organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Benzoyl-3-ethyl-3-phenyl­thio­urea

aSchool of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi Selangor, Malaysia
*Correspondence e-mail: mbkassim@ukm.my

(Received 26 January 2011; accepted 4 February 2011; online 12 February 2011)

In the title compound, C16H16N2OS, the conformation at the two partially double C—N bonds of the thio­urea unit is E. The amide group is twisted relative to the thio­urea fragment, forming a dihedral angle of 62.44 (16)°, and the two phenyl rings form a dihedral angle 75.93 (18)°. In the crystal, mol­ecules are linked by N—H⋯S hydrogen bonds, forming centrosymmetric dimers.

Related literature

For related structures and background references, see: Al-abbasi et al. (2010[Al-abbasi, A. A., Yarmo, M. A. & Kassim, M. B. (2010). Acta Cryst. E66, o2896.]); Hung et al. (2010[Hung, W. W., Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2010). Acta Cryst. E66, o314.]).

[Scheme 1]

Experimental

Crystal data
  • C16H16N2OS

  • Mr = 284.37

  • Triclinic, [P \overline 1]

  • a = 7.735 (2) Å

  • b = 8.013 (2) Å

  • c = 12.540 (3) Å

  • α = 101.837 (5)°

  • β = 96.908 (5)°

  • γ = 94.205 (6)°

  • V = 751.3 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 298 K

  • 0.53 × 0.38 × 0.19 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.908, Tmax = 0.961

  • 7829 measured reflections

  • 2648 independent reflections

  • 2329 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.144

  • S = 1.06

  • 2648 reflections

  • 189 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯S1i 0.83 (2) 2.62 (2) 3.444 (2) 172 (2)
Symmetry code: (i) -x+1, -y+2, -z+1.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The ethyl group and S-atom are in cis-configuration with respect to the N2—C8 bond, however, the N2-phenyl and benzoyl groups are trans to S-atom with respect to both C—N thiourea bonds (Fig. 1).

The benzene ring [C1/C2/C3/C4/C5/C6/C7] (A), phenyl ring [N2/C9/C10/C11/C12/C13/C14] (B) and the thiourea [(S1/N1/N2/C8/] (C) fragment are essentially planar. The dihedral angle between the plane A and the plane B is 75.93 (15)° whereas, the dihedral angle between thiourea plane (C) and both planes (A, B) are 87.99 (11) and 62.44 (16)°, respectively. Furthermore, the amide group [N2/C9/C10/C11/C12/C13/C14] (D) is twisted relative to the thiourea fragment (C) forming a dihedral angle of 62.44 (16)°.

In addition, the molecules are linked by N1—H···S1 hydrogen bonds (Table 1, Fig. 2) to form centrosymmetric dimers.

Related literature top

For related structures and background references, see: Al-abbasi et al. (2010); Hung et al. (2010).

Experimental top

The reaction scheme involved a reaction of benzoyl chloride (10 mmol) with ammonium thiocyanate (10 mmol) in acetone. The product, benzoyl isothiocyanate was reacted with N-ethylaniline (10 mmol) to give the title compound with 80% yield. A slow evaporation of the reaction mixture give light yellow crystals suitable for X-ray analysis.

