organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Iodo-2-methyl-1-phenyl­sulfonyl-1H-indole

aDepartment of Physics, AMET University, Kanathur, Chennai 603 112, India, bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India, cDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India, dDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, and eDepartment of Research and Development, PRIST University, Vallam, Thanjavur 613 403, Tamil Nadu, India
*Correspondence e-mail: crystallography2010@gmail.com, chakkaravarthi_2005@yahoo.com

(Received 31 January 2011; accepted 7 February 2011; online 12 February 2011)

In the title compound, C15H12INO2S, the sulfonyl-bound phenyl ring forms a dihedral angle 82.84 (9)° with the indole ring system. The mol­ecular structure is stabilized by a weak intra­molecular C—H⋯O hydrogen bond. The crystal structure exhibits weak inter­molecular C—H⋯π inter­actions and ππ inter­actions between the indole groups [centroid–centroid distance between the five-membered and six-membered rings of the indole group = 3.7617 (18) Å].

Related literature

For the biological properties of indole derivatives, see: Chai et al. (2006[Chai, H., Zhao, C. & Gong, P. (2006). Bioorg. Med. Chem. 14, 911-917.]); Nieto et al. (2005[Nieto, M. J., Alovero, F. L., Manzo, R. H. & Mazzieri, M. R. (2005). Eur. J. Med. Chem. 40, 361-369.]). For the structures of closely related compounds, see: Chakkaravarthi et al. (2007[Chakkaravarthi, G., Ramesh, N., Mohanakrishnan, A. K. & Manivannan, V. (2007). Acta Cryst. E63, o3564.], 2008[Chakkaravarthi, G., Dhayalan, V., Mohanakrishnan, A. K. & Manivannan, V. (2008). Acta Cryst. E64, o542.]).

[Scheme 1]

Experimental

Crystal data
  • C15H12INO2S

  • Mr = 397.22

  • Monoclinic, P 21 /c

  • a = 10.7068 (3) Å

  • b = 16.2670 (4) Å

  • c = 8.5147 (2) Å

  • β = 104.540 (1)°

  • V = 1435.49 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.38 mm−1

  • T = 295 K

  • 0.30 × 0.24 × 0.20 mm

Data collection
  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.536, Tmax = 0.648

  • 21249 measured reflections

  • 5276 independent reflections

  • 3696 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.144

  • S = 1.06

  • 5276 reflections

  • 182 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.94 e Å−3

  • Δρmin = −1.56 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C9–C14 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯O1 0.93 2.29 2.871 (4) 120
C4—H4⋯Cg3i 0.93 2.65 3.517 (5) 156
Symmetry code: (i) -x+2, -y, -z+2.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Indole derivatives exhibit antihepatitis B virus (Chai et al., 2006) and antibacterial (Nieto et al., 2005) activities. The geometric parameters of the title molecule (Fig. 1) agree well with the reported similar structures (Chakkaravarthi et al. 2007, 2008).

The phenyl ring makes the dihedral angle of 82.84 (9)° with the indole ring system. The sum of the bond angles around N1 [359.4 (2)°] indicates that N1 atom is sp2 hybridized. The molecular structure is stabilized by weak intramolecular C—H···O hydrogen bond. The crystal structure exhibits weak intermolecular C—H···π (Table 1) and ππ interactions [Cg1···Cg3 (1 - x,-y,1 - z) 3.7617 (18) Å; Cg1 and Cg3 are the centroids of the rings N1/C7/C8/C9/C14 and C9—C14, respectively].

Related literature top

For the biological properties of indole derivatives, see: Chai et al. (2006); Nieto et al. (2005). For the structures of closely related compounds, see: Chakkaravarthi et al. (2007, 2008).

Experimental top

3-Iodo-2-methylindole (5 g,0.02 mmole) was dissolved in distilled benzene (100 ml).To this, benzenesulfonyl chloride(3.23 ml,0.025 mmol) and 60% aqueous NaOH solution (40 g in 67.0 ml) were added along with tetrabutyl ammonium hydrogensulfate (1.0 g). This two phase system was stirred at room temperature for 2 h. It was then diluted with water (200 ml) and the organic layer was separated. The aqueous layer was extracted with benzene (2x20 ml). The combined organic layer was dried(Na2SO4).The benzene was then removed completely and the crude product was recrystallized from methanol (m.p. 395–397 K).

Refinement top

H atoms were positioned geometrically and refined using riding model with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic C—H and C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for CH3. The components of the anisotropic displacement parameters in direction of the bond of I1 and C8 were restrained to be equal within an effective standard deviation of 0.001 using the DELU command in SHELXL (Sheldrick, 2008).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. Crystal packing viewed along the b axis.
3-Iodo-2-methyl-1-phenylsulfonyl-1H-indole top
Crystal data top
C15H12INO2SF(000) = 776
Mr = 397.22Dx = 1.838 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8510 reflections
a = 10.7068 (3) Åθ = 2.5–30.4°
b = 16.2670 (4) ŵ = 2.38 mm1
c = 8.5147 (2) ÅT = 295 K
β = 104.540 (1)°Block, colourless
V = 1435.49 (6) Å30.30 × 0.24 × 0.20 mm
Z = 4
Data collection top
Bruker Kappa APEXII
diffractometer
5276 independent reflections
Radiation source: fine-focus sealed tube3696 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω and ϕ scansθmax = 32.8°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1516
Tmin = 0.536, Tmax = 0.648k = 2324
21249 measured reflectionsl = 1211
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0743P)2 + 0.987P]
where P = (Fo2 + 2Fc2)/3
5276 reflections(Δ/σ)max < 0.001
182 parametersΔρmax = 0.94 e Å3
1 restraintΔρmin = 1.56 e Å3
Crystal data top
C15H12INO2SV = 1435.49 (6) Å3
Mr = 397.22Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.7068 (3) ŵ = 2.38 mm1
b = 16.2670 (4) ÅT = 295 K
c = 8.5147 (2) Å0.30 × 0.24 × 0.20 mm
β = 104.540 (1)°
Data collection top
Bruker Kappa APEXII
diffractometer
5276 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3696 reflections with I > 2σ(I)
Tmin = 0.536, Tmax = 0.648Rint = 0.023
21249 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0431 restraint
wR(F2) = 0.144H-atom parameters constrained
S = 1.06Δρmax = 0.94 e Å3
5276 reflectionsΔρmin = 1.56 e Å3
182 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8489 (3)0.14775 (16)0.8788 (3)0.0350 (5)
C20.8848 (4)0.0951 (2)1.0097 (4)0.0495 (7)
H20.82650.05741.03240.059*
C31.0098 (4)0.0998 (3)1.1063 (5)0.0638 (10)
H31.03650.06461.19440.077*
C41.0940 (4)0.1562 (3)1.0722 (5)0.0643 (11)
H41.17780.15871.13750.077*
C51.0569 (3)0.2092 (3)0.9431 (5)0.0556 (9)
H51.11490.24780.92270.067*
C60.9331 (3)0.20492 (19)0.8436 (4)0.0433 (6)
H60.90730.23980.75490.052*
C70.7397 (3)0.04833 (16)0.5161 (3)0.0329 (5)
C80.7262 (3)0.03190 (16)0.4724 (3)0.0336 (5)
C90.6619 (2)0.07527 (14)0.5739 (3)0.0297 (4)
C100.6230 (3)0.15718 (17)0.5777 (4)0.0387 (6)
H100.63790.19500.50250.046*
C110.5626 (3)0.1805 (2)0.6940 (4)0.0478 (7)
H110.53620.23480.69780.057*
C120.5402 (3)0.1249 (2)0.8061 (4)0.0486 (7)
H120.50050.14290.88520.058*
C130.5753 (3)0.0428 (2)0.8043 (4)0.0435 (6)
H130.55850.00550.87920.052*
C140.6367 (2)0.01869 (15)0.6857 (3)0.0309 (5)
C150.7993 (4)0.1168 (2)0.4432 (5)0.0509 (7)
H15A0.82300.09720.34830.076*
H15B0.87480.13620.52080.076*
H15C0.73830.16090.41370.076*
N10.6822 (2)0.05838 (13)0.6481 (3)0.0335 (4)
O10.6046 (2)0.13114 (15)0.8577 (4)0.0552 (6)
O20.6719 (2)0.21172 (13)0.6496 (3)0.0533 (6)
S10.68958 (6)0.14402 (4)0.75748 (10)0.03797 (16)
I10.78752 (3)0.084909 (16)0.28650 (3)0.06383 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0355 (12)0.0307 (11)0.0379 (13)0.0043 (9)0.0078 (10)0.0078 (10)
C20.0583 (19)0.0487 (17)0.0391 (15)0.0014 (14)0.0076 (14)0.0020 (12)
C30.071 (3)0.070 (2)0.0421 (18)0.020 (2)0.0008 (17)0.0018 (17)
C40.0421 (17)0.087 (3)0.056 (2)0.0121 (17)0.0013 (15)0.025 (2)
C50.0409 (16)0.065 (2)0.061 (2)0.0088 (14)0.0131 (14)0.0205 (18)
C60.0436 (15)0.0406 (14)0.0458 (15)0.0039 (11)0.0117 (12)0.0062 (12)
C70.0368 (12)0.0290 (11)0.0337 (12)0.0026 (9)0.0107 (9)0.0026 (9)
C80.0411 (13)0.0293 (11)0.0303 (11)0.0013 (9)0.0088 (9)0.0012 (8)
C90.0297 (11)0.0280 (11)0.0287 (11)0.0016 (8)0.0025 (8)0.0014 (8)
C100.0444 (14)0.0295 (12)0.0376 (13)0.0067 (10)0.0021 (11)0.0005 (10)
C110.0440 (15)0.0395 (15)0.0552 (17)0.0157 (12)0.0036 (13)0.0100 (13)
C120.0407 (15)0.0578 (19)0.0489 (17)0.0109 (13)0.0143 (12)0.0130 (15)
C130.0415 (14)0.0501 (16)0.0427 (15)0.0046 (12)0.0178 (12)0.0006 (12)
C140.0272 (10)0.0321 (11)0.0326 (11)0.0008 (8)0.0058 (9)0.0005 (9)
C150.064 (2)0.0396 (15)0.0548 (18)0.0110 (14)0.0261 (15)0.0073 (14)
N10.0389 (11)0.0255 (9)0.0373 (11)0.0027 (8)0.0120 (9)0.0033 (8)
O10.0433 (11)0.0543 (13)0.0750 (17)0.0013 (10)0.0278 (11)0.0227 (12)
O20.0528 (13)0.0308 (10)0.0659 (15)0.0113 (9)0.0047 (11)0.0013 (10)
S10.0335 (3)0.0299 (3)0.0491 (4)0.0048 (2)0.0078 (3)0.0079 (3)
I10.0954 (2)0.05448 (17)0.05233 (17)0.00090 (11)0.03859 (15)0.00527 (9)
Geometric parameters (Å, º) top
C1—C61.380 (4)C9—C141.399 (4)
C1—C21.381 (4)C9—C101.399 (3)
C1—S11.759 (3)C10—C111.365 (5)
C2—C31.386 (6)C10—H100.9300
C2—H20.9300C11—C121.379 (5)
C3—C41.367 (7)C11—H110.9300
C3—H30.9300C12—C131.387 (5)
C4—C51.375 (6)C12—H120.9300
C4—H40.9300C13—C141.392 (4)
C5—C61.384 (5)C13—H130.9300
C5—H50.9300C14—N11.411 (3)
C6—H60.9300C15—H15A0.9600
C7—C81.355 (4)C15—H15B0.9600
C7—N11.420 (3)C15—H15C0.9600
C7—C151.493 (4)N1—S11.667 (2)
C8—C91.421 (4)O1—S11.411 (3)
C8—I12.050 (3)O2—S11.416 (3)
C6—C1—C2121.9 (3)C9—C10—H10120.7
C6—C1—S1119.1 (2)C10—C11—C12121.0 (3)
C2—C1—S1119.0 (2)C10—C11—H11119.5
C1—C2—C3118.5 (4)C12—C11—H11119.5
C1—C2—H2120.8C11—C12—C13122.0 (3)
C3—C2—H2120.8C11—C12—H12119.0
C4—C3—C2120.0 (4)C13—C12—H12119.0
C4—C3—H3120.0C12—C13—C14117.2 (3)
C2—C3—H3120.0C12—C13—H13121.4
C3—C4—C5121.1 (3)C14—C13—H13121.4
C3—C4—H4119.4C13—C14—C9121.0 (2)
C5—C4—H4119.4C13—C14—N1132.0 (3)
C4—C5—C6119.9 (4)C9—C14—N1107.0 (2)
C4—C5—H5120.0C7—C15—H15A109.5
C6—C5—H5120.0C7—C15—H15B109.5
C1—C6—C5118.6 (3)H15A—C15—H15B109.5
C1—C6—H6120.7C7—C15—H15C109.5
C5—C6—H6120.7H15A—C15—H15C109.5
C8—C7—N1106.9 (2)H15B—C15—H15C109.5
C8—C7—C15129.1 (3)C14—N1—C7108.7 (2)
N1—C7—C15123.9 (3)C14—N1—S1125.89 (19)
C7—C8—C9110.2 (2)C7—N1—S1124.72 (18)
C7—C8—I1125.8 (2)O1—S1—O2120.43 (16)
C9—C8—I1124.00 (18)O1—S1—N1105.47 (13)
C14—C9—C10120.1 (2)O2—S1—N1107.93 (14)
C14—C9—C8107.1 (2)O1—S1—C1109.09 (15)
C10—C9—C8132.8 (3)O2—S1—C1107.83 (14)
C11—C10—C9118.7 (3)N1—S1—C1105.06 (12)
C11—C10—H10120.7
C6—C1—C2—C30.7 (5)C8—C9—C14—C13179.2 (3)
S1—C1—C2—C3178.7 (3)C10—C9—C14—N1177.8 (2)
C1—C2—C3—C40.7 (6)C8—C9—C14—N11.6 (3)
C2—C3—C4—C50.3 (6)C13—C14—N1—C7179.0 (3)
C3—C4—C5—C61.1 (6)C9—C14—N1—C72.0 (3)
C2—C1—C6—C50.1 (5)C13—C14—N1—S18.1 (4)
S1—C1—C6—C5177.9 (2)C9—C14—N1—S1172.91 (19)
C4—C5—C6—C11.0 (5)C8—C7—N1—C141.6 (3)
N1—C7—C8—C90.5 (3)C15—C7—N1—C14179.7 (3)
C15—C7—C8—C9179.2 (3)C8—C7—N1—S1172.6 (2)
N1—C7—C8—I1179.13 (18)C15—C7—N1—S18.7 (4)
C15—C7—C8—I10.5 (5)C14—N1—S1—O119.0 (3)
C7—C8—C9—C140.7 (3)C7—N1—S1—O1171.5 (2)
I1—C8—C9—C14179.62 (18)C14—N1—S1—O2149.0 (2)
C7—C8—C9—C10178.6 (3)C7—N1—S1—O241.5 (3)
I1—C8—C9—C101.1 (4)C14—N1—S1—C196.2 (2)
C14—C9—C10—C111.3 (4)C7—N1—S1—C173.3 (2)
C8—C9—C10—C11179.5 (3)C6—C1—S1—O1139.6 (2)
C9—C10—C11—C120.0 (5)C2—C1—S1—O138.4 (3)
C10—C11—C12—C131.3 (5)C6—C1—S1—O27.2 (3)
C11—C12—C13—C141.1 (5)C2—C1—S1—O2170.8 (3)
C12—C13—C14—C90.2 (4)C6—C1—S1—N1107.7 (2)
C12—C13—C14—N1178.7 (3)C2—C1—S1—N174.2 (3)
C10—C9—C14—C131.4 (4)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C9–C14 ring.
D—H···AD—HH···AD···AD—H···A
C13—H13···O10.932.292.871 (4)120
C4—H4···Cg3i0.932.653.517 (5)156
Symmetry code: (i) x+2, y, z+2.

Experimental details

Crystal data
Chemical formulaC15H12INO2S
Mr397.22
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)10.7068 (3), 16.2670 (4), 8.5147 (2)
β (°) 104.540 (1)
V3)1435.49 (6)
Z4
Radiation typeMo Kα
µ (mm1)2.38
Crystal size (mm)0.30 × 0.24 × 0.20
Data collection
DiffractometerBruker Kappa APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.536, 0.648
No. of measured, independent and
observed [I > 2σ(I)] reflections
21249, 5276, 3696
Rint0.023
(sin θ/λ)max1)0.761
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.144, 1.06
No. of reflections5276
No. of parameters182
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.94, 1.56

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C9–C14 ring.
D—H···AD—HH···AD···AD—H···A
C13—H13···O10.932.292.871 (4)120
C4—H4···Cg3i0.932.653.517 (5)156
Symmetry code: (i) x+2, y, z+2.
 

Acknowledgements

CR wishes to acknowledge AMET University management, India, for their kind support.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChai, H., Zhao, C. & Gong, P. (2006). Bioorg. Med. Chem. 14, 911–917.  Web of Science CrossRef PubMed CAS Google Scholar
First citationChakkaravarthi, G., Dhayalan, V., Mohanakrishnan, A. K. & Manivannan, V. (2008). Acta Cryst. E64, o542.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChakkaravarthi, G., Ramesh, N., Mohanakrishnan, A. K. & Manivannan, V. (2007). Acta Cryst. E63, o3564.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNieto, M. J., Alovero, F. L., Manzo, R. H. & Mazzieri, M. R. (2005). Eur. J. Med. Chem. 40, 361–369.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds