organic compounds
N-Benzoyl-N′,N′-dimethylthiourea
aDepartamento de Química Inorgánica, Facultad de Química, Universidad de la Habana, Habana 10400, Cuba, bDepartamento de Química, Universidade Federal de São Carlos, CEP 13565-905, São Carlos, SP, Brazil, cLaboratorio de Síntesis Orgánica, Facultad de Química, Universidad de la Habana, Habana 10400, Cuba, and dGrupo de Cristalografia, Instituto de Fisica de São Carlos, Universidade de São Paulo, CEP 13560-970, São Carlos, Brazil
*Correspondence e-mail: hperez@fq.uh.cu
In the title compound, C10H12N2OS, the amide NCO group is twisted relative to the thioureido SCN2 group, forming a dihedral angle of 55.3 (2)°. The crystal packing shows intermolecular N—H⋯S and weak C—H⋯O interactions, the former giving rise to the formation of centrosymmetric R22(8) dimers.
Related literature
For general background to N-acyl-N′,N′-disubstituted thiourea, see: Koch (2001); Sosa-Albertus & Piris (2001); Pérez et al. (2008a). For related structures, see: Arslan et al. (2003); Bolte & Fink (2003); Pérez et al. (2008b); Gomes et al. (2010). For details of the synthesis, see: Nagasawa & Mitsunobu (1981); Che et al. (1999). For graph-set notation, see: Bernstein et al. (1995).
Experimental
Crystal data
|
Refinement
|
Data collection: COLLECT (Enraf–Nonius, 2000); cell SCALEPACK (Otwinowski & Minor 1997); data reduction: DENZO (Otwinowski & Minor 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536811005137/gk2336sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811005137/gk2336Isup2.hkl
N-Benzoyl-N',N'-dimethylthiourea was prepared using the standard procedure previously reported in the literature (Nagasawa & Mitsunobu, 1981) by the reaction of benzoyl chloride with KSCN in anhydrous acetone, and then condensation with dimethylamine. The synthesis of title compound was previously reported (Che et al., 1999). Recrystallization from acetone/water solution (1:1, v/v) yielded colourless crystals (1.6 g, 7.5 mmol, 75%). m.p. 448 K. Analysis calculated for C10H12N2OS: C 57.67, H 5.80, N 13.45, S 15.40%. Found: C 57.88, H 5.92, N 13.60, S 15.19%.
H atoms bonded to C atoms were included in calculated positions and refined as riding, with C–H = 0.93 or 0.96 Å and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C). H atom bonded to N atom was located in difference Fourier synthesis and was refined isotropically.
Data collection: COLLECT (Enraf–Nonius, 2000); cell
SCALEPACK (Otwinowski & Minor 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).C10H12N2OS | F(000) = 440 |
Mr = 208.28 | Dx = 1.257 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 1912 reflections |
a = 10.8602 (9) Å | θ = 3.5–26.7° |
b = 5.5590 (6) Å | µ = 0.26 mm−1 |
c = 18.6864 (10) Å | T = 294 K |
β = 102.768 (5)° | Prism, colourless |
V = 1100.24 (16) Å3 | 0.26 × 0.13 × 0.13 mm |
Z = 4 |
Nonius KappaCCD diffractometer | 1762 reflections with I > 2σ(I) |
ω scan | Rint = 0.041 |
Absorption correction: gaussian (Coppens et al., 1965) | θmax = 26.7°, θmin = 3.5° |
Tmin = 0.943, Tmax = 0.969 | h = −13→13 |
7078 measured reflections | k = −6→7 |
2282 independent reflections | l = −22→23 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.043 | w = 1/[σ2(Fo2) + (0.0587P)2 + 0.1899P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.120 | (Δ/σ)max < 0.001 |
S = 1.05 | Δρmax = 0.17 e Å−3 |
2282 reflections | Δρmin = −0.27 e Å−3 |
133 parameters |
C10H12N2OS | V = 1100.24 (16) Å3 |
Mr = 208.28 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 10.8602 (9) Å | µ = 0.26 mm−1 |
b = 5.5590 (6) Å | T = 294 K |
c = 18.6864 (10) Å | 0.26 × 0.13 × 0.13 mm |
β = 102.768 (5)° |
Nonius KappaCCD diffractometer | 2282 independent reflections |
Absorption correction: gaussian (Coppens et al., 1965) | 1762 reflections with I > 2σ(I) |
Tmin = 0.943, Tmax = 0.969 | Rint = 0.041 |
7078 measured reflections |
R[F2 > 2σ(F2)] = 0.043 | 0 restraints |
wR(F2) = 0.120 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | Δρmax = 0.17 e Å−3 |
2282 reflections | Δρmin = −0.27 e Å−3 |
133 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.55382 (16) | 0.7917 (3) | 0.35288 (9) | 0.0475 (4) | |
C2 | 0.38501 (16) | 0.6859 (3) | 0.41573 (8) | 0.0459 (4) | |
C3 | 0.69073 (16) | 0.8469 (3) | 0.36576 (9) | 0.0484 (4) | |
C4 | 0.7314 (2) | 1.0217 (4) | 0.32357 (10) | 0.0638 (5) | |
H4 | 0.6731 | 1.103 | 0.2878 | 0.077* | |
C5 | 0.8583 (2) | 1.0756 (5) | 0.33449 (13) | 0.0778 (6) | |
H5 | 0.8853 | 1.1951 | 0.3067 | 0.093* | |
C6 | 0.9442 (2) | 0.9537 (5) | 0.38608 (14) | 0.0822 (7) | |
H6 | 1.0296 | 0.9899 | 0.393 | 0.099* | |
C7 | 0.90569 (19) | 0.7787 (5) | 0.42771 (14) | 0.0785 (6) | |
H7 | 0.965 | 0.6965 | 0.4627 | 0.094* | |
C8 | 0.77898 (18) | 0.7235 (4) | 0.41797 (11) | 0.0608 (5) | |
H8 | 0.7529 | 0.6042 | 0.4463 | 0.073* | |
C9 | 0.3971 (3) | 0.3391 (4) | 0.33595 (14) | 0.0806 (7) | |
H9A | 0.4844 | 0.3341 | 0.3609 | 0.121* | |
H9B | 0.3906 | 0.3891 | 0.2861 | 0.121* | |
H9C | 0.3607 | 0.182 | 0.3366 | 0.121* | |
C10 | 0.19432 (19) | 0.4648 (5) | 0.36413 (12) | 0.0753 (6) | |
H10A | 0.1503 | 0.6153 | 0.3619 | 0.113* | |
H10B | 0.1803 | 0.373 | 0.4051 | 0.113* | |
H10C | 0.1636 | 0.3765 | 0.3196 | 0.113* | |
N1 | 0.51125 (13) | 0.7326 (3) | 0.41555 (8) | 0.0485 (4) | |
N2 | 0.32963 (14) | 0.5100 (3) | 0.37299 (8) | 0.0557 (4) | |
O1 | 0.48381 (12) | 0.7991 (3) | 0.29255 (6) | 0.0623 (4) | |
S1 | 0.31430 (4) | 0.84543 (10) | 0.47135 (3) | 0.0602 (2) | |
H1 | 0.5514 (19) | 0.802 (4) | 0.4545 (11) | 0.066 (6)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0508 (9) | 0.0491 (10) | 0.0440 (8) | 0.0049 (7) | 0.0133 (7) | −0.0020 (7) |
C2 | 0.0449 (9) | 0.0501 (10) | 0.0416 (8) | −0.0028 (7) | 0.0073 (6) | 0.0012 (7) |
C3 | 0.0505 (9) | 0.0528 (10) | 0.0452 (8) | 0.0041 (7) | 0.0176 (7) | −0.0013 (7) |
C4 | 0.0672 (12) | 0.0686 (13) | 0.0596 (11) | 0.0016 (10) | 0.0228 (9) | 0.0091 (9) |
C5 | 0.0744 (14) | 0.0826 (15) | 0.0854 (14) | −0.0127 (12) | 0.0369 (12) | 0.0106 (13) |
C6 | 0.0530 (12) | 0.0933 (18) | 0.1055 (17) | −0.0082 (11) | 0.0288 (12) | 0.0052 (15) |
C7 | 0.0476 (11) | 0.0905 (16) | 0.0961 (16) | 0.0084 (11) | 0.0130 (11) | 0.0168 (13) |
C8 | 0.0541 (11) | 0.0630 (12) | 0.0669 (11) | 0.0047 (9) | 0.0170 (9) | 0.0115 (9) |
C9 | 0.0980 (17) | 0.0543 (12) | 0.0940 (16) | −0.0025 (11) | 0.0312 (14) | −0.0231 (11) |
C10 | 0.0614 (12) | 0.0833 (16) | 0.0749 (13) | −0.0227 (11) | 0.0017 (10) | −0.0145 (11) |
N1 | 0.0435 (8) | 0.0610 (9) | 0.0410 (7) | −0.0033 (6) | 0.0093 (6) | −0.0038 (7) |
N2 | 0.0561 (9) | 0.0519 (9) | 0.0582 (8) | −0.0062 (7) | 0.0106 (7) | −0.0106 (7) |
O1 | 0.0590 (8) | 0.0824 (10) | 0.0436 (7) | 0.0056 (6) | 0.0075 (6) | 0.0021 (6) |
S1 | 0.0504 (3) | 0.0722 (4) | 0.0626 (3) | −0.0118 (2) | 0.0222 (2) | −0.0184 (2) |
C1—O1 | 1.2133 (19) | C6—H6 | 0.93 |
C1—N1 | 1.390 (2) | C7—C8 | 1.382 (3) |
C1—C3 | 1.485 (2) | C7—H7 | 0.93 |
C2—N2 | 1.321 (2) | C8—H8 | 0.93 |
C2—N1 | 1.396 (2) | C9—N2 | 1.464 (3) |
C2—S1 | 1.6759 (17) | C9—H9A | 0.96 |
C3—C4 | 1.384 (3) | C9—H9B | 0.96 |
C3—C8 | 1.388 (3) | C9—H9C | 0.96 |
C4—C5 | 1.381 (3) | C10—N2 | 1.464 (2) |
C4—H4 | 0.93 | C10—H10A | 0.96 |
C5—C6 | 1.364 (3) | C10—H10B | 0.96 |
C5—H5 | 0.93 | C10—H10C | 0.96 |
C6—C7 | 1.368 (3) | N1—H1 | 0.85 (2) |
O1—C1—N1 | 122.28 (16) | C7—C8—C3 | 119.70 (19) |
O1—C1—C3 | 122.89 (15) | C7—C8—H8 | 120.1 |
N1—C1—C3 | 114.83 (14) | C3—C8—H8 | 120.1 |
N2—C2—N1 | 116.90 (15) | N2—C9—H9A | 109.5 |
N2—C2—S1 | 123.85 (14) | N2—C9—H9B | 109.5 |
N1—C2—S1 | 119.21 (12) | H9A—C9—H9B | 109.5 |
C4—C3—C8 | 119.31 (17) | N2—C9—H9C | 109.5 |
C4—C3—C1 | 119.15 (16) | H9A—C9—H9C | 109.5 |
C8—C3—C1 | 121.52 (16) | H9B—C9—H9C | 109.5 |
C5—C4—C3 | 120.14 (19) | N2—C10—H10A | 109.5 |
C5—C4—H4 | 119.9 | N2—C10—H10B | 109.5 |
C3—C4—H4 | 119.9 | H10A—C10—H10B | 109.5 |
C6—C5—C4 | 120.0 (2) | N2—C10—H10C | 109.5 |
C6—C5—H5 | 120 | H10A—C10—H10C | 109.5 |
C4—C5—H5 | 120 | H10B—C10—H10C | 109.5 |
C5—C6—C7 | 120.5 (2) | C1—N1—C2 | 123.76 (14) |
C5—C6—H6 | 119.7 | C1—N1—H1 | 114.1 (14) |
C7—C6—H6 | 119.7 | C2—N1—H1 | 113.5 (14) |
C6—C7—C8 | 120.3 (2) | C2—N2—C10 | 120.48 (16) |
C6—C7—H7 | 119.9 | C2—N2—C9 | 123.91 (17) |
C8—C7—H7 | 119.9 | C10—N2—C9 | 115.48 (17) |
O1—C1—C3—C4 | 34.5 (3) | C4—C3—C8—C7 | 0.8 (3) |
N1—C1—C3—C4 | −144.94 (17) | C1—C3—C8—C7 | 179.32 (19) |
O1—C1—C3—C8 | −144.04 (19) | O1—C1—N1—C2 | −2.6 (3) |
N1—C1—C3—C8 | 36.5 (2) | C3—C1—N1—C2 | 176.89 (15) |
C8—C3—C4—C5 | −1.3 (3) | N2—C2—N1—C1 | 57.9 (2) |
C1—C3—C4—C5 | −179.87 (19) | S1—C2—N1—C1 | −124.37 (16) |
C3—C4—C5—C6 | 1.1 (3) | N1—C2—N2—C10 | −173.79 (17) |
C4—C5—C6—C7 | −0.4 (4) | S1—C2—N2—C10 | 8.6 (2) |
C5—C6—C7—C8 | −0.1 (4) | N1—C2—N2—C9 | 10.6 (3) |
C6—C7—C8—C3 | −0.1 (4) | S1—C2—N2—C9 | −167.03 (16) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···S1i | 0.85 (2) | 2.65 (2) | 3.4335 (17) | 154.2 (18) |
C9—H9A···N1 | 0.96 | 2.43 | 2.778 (3) | 101 |
C9—H9B···O1 | 0.96 | 2.49 | 2.902 (3) | 106 |
C10—H10C···O1ii | 0.96 | 2.38 | 3.265 (3) | 153 |
Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) −x+1/2, y−1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C10H12N2OS |
Mr | 208.28 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 294 |
a, b, c (Å) | 10.8602 (9), 5.5590 (6), 18.6864 (10) |
β (°) | 102.768 (5) |
V (Å3) | 1100.24 (16) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.26 |
Crystal size (mm) | 0.26 × 0.13 × 0.13 |
Data collection | |
Diffractometer | Nonius KappaCCD diffractometer |
Absorption correction | Gaussian (Coppens et al., 1965) |
Tmin, Tmax | 0.943, 0.969 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7078, 2282, 1762 |
Rint | 0.041 |
(sin θ/λ)max (Å−1) | 0.633 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.043, 0.120, 1.05 |
No. of reflections | 2282 |
No. of parameters | 133 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.17, −0.27 |
Computer programs: COLLECT (Enraf–Nonius, 2000), DENZO and SCALEPACK (Otwinowski & Minor 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···S1i | 0.85 (2) | 2.65 (2) | 3.4335 (17) | 154.2 (18) |
C10—H10C···O1ii | 0.96 | 2.38 | 3.265 (3) | 153 |
Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) −x+1/2, y−1/2, −z+1/2. |
Acknowledgements
The authors thank the Grupo de Cristalografia, IFSC, USP, Brazil, for allowing the X-ray data collection. The authors acknowledge financial support from the PhD Cooperative Program - ICTP/CLAF. RSC thanks FAPESP for a fellowship.
References
Arslan, H., Flörke, U. & Külcü, N. (2003). Acta Cryst. E59, o641–o642. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bernstein, J., Davis, R. E., Shimoni, I. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bolte, M. & Fink, L. (2003). Private communication (refcode IJOQED). CCDC, Cambridge, England. Google Scholar
Che, D. J., Li, G., Yao, X. L., Zhu, Y. & Zhou, D. P. (1999). J. Chem. Soc. Dalton Trans. pp. 2683–2687. Web of Science CrossRef Google Scholar
Coppens, P., Leiserowitz, L. & Rabinovich, D. (1965). Acta Cryst. 18, 1035–1038. CrossRef CAS IUCr Journals Web of Science Google Scholar
Enraf–Nonius (2000). COLLECT. Enraf–Nonius BV, Delft, The Netherlands. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Gomes, L. R., Santos, L. M. N. B. F., Coutinho, J. P., Schröder, B. & Low, J. N. (2010). Acta Cryst. E66, o870. Web of Science CrossRef IUCr Journals Google Scholar
Koch, K. R. (2001). Coord. Chem. Rev. 216–217, 473–488. Web of Science CrossRef CAS Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Nagasawa, H. & Mitsunobu, O. (1981). Bull. Chem. Soc. Jpn 54, 2223–2224. CrossRef CAS Web of Science Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Pérez, H., Corrêa, R. S., Duque, J., Plutín, A. M. & O'Reilly, B. (2008a). Acta Cryst. E64, m916. Web of Science CSD CrossRef IUCr Journals Google Scholar
Pérez, H., Mascarenhas, Y., Estévez-Hernández, O., Santos Jr, S. & Duque, J. (2008b). Acta Cryst. E64, o695. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sosa-Albertus, M. & Piris, M. (2001). J. Mol. Struct. 598, 261–265. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
N-Acyl-N',N'-disubstituted thiourea derivatives have been a subject of investigations due to their ability to form stable metal complexes (Koch et al., 2001). The crystal structure analysis of the title compound was undertaken as a continuation of our interest in these N',N'-disubstituted acylthiourea derivatives as intermediates towards novel heterocycles and for the systematic study of their bioactivity and complexation behavior (Pérez et al., 2008a). On the other hand, the crystal structure determination of this compound helps to confirm its most stable molecular conformation, previously predicted by theoretical methods (Sosa-Albertus & Piris, 2001) in order to explain the behavior of polydentate systems in alkylation reactions.
The main bond lengths of the title compound are within the ranges obtained for similar compounds (Pérez et al., 2008b; Arslan et al., 2003). The C–S and C–O bonds both show the expected double-bond character. However, the C–N bonds of acylthioureido fragment are intermediate between those expected for single and double C–N bonds (1.47 and 1.27 Å, respectively). These results can be explained by the existence of resonance in this part of the molecule. The conformation with respect to the thiocarbonyl and carbonyl groups is twisted, as reflected by the torsion angles O1/C1/N1/C2 and C1/N1/C2/N2 of -2.6 (3) and 57.9 (2)°. The dihedral angle between the O1/C1/N1 and S1/C2/N2 planes is 55.3 (2)°, while that between the O1/C1/N1 plane and the benzene ring is 35.8 (2)°. Compared to the diethyl analog (Bolte & Fink, 2003) and its monoclinic polymorph (Gomes, et al., 2010), the molecular confomation of the title molecule is significantly less twisted, as reflected by the corresponding torsion angles O/C/N/C [12.48 (4)°, in Bolte & Fink (2003); 7.58 (17)° in Gomes et al. (2010) and C/N/C/N (-80.79 (3)° in Bolte & Fink (2003); -71.44 (14)° in Gomes et al. (2010)]. The dihedral angle between the O/C/N and S/C/N planes is also smaller than those of the diethyl analog [(73.9 (2)° in Bolte & Fink (2003); 67.3 (1)° in Gomes et al. (2010)]. In the crystal structure (Fig. 2), an N—H···S(-x + 1,-y + 2,-z + 1) hydrogen bond links the molecules into R22(8) centrosymetric dimers (Bernstein et al., 1995) across the crystallographic centre of symmetry at (1/2, 0, 1/2). The molecules are also linked by weak C—H···O hydrogen bonds (Table 1).