 0.12 (15) |
C10—C1—C2—C3 | −0.07 (16) | C6—C5—C10—C1 | −179.74 (9) |
O2—C2—C3—C4 | −175.98 (9) | C4—C5—C10—C9 | 179.01 (9) |
C1—C2—C3—C4 | 1.34 (16) | C6—C5—C10—C9 | −0.85 (15) |
O2—C2—C3—C11 | 1.64 (14) | C4—C3—C11—O1 | 51.76 (14) |
C1—C2—C3—C11 | 178.96 (9) | C2—C3—C11—O1 | −125.86 (11) |
C2—C3—C4—C5 | −1.91 (16) | C4—C3—C11—C12 | −126.07 (10) |
C11—C3—C4—C5 | −179.58 (9) | C2—C3—C11—C12 | 56.32 (14) |
C3—C4—C5—C10 | 1.18 (16) | O1—C11—C12—C13 | −156.48 (11) |
C3—C4—C5—C6 | −178.96 (10) | C3—C11—C12—C13 | 21.34 (15) |
C4—C5—C6—C7 | −179.10 (10) | O1—C11—C12—C17 | 20.86 (15) |
C10—C5—C6—C7 | 0.75 (16) | C3—C11—C12—C17 | −161.33 (10) |
C5—C6—C7—C8 | 0.35 (17) | C17—C12—C13—C14 | 0.16 (17) |
C19—O3—C8—C9 | 2.94 (16) | C11—C12—C13—C14 | 177.48 (10) |
C19—O3—C8—C7 | −176.95 (10) | C12—C13—C14—C15 | 1.68 (18) |
C6—C7—C8—O3 | 178.50 (10) | C13—C14—C15—C16 | −1.88 (19) |
C6—C7—C8—C9 | −1.40 (17) | C14—C15—C16—C17 | 0.2 (2) |
O3—C8—C9—C10 | −178.60 (9) | C15—C16—C17—C12 | 1.61 (19) |
C7—C8—C9—C10 | 1.28 (16) | C13—C12—C17—C16 | −1.80 (17) |
C2—C1—C10—C9 | −179.52 (9) | C11—C12—C17—C16 | −179.19 (11) |
C2—C1—C10—C5 | −0.65 (15) |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4···O1i | 0.95 | 2.58 | 3.4439 (13) | 151 |
C18—H18B···O3ii | 0.98 | 2.42 | 3.3742 (15) | 164 |
Symmetry codes: (i) −x+2, −y, −z+1; (ii) x−1, y, z−1. |
Experimental details
Crystal data | |
Chemical formula | C19H16O3 |
Mr | 292.32 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 193 |
a, b, c (Å) | 8.7186 (2), 20.4650 (4), 8.5675 (2) |
β (°) | 102.475 (1) |
V (Å3) | 1492.57 (6) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 0.71 |
Crystal size (mm) | 0.60 × 0.50 × 0.20 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPID diffractometer |
Absorption correction | Numerical (NUMABS; Higashi, 1999) |
Tmin, Tmax | 0.677, 0.872 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 26682, 2735, 2509 |
Rint | 0.044 |
(sin θ/λ)max (Å−1) | 0.602 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.034, 0.098, 1.06 |
No. of reflections | 2735 |
No. of parameters | 202 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.23, −0.17 |
Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku, 2010), Il Milione (Burla et al., 2007), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996).
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4···O1i | 0.95 | 2.58 | 3.4439 (13) | 151 |
C18—H18B···O3ii | 0.98 | 2.42 | 3.3742 (15) | 164 |
Symmetry codes: (i) −x+2, −y, −z+1; (ii) x−1, y, z−1. |
Acknowledgements
The authors would express their gratitude to Professor Keiichi Noguchi, Instrumentation Analysis Center, Tokyo University of Agriculture & Technology, for technical advice. This work was partially supported by the Mukai Science and Technology Foundation, Tokyo, Japan.
References
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613. Web of Science CrossRef CAS IUCr Journals Google Scholar
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan. Google Scholar
Kataoka, K., Nishijima, T., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2972. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kato, Y., Nagasawa, A., Hijikata, D., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2659. Web of Science CSD CrossRef IUCr Journals Google Scholar
Muto, T., Kato, Y., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2752. Web of Science CSD CrossRef IUCr Journals Google Scholar
Nakaema, K., Okamoto, A., Imaizumi, M., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o612. Web of Science CSD CrossRef IUCr Journals Google Scholar
Nakaema, K., Watanabe, S., Okamoto, A., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o807. Web of Science CSD CrossRef IUCr Journals Google Scholar
Nishijima, T., Kataoka, K., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2904–o2905. Web of Science CSD CrossRef IUCr Journals Google Scholar
Okamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914–915. Web of Science CrossRef CAS Google Scholar
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Watanabe, S., Muto, T., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o712. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In the course of our study on selective electrophilic aromatic aroylation of 2,7-dimethoxynaphthalene, peri-aroylnaphthalene compounds have proved to be formed regioselectively with the aid of suitable acidic mediator (Okamoto & Yonezawa, 2009). Recently, we have reported the structures of 1,8-diaroyl-2,7-dimethoxynaphthalenes such as 1,8-bis(4-methylbenzoyl)-2,7-dimethoxynaphthalene (Muto et al., 2010) and 1,8-bis(4-aminobenzoyl)-2,7-dimethoxynaphthalene (Nishijima et al., 2010). The aroyl groups at the 1,8-positions of the naphthalene rings in these compounds are bonded in a nearly perpendicular manner but the benzene rings of the aroyl groups tilt slightly toward the exo sides of the naphthalene rings. Such 1-aroylnaphthalene homologues as (2,7-dimethoxynaphthalen-1-yl)(3-nitrophenyl)methanone (Kataoka et al., 2010) are also revealed to have essentially the same non-coplanar structure as observed for 1,8-diaroylated naphthalenes. Furthermore, we reported the crystal structure analysis of the corresponding β-isomers of 3-aroyl-2,7-dimethoxynaphthalenes such as 2-(4-chlorobenzoyl)-3,6-dimethoxynaphthalene (Nakaema, Okamoto et al., 2008) and (4-fluorophenyl) (3,6-dimethoxy-2-naphthyl)methanone (Watanabe et al., 2010). In the 3-aroylated naphthalenes, which are generally regarded to be thermodynamically more stable than the corresponding 1-positioned isomeric molecules, the aroyl groups are connected to the naphthalene rings in a moderately twisted fashion. On the other hand, there are several unique structural features in the benzoylated naphthalene homologues, 1-benzoyl-2,7-dimethoxynaphthalene (Kato et al., 2010) and 1,8-dibenzoyl-2,7-dimethoxynaphthalene (Nakaema, Watanabe et al., 2008). 1-Benzoyl-2,7-dimethoxynaphthalene contains three independent conformers and each of them forms a columnar structure, respectively. As a part of our ongoing study on the synthesis and structure of these homologous molecules, the crystal structure analysis of the title compound, a 3-monoaroylnaphthalene, is discussed in this article.
The molecular structure of the title molecule is displayed in Fig. 1. The benzene group is bonded to the naphthalene ring with a non-coplanar configuration. The dihedral angle between the best planes of the benzene ring (C12—C17) and the naphthalene ring (C1—C10) is 68.32 (5)°. The bridging carbonyl plane (O1—C3—C11—C12) makes a relatively large dihedral angle of 54.32 (5)° with the naphthalene ring (C1—C10) [C2—C3—C11—O1 torsion angle = -125.86 (12)°], whereas it makes a rather small dihedral angle of 21.45 (6)° with benzene ring (C12—C17) [O1—C11—C12—C13 torsion angle = -156.47 (11)°].
The crystal packing exhibits a weak C—H···O intermolecular interaction between the oxygen atom of the carbonyl group and the hydrogen atom of the naphthalene ring (Table 1, Fig. 2). The packing is additionally stabilized by a C—H···O hydrogen bond between the hydrogen of the 2-methoxy group, which is situated adjacent to the benzoyl group, and the ethereal oxygen atom of the 7-methoxy group in the neighboring molecule (Table 1, Fig. 3).