Refinement top

Positions of C-bound H atoms were calculated. These H atoms were refined using a riding model with Uiso=1.5Ueq(Cmethyl ) and Uiso=1.5Ueq(C) for the remaining H atoms. The amide-group H atom was located in a diffrence Fourier map and freely refined.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with displacement ellipsods drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing viewed down the a-axis. Hydrogen bonds are drawn as dashed lines.
1-Benzoyl-3-ethyl-3-phenylthiourea top
Crystal data top
C16H16N2OSZ = 2
Mr = 284.37F(000) = 300
Triclinic, P1Dx = 1.257 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.735 (2) ÅCell parameters from 4273 reflections
b = 8.013 (2) Åθ = 1.7–25.0°
c = 12.540 (3) ŵ = 0.21 mm1
α = 101.837 (5)°T = 298 K
β = 96.908 (5)°Blok, colorless
γ = 94.205 (6)°0.53 × 0.38 × 0.19 mm
V = 751.3 (4) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2648 independent reflections
Radiation source: fine-focus sealed tube2329 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω scanθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 99
Tmin = 0.908, Tmax = 0.961k = 99
7829 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0752P)2 + 0.3013P]
where P = (Fo2 + 2Fc2)/3
2648 reflections(Δ/σ)max < 0.001
189 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C16H16N2OSγ = 94.205 (6)°
Mr = 284.37V = 751.3 (4) Å3
Triclinic, P1Z = 2
a = 7.735 (2) ÅMo Kα radiation
b = 8.013 (2) ŵ = 0.21 mm1
c = 12.540 (3) ÅT = 298 K
α = 101.837 (5)°0.53 × 0.38 × 0.19 mm
β = 96.908 (5)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2648 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2329 reflections with I > 2σ(I)
Tmin = 0.908, Tmax = 0.961Rint = 0.023
7829 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.144H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.35 e Å3
2648 reflectionsΔρmin = 0.30 e Å3
189 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.23483 (8)1.04861 (8)0.44047 (5)0.0590 (2)
O10.2723 (2)0.5506 (2)0.26763 (17)0.0716 (5)
N10.4237 (2)0.8089 (2)0.34962 (15)0.0467 (4)
N20.2081 (3)0.8877 (3)0.23101 (16)0.0663 (6)
C10.5519 (4)0.3888 (3)0.3646 (2)0.0629 (6)
H1B0.44180.33560.36700.076*
C20.6996 (6)0.3080 (4)0.3850 (2)0.0855 (10)
H2A0.68920.20100.40290.103*
C30.8618 (5)0.3839 (5)0.3793 (2)0.0900 (11)
H3A0.96060.32760.39220.108*
C40.8789 (4)0.5418 (5)0.3545 (2)0.0821 (9)
H4A0.98920.59250.35020.099*
C50.7326 (3)0.6268 (3)0.33594 (19)0.0567 (6)
H5A0.74470.73540.32040.068*
C60.5686 (3)0.5503 (3)0.34046 (16)0.0453 (5)
C70.4073 (3)0.6313 (3)0.31503 (18)0.0475 (5)
C80.2875 (3)0.9101 (3)0.33425 (18)0.0497 (5)
C90.2909 (5)0.8135 (4)0.1373 (2)0.0757 (9)
C100.4569 (5)0.8773 (4)0.1275 (2)0.0858 (9)
H10A0.51640.96610.18220.103*
C110.5366 (7)0.8103 (6)0.0365 (3)0.1170 (15)
H11A0.65020.85200.03170.140*
C120.4498 (11)0.6856 (8)0.0443 (4)0.146 (2)
H12A0.50420.63980.10440.175*
C130.2835 (10)0.6260 (7)0.0388 (3)0.146 (2)
H13A0.22190.54510.09750.175*
C140.2019 (7)0.6853 (6)0.0554 (3)0.1116 (15)
H14A0.092 (4)0.660 (4)0.063 (2)0.067 (10)*
C150.0405 (4)0.9631 (4)0.2081 (3)0.0865 (9)
H15A0.04070.87960.15500.104*
H15B0.01150.99140.27540.104*
C160.0708 (5)1.1179 (5)0.1650 (3)0.1049 (11)
H16A0.03821.16500.15120.157*
H16B0.12001.08930.09760.157*
H16C0.15061.20090.21780.157*
H1A0.499 (3)0.850 (3)0.403 (2)0.050 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0635 (4)0.0613 (4)0.0516 (4)0.0281 (3)0.0083 (3)0.0032 (3)
O10.0501 (9)0.0559 (10)0.1014 (14)0.0015 (8)0.0001 (9)0.0070 (9)
N10.0474 (10)0.0455 (10)0.0438 (10)0.0136 (8)0.0009 (8)0.0026 (8)
N20.0700 (13)0.0692 (13)0.0521 (11)0.0319 (10)0.0102 (9)0.0027 (9)
C10.0841 (17)0.0513 (13)0.0569 (14)0.0164 (12)0.0139 (12)0.0139 (11)
C20.134 (3)0.0642 (17)0.0625 (17)0.0491 (19)0.0039 (17)0.0151 (13)
C30.099 (2)0.097 (2)0.0681 (18)0.062 (2)0.0074 (16)0.0040 (16)
C40.0544 (15)0.103 (2)0.0796 (19)0.0283 (15)0.0084 (13)0.0085 (17)
C50.0528 (13)0.0592 (13)0.0578 (13)0.0148 (10)0.0140 (10)0.0049 (11)
C60.0545 (12)0.0439 (11)0.0376 (10)0.0146 (9)0.0101 (8)0.0036 (8)
C70.0476 (12)0.0452 (11)0.0505 (12)0.0088 (9)0.0110 (9)0.0086 (9)
C80.0499 (11)0.0465 (11)0.0509 (12)0.0119 (9)0.0031 (9)0.0061 (9)
C90.109 (2)0.0675 (16)0.0456 (13)0.0460 (16)0.0089 (14)0.0000 (12)
C100.130 (3)0.0819 (19)0.0523 (15)0.043 (2)0.0186 (16)0.0165 (14)
C110.183 (4)0.120 (3)0.070 (2)0.074 (3)0.049 (2)0.033 (2)
C120.262 (7)0.135 (4)0.056 (2)0.116 (5)0.027 (4)0.020 (3)
C130.245 (6)0.110 (3)0.060 (2)0.085 (4)0.032 (3)0.029 (2)
C140.139 (4)0.103 (3)0.071 (2)0.045 (3)0.023 (2)0.0209 (19)
C150.089 (2)0.084 (2)0.0754 (18)0.0332 (16)0.0183 (15)0.0005 (15)
C160.119 (3)0.104 (3)0.096 (2)0.046 (2)0.007 (2)0.024 (2)
Geometric parameters (Å, º) top
S1—C81.662 (2)C6—C71.479 (3)
O1—C71.207 (3)C9—C141.370 (5)
N1—C71.392 (3)C9—C101.375 (5)
N1—C81.394 (3)C10—C111.392 (4)
N1—H1A0.83 (2)C10—H10A0.9300
N2—C81.335 (3)C11—C121.341 (7)
N2—C91.448 (3)C11—H11A0.9300
N2—C151.491 (3)C12—C131.354 (8)
C1—C21.377 (4)C12—H12A0.9300
C1—C61.389 (3)C13—C141.418 (7)
C1—H1B0.9300C13—H13A0.9300
C2—C31.370 (5)C14—H14A0.88 (3)
C2—H2A0.9300C15—C161.467 (5)
C3—C41.364 (5)C15—H15A0.9700
C3—H3A0.9300C15—H15B0.9700
C4—C51.383 (4)C16—H16A0.9600
C4—H4A0.9300C16—H16B0.9600
C5—C61.380 (3)C16—H16C0.9600
C5—H5A0.9300
C7—N1—C8123.84 (19)C14—C9—C10119.6 (4)
C7—N1—H1A116.1 (17)C14—C9—N2120.4 (4)
C8—N1—H1A114.8 (16)C10—C9—N2120.0 (3)
C8—N2—C9122.1 (2)C9—C10—C11120.7 (4)
C8—N2—C15120.0 (2)C9—C10—H10A119.7
C9—N2—C15117.2 (2)C11—C10—H10A119.7
C2—C1—C6119.4 (3)C12—C11—C10120.0 (5)
C2—C1—H1B120.3C12—C11—H11A120.0
C6—C1—H1B120.3C10—C11—H11A120.0
C3—C2—C1120.6 (3)C11—C12—C13120.3 (5)
C3—C2—H2A119.7C11—C12—H12A119.8
C1—C2—H2A119.7C13—C12—H12A119.8
C4—C3—C2120.2 (3)C12—C13—C14120.9 (5)
C4—C3—H3A119.9C12—C13—H13A119.5
C2—C3—H3A119.9C14—C13—H13A119.5
C3—C4—C5120.2 (3)C9—C14—C13118.3 (6)
C3—C4—H4A119.9C9—C14—H14A115 (2)
C5—C4—H4A119.9C13—C14—H14A126 (2)
C6—C5—C4119.9 (3)C16—C15—N2110.7 (3)
C6—C5—H5A120.0C16—C15—H15A109.5
C4—C5—H5A120.0N2—C15—H15A109.5
C5—C6—C1119.7 (2)C16—C15—H15B109.5
C5—C6—C7122.05 (19)N2—C15—H15B109.5
C1—C6—C7118.2 (2)H15A—C15—H15B108.1
O1—C7—N1122.5 (2)C15—C16—H16A109.5
O1—C7—C6122.96 (19)C15—C16—H16B109.5
N1—C7—C6114.58 (18)H16A—C16—H16B109.5
N2—C8—N1115.58 (19)C15—C16—H16C109.5
N2—C8—S1124.27 (16)H16A—C16—H16C109.5
N1—C8—S1120.15 (16)H16B—C16—H16C109.5
C6—C1—C2—C31.5 (4)C15—N2—C8—S112.3 (4)
C1—C2—C3—C40.8 (4)C7—N1—C8—N253.4 (3)
C2—C3—C4—C50.5 (4)C7—N1—C8—S1127.2 (2)
C3—C4—C5—C61.2 (4)C8—N2—C9—C14132.1 (3)
C4—C5—C6—C10.5 (3)C15—N2—C9—C1457.0 (4)
C4—C5—C6—C7176.4 (2)C8—N2—C9—C1051.0 (4)
C2—C1—C6—C50.8 (3)C15—N2—C9—C10120.0 (3)
C2—C1—C6—C7177.9 (2)C14—C9—C10—C111.4 (5)
C8—N1—C7—O10.6 (3)N2—C9—C10—C11178.4 (3)
C8—N1—C7—C6179.73 (19)C9—C10—C11—C121.9 (5)
C5—C6—C7—O1143.2 (2)C10—C11—C12—C131.0 (7)
C1—C6—C7—O133.8 (3)C11—C12—C13—C144.3 (8)
C5—C6—C7—N136.4 (3)C10—C9—C14—C131.8 (5)
C1—C6—C7—N1146.6 (2)N2—C9—C14—C13175.2 (3)
C9—N2—C8—N121.0 (4)C12—C13—C14—C94.7 (7)
C15—N2—C8—N1168.3 (2)C8—N2—C15—C16102.9 (3)
C9—N2—C8—S1158.4 (2)C9—N2—C15—C1668.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···S1i0.83 (2)2.62 (2)3.444 (2)172 (2)
C4—H4A···O1ii0.932.553.354 (4)145
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC16H16N2OS
Mr284.37
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.735 (2), 8.013 (2), 12.540 (3)
α, β, γ (°)101.837 (5), 96.908 (5), 94.205 (6)
V3)751.3 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.53 × 0.38 × 0.19
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.908, 0.961
No. of measured, independent and
observed [I > 2σ(I)] reflections
7829, 2648, 2329
Rint0.023
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.144, 1.06
No. of reflections2648
No. of parameters189
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.35, 0.30

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···S1i0.83 (2)2.62 (2)3.444 (2)172 (2)
Symmetry code: (i) x+1, y+2, z+1.
 

Acknowledgements

The authors thank Universiti Kebangsaan Malaysia for providing the facilities and grants (UKM-GUP-BTT-07–30–190 & UKMST-06-FRGS0111–2009) and the Libyan Government and Sabha University, Libya, for providing a scholarship for AA.

References

First citationAl-abbasi, A. A., Yarmo, M. A. & Kassim, M. B. (2010). Acta Cryst. E66, o2896.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHung, W. W., Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2010). Acta Cryst. E66, o314.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds