organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-Benzoyl-N′,N′-di­methyl­thio­urea

aDepartamento de Química Inorgánica, Facultad de Química, Universidad de la Habana, Habana 10400, Cuba, bDepartamento de Química, Universidade Federal de São Carlos, CEP 13565-905, São Carlos, SP, Brazil, cLaboratorio de Síntesis Orgánica, Facultad de Química, Universidad de la Habana, Habana 10400, Cuba, and dGrupo de Cristalografia, Instituto de Fisica de São Carlos, Universidade de São Paulo, CEP 13560-970, São Carlos, Brazil
*Correspondence e-mail: hperez@fq.uh.cu

(Received 17 December 2010; accepted 10 February 2011; online 16 February 2011)

In the title compound, C10H12N2OS, the amide NCO group is twisted relative to the thio­ureido SCN2 group, forming a dihedral angle of 55.3 (2)°. The crystal packing shows inter­molecular N—H⋯S and weak C—H⋯O inter­actions, the former giving rise to the formation of centrosymmetric R22(8) dimers.

Related literature

For general background to N-acyl-N′,N′-disubstituted thio­urea, see: Koch (2001[Koch, K. R. (2001). Coord. Chem. Rev. 216-217, 473-488.]); Sosa-Albertus & Piris (2001[Sosa-Albertus, M. & Piris, M. (2001). J. Mol. Struct. 598, 261-265.]); Pérez et al. (2008a[Pérez, H., Corrêa, R. S., Duque, J., Plutín, A. M. & O'Reilly, B. (2008a). Acta Cryst. E64, m916.]). For related structures, see: Arslan et al. (2003[Arslan, H., Flörke, U. & Külcü, N. (2003). Acta Cryst. E59, o641-o642.]); Bolte & Fink (2003[Bolte, M. & Fink, L. (2003). Private communication (refcode IJOQED). CCDC, Cambridge, England.]); Pérez et al. (2008b[Pérez, H., Mascarenhas, Y., Estévez-Hernández, O., Santos Jr, S. & Duque, J. (2008b). Acta Cryst. E64, o695.]); Gomes et al. (2010[Gomes, L. R., Santos, L. M. N. B. F., Coutinho, J. P., Schröder, B. & Low, J. N. (2010). Acta Cryst. E66, o870.]). For details of the synthesis, see: Nagasawa & Mitsunobu (1981[Nagasawa, H. & Mitsunobu, O. (1981). Bull. Chem. Soc. Jpn 54, 2223-2224.]); Che et al. (1999[Che, D. J., Li, G., Yao, X. L., Zhu, Y. & Zhou, D. P. (1999). J. Chem. Soc. Dalton Trans. pp. 2683-2687.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, I. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C10H12N2OS

  • Mr = 208.28

  • Monoclinic, P 21 /n

  • a = 10.8602 (9) Å

  • b = 5.5590 (6) Å

  • c = 18.6864 (10) Å

  • β = 102.768 (5)°

  • V = 1100.24 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 294 K

  • 0.26 × 0.13 × 0.13 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: gaussian (Coppens et al., 1965[Coppens, P., Leiserowitz, L. & Rabinovich, D. (1965). Acta Cryst. 18, 1035-1038.]) Tmin = 0.943, Tmax = 0.969

  • 7078 measured reflections

  • 2282 independent reflections

  • 1762 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.120

  • S = 1.05

  • 2282 reflections

  • 133 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯S1i 0.85 (2) 2.65 (2) 3.4335 (17) 154.2 (18)
C10—H10C⋯O1ii 0.96 2.38 3.265 (3) 153
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: COLLECT (Enraf–Nonius, 2000[Enraf-Nonius (2000). COLLECT. Enraf-Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

N-Acyl-N',N'-disubstituted thiourea derivatives have been a subject of investigations due to their ability to form stable metal complexes (Koch et al., 2001). The crystal structure analysis of the title compound was undertaken as a continuation of our interest in these N',N'-disubstituted acylthiourea derivatives as intermediates towards novel heterocycles and for the systematic study of their bioactivity and complexation behavior (Pérez et al., 2008a). On the other hand, the crystal structure determination of this compound helps to confirm its most stable molecular conformation, previously predicted by theoretical methods (Sosa-Albertus & Piris, 2001) in order to explain the behavior of polydentate systems in alkylation reactions.

The main bond lengths of the title compound are within the ranges obtained for similar compounds (Pérez et al., 2008b; Arslan et al., 2003). The C–S and C–O bonds both show the expected double-bond character. However, the C–N bonds of acylthioureido fragment are intermediate between those expected for single and double C–N bonds (1.47 and 1.27 Å, respectively). These results can be explained by the existence of resonance in this part of the molecule. The conformation with respect to the thiocarbonyl and carbonyl groups is twisted, as reflected by the torsion angles O1/C1/N1/C2 and C1/N1/C2/N2 of -2.6 (3) and 57.9 (2)°. The dihedral angle between the O1/C1/N1 and S1/C2/N2 planes is 55.3 (2)°, while that between the O1/C1/N1 plane and the benzene ring is 35.8 (2)°. Compared to the diethyl analog (Bolte & Fink, 2003) and its monoclinic polymorph (Gomes, et al., 2010), the molecular confomation of the title molecule is significantly less twisted, as reflected by the corresponding torsion angles O/C/N/C [12.48 (4)°, in Bolte & Fink (2003); 7.58 (17)° in Gomes et al. (2010) and C/N/C/N (-80.79 (3)° in Bolte & Fink (2003); -71.44 (14)° in Gomes et al. (2010)]. The dihedral angle between the O/C/N and S/C/N planes is also smaller than those of the diethyl analog [(73.9 (2)° in Bolte & Fink (2003); 67.3 (1)° in Gomes et al. (2010)]. In the crystal structure (Fig. 2), an N—H···S(-x + 1,-y + 2,-z + 1) hydrogen bond links the molecules into R22(8) centrosymetric dimers (Bernstein et al., 1995) across the crystallographic centre of symmetry at (1/2, 0, 1/2). The molecules are also linked by weak C—H···O hydrogen bonds (Table 1).

Related literature top

For general background to N-acyl-N',N'-disubstituted thiourea, see: Koch (2001); Sosa-Albertus & Piris (2001); Pérez et al. (2008a). For related structures, see: Arslan et al. (2003); Bolte & Fink (2003); Pérez et al. (2008b); Gomes et al. (2010). For details of the synthesis, see: Nagasawa & Mitsunobu (1981); Che et al. (1999). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

N-Benzoyl-N',N'-dimethylthiourea was prepared using the standard procedure previously reported in the literature (Nagasawa & Mitsunobu, 1981) by the reaction of benzoyl chloride with KSCN in anhydrous acetone, and then condensation with dimethylamine. The synthesis of title compound was previously reported (Che et al., 1999). Recrystallization from acetone/water solution (1:1, v/v) yielded colourless crystals (1.6 g, 7.5 mmol, 75%). m.p. 448 K. Analysis calculated for C10H12N2OS: C 57.67, H 5.80, N 13.45, S 15.40%. Found: C 57.88, H 5.92, N 13.60, S 15.19%.

Refinement top

H atoms bonded to C atoms were included in calculated positions and refined as riding, with C–H = 0.93 or 0.96 Å and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C). H atom bonded to N atom was located in difference Fourier synthesis and was refined isotropically.

Computing details top

Data collection: COLLECT (Enraf–Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The R22(8) centrosymmetric dimer lying across the centre of symmetry at (1/2,0, 1/2). Hydrogen bonds are shown as dashed lines [symmetry code (i) -x + 1, -y + 2, -z + 1].
N-Benzoyl-N',N'-dimethylthiourea top
Crystal data top
C10H12N2OSF(000) = 440
Mr = 208.28Dx = 1.257 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1912 reflections
a = 10.8602 (9) Åθ = 3.5–26.7°
b = 5.5590 (6) ŵ = 0.26 mm1
c = 18.6864 (10) ÅT = 294 K
β = 102.768 (5)°Prism, colourless
V = 1100.24 (16) Å30.26 × 0.13 × 0.13 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
1762 reflections with I > 2σ(I)
ω scanRint = 0.041
Absorption correction: gaussian
(Coppens et al., 1965)
θmax = 26.7°, θmin = 3.5°
Tmin = 0.943, Tmax = 0.969h = 1313
7078 measured reflectionsk = 67
2282 independent reflectionsl = 2223
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.043 w = 1/[σ2(Fo2) + (0.0587P)2 + 0.1899P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.120(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.17 e Å3
2282 reflectionsΔρmin = 0.27 e Å3
133 parameters
Crystal data top
C10H12N2OSV = 1100.24 (16) Å3
Mr = 208.28Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.8602 (9) ŵ = 0.26 mm1
b = 5.5590 (6) ÅT = 294 K
c = 18.6864 (10) Å0.26 × 0.13 × 0.13 mm
β = 102.768 (5)°
Data collection top
Nonius KappaCCD
diffractometer
2282 independent reflections
Absorption correction: gaussian
(Coppens et al., 1965)
1762 reflections with I > 2σ(I)
Tmin = 0.943, Tmax = 0.969Rint = 0.041
7078 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.120H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.17 e Å3
2282 reflectionsΔρmin = 0.27 e Å3
133 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.55382 (16)0.7917 (3)0.35288 (9)0.0475 (4)
C20.38501 (16)0.6859 (3)0.41573 (8)0.0459 (4)
C30.69073 (16)0.8469 (3)0.36576 (9)0.0484 (4)
C40.7314 (2)1.0217 (4)0.32357 (10)0.0638 (5)
H40.67311.1030.28780.077*
C50.8583 (2)1.0756 (5)0.33449 (13)0.0778 (6)
H50.88531.19510.30670.093*
C60.9442 (2)0.9537 (5)0.38608 (14)0.0822 (7)
H61.02960.98990.3930.099*
C70.90569 (19)0.7787 (5)0.42771 (14)0.0785 (6)
H70.9650.69650.46270.094*
C80.77898 (18)0.7235 (4)0.41797 (11)0.0608 (5)
H80.75290.60420.44630.073*
C90.3971 (3)0.3391 (4)0.33595 (14)0.0806 (7)
H9A0.48440.33410.36090.121*
H9B0.39060.38910.28610.121*
H9C0.36070.1820.33660.121*
C100.19432 (19)0.4648 (5)0.36413 (12)0.0753 (6)
H10A0.15030.61530.36190.113*
H10B0.18030.3730.40510.113*
H10C0.16360.37650.31960.113*
N10.51125 (13)0.7326 (3)0.41555 (8)0.0485 (4)
N20.32963 (14)0.5100 (3)0.37299 (8)0.0557 (4)
O10.48381 (12)0.7991 (3)0.29255 (6)0.0623 (4)
S10.31430 (4)0.84543 (10)0.47135 (3)0.0602 (2)
H10.5514 (19)0.802 (4)0.4545 (11)0.066 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0508 (9)0.0491 (10)0.0440 (8)0.0049 (7)0.0133 (7)0.0020 (7)
C20.0449 (9)0.0501 (10)0.0416 (8)0.0028 (7)0.0073 (6)0.0012 (7)
C30.0505 (9)0.0528 (10)0.0452 (8)0.0041 (7)0.0176 (7)0.0013 (7)
C40.0672 (12)0.0686 (13)0.0596 (11)0.0016 (10)0.0228 (9)0.0091 (9)
C50.0744 (14)0.0826 (15)0.0854 (14)0.0127 (12)0.0369 (12)0.0106 (13)
C60.0530 (12)0.0933 (18)0.1055 (17)0.0082 (11)0.0288 (12)0.0052 (15)
C70.0476 (11)0.0905 (16)0.0961 (16)0.0084 (11)0.0130 (11)0.0168 (13)
C80.0541 (11)0.0630 (12)0.0669 (11)0.0047 (9)0.0170 (9)0.0115 (9)
C90.0980 (17)0.0543 (12)0.0940 (16)0.0025 (11)0.0312 (14)0.0231 (11)
C100.0614 (12)0.0833 (16)0.0749 (13)0.0227 (11)0.0017 (10)0.0145 (11)
N10.0435 (8)0.0610 (9)0.0410 (7)0.0033 (6)0.0093 (6)0.0038 (7)
N20.0561 (9)0.0519 (9)0.0582 (8)0.0062 (7)0.0106 (7)0.0106 (7)
O10.0590 (8)0.0824 (10)0.0436 (7)0.0056 (6)0.0075 (6)0.0021 (6)
S10.0504 (3)0.0722 (4)0.0626 (3)0.0118 (2)0.0222 (2)0.0184 (2)
Geometric parameters (Å, º) top
C1—O11.2133 (19)C6—H60.93
C1—N11.390 (2)C7—C81.382 (3)
C1—C31.485 (2)C7—H70.93
C2—N21.321 (2)C8—H80.93
C2—N11.396 (2)C9—N21.464 (3)
C2—S11.6759 (17)C9—H9A0.96
C3—C41.384 (3)C9—H9B0.96
C3—C81.388 (3)C9—H9C0.96
C4—C51.381 (3)C10—N21.464 (2)
C4—H40.93C10—H10A0.96
C5—C61.364 (3)C10—H10B0.96
C5—H50.93C10—H10C0.96
C6—C71.368 (3)N1—H10.85 (2)
O1—C1—N1122.28 (16)C7—C8—C3119.70 (19)
O1—C1—C3122.89 (15)C7—C8—H8120.1
N1—C1—C3114.83 (14)C3—C8—H8120.1
N2—C2—N1116.90 (15)N2—C9—H9A109.5
N2—C2—S1123.85 (14)N2—C9—H9B109.5
N1—C2—S1119.21 (12)H9A—C9—H9B109.5
C4—C3—C8119.31 (17)N2—C9—H9C109.5
C4—C3—C1119.15 (16)H9A—C9—H9C109.5
C8—C3—C1121.52 (16)H9B—C9—H9C109.5
C5—C4—C3120.14 (19)N2—C10—H10A109.5
C5—C4—H4119.9N2—C10—H10B109.5
C3—C4—H4119.9H10A—C10—H10B109.5
C6—C5—C4120.0 (2)N2—C10—H10C109.5
C6—C5—H5120H10A—C10—H10C109.5
C4—C5—H5120H10B—C10—H10C109.5
C5—C6—C7120.5 (2)C1—N1—C2123.76 (14)
C5—C6—H6119.7C1—N1—H1114.1 (14)
C7—C6—H6119.7C2—N1—H1113.5 (14)
C6—C7—C8120.3 (2)C2—N2—C10120.48 (16)
C6—C7—H7119.9C2—N2—C9123.91 (17)
C8—C7—H7119.9C10—N2—C9115.48 (17)
O1—C1—C3—C434.5 (3)C4—C3—C8—C70.8 (3)
N1—C1—C3—C4144.94 (17)C1—C3—C8—C7179.32 (19)
O1—C1—C3—C8144.04 (19)O1—C1—N1—C22.6 (3)
N1—C1—C3—C836.5 (2)C3—C1—N1—C2176.89 (15)
C8—C3—C4—C51.3 (3)N2—C2—N1—C157.9 (2)
C1—C3—C4—C5179.87 (19)S1—C2—N1—C1124.37 (16)
C3—C4—C5—C61.1 (3)N1—C2—N2—C10173.79 (17)
C4—C5—C6—C70.4 (4)S1—C2—N2—C108.6 (2)
C5—C6—C7—C80.1 (4)N1—C2—N2—C910.6 (3)
C6—C7—C8—C30.1 (4)S1—C2—N2—C9167.03 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S1i0.85 (2)2.65 (2)3.4335 (17)154.2 (18)
C9—H9A···N10.962.432.778 (3)101
C9—H9B···O10.962.492.902 (3)106
C10—H10C···O1ii0.962.383.265 (3)153
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC10H12N2OS
Mr208.28
Crystal system, space groupMonoclinic, P21/n
Temperature (K)294
a, b, c (Å)10.8602 (9), 5.5590 (6), 18.6864 (10)
β (°) 102.768 (5)
V3)1100.24 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.26 × 0.13 × 0.13
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionGaussian
(Coppens et al., 1965)
Tmin, Tmax0.943, 0.969
No. of measured, independent and
observed [I > 2σ(I)] reflections
7078, 2282, 1762
Rint0.041
(sin θ/λ)max1)0.633
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.120, 1.05
No. of reflections2282
No. of parameters133
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.27

Computer programs: COLLECT (Enraf–Nonius, 2000), DENZO and SCALEPACK (Otwinowski & Minor 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S1i0.85 (2)2.65 (2)3.4335 (17)154.2 (18)
C10—H10C···O1ii0.962.383.265 (3)153
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1/2, y1/2, z+1/2.
 

Acknowledgements

The authors thank the Grupo de Cristalografia, IFSC, USP, Brazil, for allowing the X-ray data collection. The authors acknowledge financial support from the PhD Cooperative Program - ICTP/CLAF. RSC thanks FAPESP for a fellowship.

References

First citationArslan, H., Flörke, U. & Külcü, N. (2003). Acta Cryst. E59, o641–o642.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, I. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBolte, M. & Fink, L. (2003). Private communication (refcode IJOQED). CCDC, Cambridge, England.  Google Scholar
First citationChe, D. J., Li, G., Yao, X. L., Zhu, Y. & Zhou, D. P. (1999). J. Chem. Soc. Dalton Trans. pp. 2683–2687.  Web of Science CrossRef Google Scholar
First citationCoppens, P., Leiserowitz, L. & Rabinovich, D. (1965). Acta Cryst. 18, 1035–1038.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationEnraf–Nonius (2000). COLLECT. Enraf–Nonius BV, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGomes, L. R., Santos, L. M. N. B. F., Coutinho, J. P., Schröder, B. & Low, J. N. (2010). Acta Cryst. E66, o870.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKoch, K. R. (2001). Coord. Chem. Rev. 216–217, 473–488.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNagasawa, H. & Mitsunobu, O. (1981). Bull. Chem. Soc. Jpn 54, 2223–2224.  CrossRef CAS Web of Science Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPérez, H., Corrêa, R. S., Duque, J., Plutín, A. M. & O'Reilly, B. (2008a). Acta Cryst. E64, m916.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPérez, H., Mascarenhas, Y., Estévez-Hernández, O., Santos Jr, S. & Duque, J. (2008b). Acta Cryst. E64, o695.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSosa-Albertus, M. & Piris, M. (2001). J. Mol. Struct. 598, 261–265.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds