metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di-μ-chlorido-bis­­{chlorido[4-nitro-N-(pyridin-2-yl­methyl­­idene-κN)aniline-κN]mercury(II)}

aFaculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran, bDepartment of Chemistry, Alzahra University, Vanak, Tehran, Iran, and cDepartment of Chemistry, Islamic Azad University, Buinzahra Branch, Buinzahra, Qazvin, Iran
*Correspondence e-mail: saleh@basu.ac.ir

(Received 3 February 2011; accepted 7 February 2011; online 12 February 2011)

In the centrosymmetric dinuclear title complex, [Hg2Cl4(C12H9N3O2)2], the HgII ion is in a distorted square-pyramidal coordination environment formed by the N atoms of the diimine ligand, two bridging Cl atoms and one terminal Cl atom. One of the bridging Hg—Cl bonds is significantly longer than the other.

Related literature

For background to diimine complexes and related structures, see: Dehghanpour et al. (2007[Dehghanpour, S., Mahmoudi, A., Khalaj, M. & Salmanpour, S. (2007). Acta Cryst. E63, m2840.]); Mahmoudi et al. (2009[Mahmoudi, A., Dehghanpour, S., Khalaj, M. & Pakravan, S. (2009). Acta Cryst. E65, m889.]).

[Scheme 1]

Experimental

Crystal data
  • [Hg2Cl4(C12H9N3O2)2]

  • Mr = 997.42

  • Monoclinic, P 21 /c

  • a = 8.9731 (2) Å

  • b = 7.8439 (3) Å

  • c = 20.1403 (7) Å

  • β = 98.155 (2)°

  • V = 1403.22 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 11.35 mm−1

  • T = 150 K

  • 0.18 × 0.16 × 0.14 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.115, Tmax = 0.222

  • 11428 measured reflections

  • 3197 independent reflections

  • 2639 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.064

  • S = 1.06

  • 3197 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.94 e Å−3

  • Δρmin = −1.56 e Å−3

Table 1
Selected bond lengths (Å)

Hg1—N1 2.323 (4)
Hg1—Cl1 2.3940 (11)
Hg1—N2 2.442 (4)
Hg1—Cl2 2.5161 (12)
Hg1—Cl2i 2.8068 (11)
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: COLLECT (Nonius, 2002[Nonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO-SMN; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In our ongoing studies on the synthesis, structural and spectroscopic characterization of transition metal complexes with diimine ligands (Dehghanpour et al., 2007; Mahmoudi et al., 2009), we report herein the crystal structure of the title complex. The title compound was prepared by the reaction of HgCl2 with (4-nitrophenyl)pyridin-2-ylmethyleneamine.

The molecluar structure of the title complex is shown in Fig. 1. The unique HgII ion in is in a distorted square pyramidal coordination environment formed by a bis-chelating ligand, two bridging Cl atoms and one terminal Cl atom.

Related literature top

For background to diimine complexes and related structures, see: Dehghanpour et al. (2007); Mahmoudi et al. (2009).

Experimental top

The title complex was prepared by the reaction of HgCl2 (22.7 mg, 0.1 mmol) and (4-nitrophenyl)pyridin-2-ylmethyleneamine (27.2 mg, 0.1mmol) in 15 ml acetonitrile at room temperature. The solution was then concentrated under vacuum, and diffusion of diethyl ether vapor into the concentrated solution gave yellow crystals of the title compound in 60% yield.

Refinement top

The H- atom positions were calculated and refined in a riding model approximatiom with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: COLLECT (Nonius, 2002); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the structure of the title complex, with displacement ellipsoids drawn at the 50% probability level. Symmetry code: (a) -x + 1, -y + 1, -z + 1.
Di-µ-chlorido-bis{chlorido[4-nitro-N-(pyridin-2-ylmethylidene- κN)aniline-κN]mercury(II)} top
Crystal data top
[Hg2Cl4(C12H9N3O2)2]F(000) = 928
Mr = 997.42Dx = 2.361 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6448 reflections
a = 8.9731 (2) Åθ = 2.6–27.5°
b = 7.8439 (3) ŵ = 11.35 mm1
c = 20.1403 (7) ÅT = 150 K
β = 98.155 (2)°Block, colourless
V = 1403.22 (8) Å30.18 × 0.16 × 0.14 mm
Z = 2
Data collection top
Nonius KappaCCD
diffractometer
3197 independent reflections
Radiation source: fine-focus sealed tube2639 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
Detector resolution: 9 pixels mm-1θmax = 27.6°, θmin = 2.8°
ϕ scans and ω scans with κ offsetsh = 1111
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
k = 910
Tmin = 0.115, Tmax = 0.222l = 2526
11428 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.064H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0234P)2 + 1.6835P]
where P = (Fo2 + 2Fc2)/3
3197 reflections(Δ/σ)max = 0.001
181 parametersΔρmax = 0.94 e Å3
0 restraintsΔρmin = 1.56 e Å3
Crystal data top
[Hg2Cl4(C12H9N3O2)2]V = 1403.22 (8) Å3
Mr = 997.42Z = 2
Monoclinic, P21/cMo Kα radiation
a = 8.9731 (2) ŵ = 11.35 mm1
b = 7.8439 (3) ÅT = 150 K
c = 20.1403 (7) Å0.18 × 0.16 × 0.14 mm
β = 98.155 (2)°
Data collection top
Nonius KappaCCD
diffractometer
3197 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
2639 reflections with I > 2σ(I)
Tmin = 0.115, Tmax = 0.222Rint = 0.055
11428 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.064H-atom parameters constrained
S = 1.06Δρmax = 0.94 e Å3
3197 reflectionsΔρmin = 1.56 e Å3
181 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hg10.641245 (19)0.62356 (2)0.448116 (9)0.02542 (8)
Cl10.83299 (13)0.45830 (16)0.40698 (7)0.0314 (3)
Cl20.60508 (13)0.60053 (14)0.56941 (6)0.0270 (3)
O11.0314 (4)1.2850 (5)0.72381 (19)0.0428 (9)
O21.1963 (4)1.0918 (5)0.7078 (2)0.0440 (10)
N10.5013 (4)0.7782 (5)0.36266 (19)0.0238 (8)
N20.6929 (4)0.9273 (5)0.4652 (2)0.0216 (8)
N31.0753 (5)1.1652 (5)0.6919 (2)0.0319 (10)
C10.4077 (5)0.7090 (6)0.3123 (2)0.0265 (10)
H1A0.39850.58840.31010.032*
C20.3234 (5)0.8064 (7)0.2632 (3)0.0308 (11)
H2A0.25890.75310.22770.037*
C30.3344 (5)0.9808 (7)0.2663 (3)0.0312 (11)
H3A0.27691.05020.23350.037*
C40.4315 (5)1.0539 (6)0.3187 (2)0.0275 (10)
H4A0.44041.17440.32220.033*
C50.5152 (5)0.9497 (6)0.3657 (2)0.0212 (9)
C60.6209 (5)1.0210 (6)0.4202 (3)0.0228 (10)
H6A0.63641.14080.42210.027*
C70.7901 (5)0.9952 (6)0.5209 (2)0.0206 (9)
C80.7776 (5)1.1611 (6)0.5433 (2)0.0239 (10)
H8A0.70391.23510.52030.029*
C90.8717 (5)1.2189 (6)0.5988 (2)0.0265 (10)
H9A0.86411.33240.61450.032*
C100.9778 (5)1.1072 (6)0.6314 (2)0.0242 (10)
C110.9934 (5)0.9425 (6)0.6092 (2)0.0257 (10)
H11A1.06880.86960.63160.031*
C120.8981 (5)0.8855 (6)0.5542 (2)0.0241 (10)
H12A0.90580.77170.53880.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.03088 (12)0.01758 (11)0.02789 (12)0.00384 (7)0.00446 (8)0.00096 (8)
Cl10.0311 (6)0.0273 (6)0.0363 (7)0.0085 (5)0.0069 (5)0.0012 (5)
Cl20.0332 (6)0.0244 (6)0.0233 (6)0.0052 (4)0.0035 (5)0.0015 (5)
O10.037 (2)0.046 (2)0.043 (2)0.0073 (18)0.0020 (17)0.017 (2)
O20.0277 (19)0.055 (3)0.045 (2)0.0031 (17)0.0075 (16)0.0044 (19)
N10.0249 (19)0.022 (2)0.025 (2)0.0021 (16)0.0057 (16)0.0018 (17)
N20.0210 (18)0.0192 (19)0.025 (2)0.0007 (15)0.0039 (15)0.0047 (16)
N30.026 (2)0.037 (3)0.033 (3)0.0090 (18)0.0047 (18)0.003 (2)
C10.029 (2)0.026 (3)0.024 (3)0.003 (2)0.0052 (19)0.001 (2)
C20.029 (2)0.035 (3)0.026 (3)0.004 (2)0.004 (2)0.004 (2)
C30.033 (3)0.036 (3)0.023 (3)0.012 (2)0.000 (2)0.006 (2)
C40.035 (3)0.021 (2)0.026 (3)0.004 (2)0.003 (2)0.001 (2)
C50.026 (2)0.021 (2)0.017 (2)0.0034 (19)0.0048 (18)0.0020 (19)
C60.027 (2)0.013 (2)0.029 (3)0.0024 (18)0.0064 (19)0.001 (2)
C70.019 (2)0.019 (2)0.024 (3)0.0006 (17)0.0067 (18)0.0006 (19)
C80.025 (2)0.022 (2)0.024 (3)0.0018 (18)0.0044 (19)0.0039 (19)
C90.025 (2)0.020 (2)0.035 (3)0.0029 (19)0.009 (2)0.006 (2)
C100.020 (2)0.026 (3)0.027 (3)0.0062 (18)0.0036 (18)0.002 (2)
C110.024 (2)0.023 (2)0.030 (3)0.004 (2)0.0027 (19)0.004 (2)
C120.022 (2)0.020 (2)0.031 (3)0.0005 (18)0.0053 (19)0.001 (2)
Geometric parameters (Å, º) top
Hg1—N12.323 (4)C3—C41.392 (7)
Hg1—Cl12.3940 (11)C3—H3A0.9500
Hg1—N22.442 (4)C4—C51.388 (6)
Hg1—Cl22.5161 (12)C4—H4A0.9500
Hg1—Cl2i2.8068 (11)C5—C61.457 (6)
Cl2—Hg1i2.8068 (11)C6—H6A0.9500
O1—N31.233 (5)C7—C81.387 (6)
O2—N31.231 (5)C7—C121.394 (6)
N1—C11.337 (6)C8—C91.380 (7)
N1—C51.352 (6)C8—H8A0.9500
N2—C61.272 (6)C9—C101.388 (7)
N2—C71.423 (6)C9—H9A0.9500
N3—C101.468 (6)C10—C111.381 (6)
C1—C21.386 (7)C11—C121.375 (7)
C1—H1A0.9500C11—H11A0.9500
C2—C31.372 (7)C12—H12A0.9500
C2—H2A0.9500
N1—Hg1—Cl1111.46 (10)C4—C3—H3A120.7
N1—Hg1—N270.57 (13)C5—C4—C3119.6 (5)
Cl1—Hg1—N2116.47 (9)C5—C4—H4A120.2
N1—Hg1—Cl2128.76 (9)C3—C4—H4A120.2
Cl1—Hg1—Cl2119.68 (4)N1—C5—C4121.2 (4)
N2—Hg1—Cl288.91 (9)N1—C5—C6117.6 (4)
N1—Hg1—Cl2i84.28 (9)C4—C5—C6121.3 (4)
Cl1—Hg1—Cl2i102.07 (4)N2—C6—C5121.8 (4)
N2—Hg1—Cl2i139.38 (9)N2—C6—H6A119.1
Cl2—Hg1—Cl2i82.50 (4)C5—C6—H6A119.1
Hg1—Cl2—Hg1i97.50 (4)C8—C7—C12120.4 (4)
C1—N1—C5118.8 (4)C8—C7—N2122.6 (4)
C1—N1—Hg1124.5 (3)C12—C7—N2117.0 (4)
C5—N1—Hg1116.7 (3)C9—C8—C7120.2 (4)
C6—N2—C7122.6 (4)C9—C8—H8A119.9
C6—N2—Hg1113.3 (3)C7—C8—H8A119.9
C7—N2—Hg1124.0 (3)C8—C9—C10118.4 (4)
O2—N3—O1123.8 (4)C8—C9—H9A120.8
O2—N3—C10118.1 (4)C10—C9—H9A120.8
O1—N3—C10118.1 (4)C11—C10—C9122.2 (4)
N1—C1—C2122.6 (5)C11—C10—N3118.9 (4)
N1—C1—H1A118.7C9—C10—N3119.0 (4)
C2—C1—H1A118.7C12—C11—C10119.0 (4)
C3—C2—C1119.2 (5)C12—C11—H11A120.5
C3—C2—H2A120.4C10—C11—H11A120.5
C1—C2—H2A120.4C11—C12—C7119.8 (4)
C2—C3—C4118.6 (4)C11—C12—H12A120.1
C2—C3—H3A120.7C7—C12—H12A120.1
N1—Hg1—Cl2—Hg1i76.43 (12)C1—N1—C5—C6178.4 (4)
Cl1—Hg1—Cl2—Hg1i99.66 (5)Hg1—N1—C5—C62.7 (5)
N2—Hg1—Cl2—Hg1i140.20 (9)C3—C4—C5—N11.8 (7)
Cl2i—Hg1—Cl2—Hg1i0.0C3—C4—C5—C6178.4 (4)
Cl1—Hg1—N1—C168.2 (4)C7—N2—C6—C5176.3 (4)
N2—Hg1—N1—C1179.9 (4)Hg1—N2—C6—C51.9 (5)
Cl2—Hg1—N1—C1108.1 (3)N1—C5—C6—N23.2 (6)
Cl2i—Hg1—N1—C132.5 (3)C4—C5—C6—N2176.7 (4)
Cl1—Hg1—N1—C5112.9 (3)C6—N2—C7—C822.2 (7)
N2—Hg1—N1—C51.3 (3)Hg1—N2—C7—C8155.9 (3)
Cl2—Hg1—N1—C570.7 (3)C6—N2—C7—C12159.7 (4)
Cl2i—Hg1—N1—C5146.3 (3)Hg1—N2—C7—C1222.3 (5)
N1—Hg1—N2—C60.3 (3)C12—C7—C8—C90.2 (7)
Cl1—Hg1—N2—C6104.6 (3)N2—C7—C8—C9177.9 (4)
Cl2—Hg1—N2—C6132.5 (3)C7—C8—C9—C100.2 (7)
Cl2i—Hg1—N2—C655.3 (4)C8—C9—C10—C111.2 (7)
N1—Hg1—N2—C7177.8 (3)C8—C9—C10—N3177.9 (4)
Cl1—Hg1—N2—C777.2 (3)O2—N3—C10—C1123.7 (6)
Cl2—Hg1—N2—C745.7 (3)O1—N3—C10—C11156.4 (4)
Cl2i—Hg1—N2—C7122.8 (3)O2—N3—C10—C9157.1 (4)
C5—N1—C1—C20.4 (7)O1—N3—C10—C922.7 (6)
Hg1—N1—C1—C2178.4 (3)C9—C10—C11—C121.8 (7)
N1—C1—C2—C30.8 (7)N3—C10—C11—C12177.3 (4)
C1—C2—C3—C40.7 (7)C10—C11—C12—C71.4 (7)
C2—C3—C4—C50.5 (7)C8—C7—C12—C110.5 (7)
C1—N1—C5—C41.7 (6)N2—C7—C12—C11178.7 (4)
Hg1—N1—C5—C4177.2 (3)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Hg2Cl4(C12H9N3O2)2]
Mr997.42
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)8.9731 (2), 7.8439 (3), 20.1403 (7)
β (°) 98.155 (2)
V3)1403.22 (8)
Z2
Radiation typeMo Kα
µ (mm1)11.35
Crystal size (mm)0.18 × 0.16 × 0.14
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995)
Tmin, Tmax0.115, 0.222
No. of measured, independent and
observed [I > 2σ(I)] reflections
11428, 3197, 2639
Rint0.055
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.064, 1.06
No. of reflections3197
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.94, 1.56

Computer programs: COLLECT (Nonius, 2002), DENZO-SMN (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009).

Selected bond lengths (Å) top
Hg1—N12.323 (4)Hg1—Cl22.5161 (12)
Hg1—Cl12.3940 (11)Hg1—Cl2i2.8068 (11)
Hg1—N22.442 (4)
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

We are grateful to Bu-Ali Sina and Alzahra Universities for financial support.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDehghanpour, S., Mahmoudi, A., Khalaj, M. & Salmanpour, S. (2007). Acta Cryst. E63, m2840.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMahmoudi, A., Dehghanpour, S., Khalaj, M. & Pakravan, S. (2009). Acta Cryst. E65, m889.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds