organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Fluoro­isophthalic acid

aKey Laboratory of Fine Petrochemical Technology, Changzhou University, Changzhou 213164, People's Republic of China
*Correspondence e-mail: hemingyangjpu@yahoo.com

(Received 18 January 2011; accepted 1 February 2011; online 9 February 2011)

In the crystal structure of the title compound, C8H5FO4, the complete molecule is generated by crystallographic twofold symmetry with two C atoms and the F atom lying on the axis. The mol­ecule is almost planar with the carboxyl group twisted with respect to the mean plane of the benzene ring by a dihedral angle of 2.01 (1)°. In the crystal, inter­molecular O—H⋯O hydrogen bonds and C—H⋯F inter­actions connect the mol­ecules into a two-dimensional supra­molecular array.

Related literature

For isophthalic acid, see: Bhogala et al. (2005[Bhogala, B. R., Basavoju, S. & Nangia, A. (2005). CrystEngComm, 7, 551-562.]); Derissen (1974[Derissen, J. L. (1974). Acta Cryst. B30, 2764-2765.]). For the use of the title compound in crystal engin­eering, see: Zhang et al. (2010[Zhang, Z.-H., Chen, S.-C., Mi, J.-L., He, M.-Y., Chen, Q., Wu, Z.-H. & Hu, Z.-J. (2010). Inorg. Chem. Commun. 13, 1435-1438.]).

[Scheme 1]

Experimental

Crystal data
  • C8H5FO4

  • Mr = 184.12

  • Monoclinic, P 21 /m

  • a = 3.7736 (8) Å

  • b = 16.292 (4) Å

  • c = 6.2753 (14) Å

  • β = 91.871 (5)°

  • V = 385.60 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 297 K

  • 0.22 × 0.20 × 0.15 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.969, Tmax = 0.979

  • 2201 measured reflections

  • 743 independent reflections

  • 603 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.161

  • S = 1.04

  • 743 reflections

  • 64 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.82 1.81 2.625 (2) 174
C5—H5⋯F1ii 0.93 2.52 3.404 (2) 160
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) x-1, y, z+1.

Data collection: APEX2 (Bruker, 2003[Bruker (2003). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 2005[Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As an analogue of isophthalic acid (Bhogala et al. 2005; Derissen, 1974), 5-fluoroisophthalic acid has been seldom used in the crystal engineering of organic or inorganic-organic systems (Zhang et al. 2010). The fluorinated group may participate in hydrogen-bonding and may also induce luminescence properties. Herein we report the crystal structure of the title compound, C8H5FO4, to further investigate the supramolecular interactions involving the fluorine atom. The structure of the title compound, is shown below. The molecule presents C2 symmetry with the fundamental unit lying on a C2-axis at [x, 3/4, z]. Intermolecular O—H···O interactions between adjoining centrosymmetry-related carboxylic groups form a hydrogen-bonded ribbon running along the [010] direction. C—H···F interactions connect the ribbons into a two-dimensional supramolecular array.

Related literature top

For isophthalic acid, see: Bhogala et al. (2005); Derissen (1974). For the use of the title compound in crystal engineering, see: Zhang et al. (2010).

Experimental top

5-Fluoroisophthalic acid and solvents for synthesis and analysis were commercially available and used as received. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of the methanol solution of the title compound.

Refinement top

Benzene H atoms were assigned to calculated positions with C—H = 0.93 Å, and refined using a riding model, with Uiso(H) = 1.2Ueq(C). H atoms bound to carboxylic O atoms were located in difference maps and refined as riding with Uiso(H) = 1.5 Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2003); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2005); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound drawn with 30% probability ellipsoids.
[Figure 2] Fig. 2. Two-dimensional hydrogen-bonded layer of the title compound. Hydrogen bonds are indicated as dashed lines.
5-fluorobenzene-1,3-dicarboxylic acid top
Crystal data top
C8H5FO4F(000) = 188
Mr = 184.12Dx = 1.586 Mg m3
Monoclinic, P21/mMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybCell parameters from 1020 reflections
a = 3.7736 (8) Åθ = 2.5–28.0°
b = 16.292 (4) ŵ = 0.14 mm1
c = 6.2753 (14) ÅT = 297 K
β = 91.871 (5)°Block, colourless
V = 385.60 (14) Å30.22 × 0.20 × 0.15 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
743 independent reflections
Radiation source: fine-focus sealed tube603 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ϕ and ω scansθmax = 25.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 44
Tmin = 0.969, Tmax = 0.979k = 1719
2201 measured reflectionsl = 75
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.161H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.1244P)2]
where P = (Fo2 + 2Fc2)/3
743 reflections(Δ/σ)max < 0.001
64 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C8H5FO4V = 385.60 (14) Å3
Mr = 184.12Z = 2
Monoclinic, P21/mMo Kα radiation
a = 3.7736 (8) ŵ = 0.14 mm1
b = 16.292 (4) ÅT = 297 K
c = 6.2753 (14) Å0.22 × 0.20 × 0.15 mm
β = 91.871 (5)°
Data collection top
Bruker APEXII CCD
diffractometer
743 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
603 reflections with I > 2σ(I)
Tmin = 0.969, Tmax = 0.979Rint = 0.018
2201 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.161H-atom parameters constrained
S = 1.04Δρmax = 0.16 e Å3
743 reflectionsΔρmin = 0.15 e Å3
64 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6268 (4)0.59855 (9)0.8588 (3)0.0524 (5)
C20.7105 (4)0.67633 (9)0.7484 (2)0.0487 (5)
C30.8602 (4)0.67563 (10)0.5486 (3)0.0529 (5)
H30.91070.62650.48060.063*
C40.9312 (5)0.75000.4549 (3)0.0540 (6)
C50.6370 (5)0.75000.8476 (3)0.0477 (6)
H50.53790.75000.98130.057*
F11.0787 (4)0.75000.2629 (2)0.0744 (6)
O10.7073 (4)0.53205 (8)0.7622 (2)0.0775 (6)
H10.63480.49050.82050.116*
O20.4837 (4)0.60037 (7)1.0328 (2)0.0722 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0490 (9)0.0612 (10)0.0474 (10)0.0023 (6)0.0088 (7)0.0080 (7)
C20.0385 (8)0.0652 (11)0.0424 (9)0.0012 (6)0.0022 (6)0.0051 (6)
C30.0420 (9)0.0726 (12)0.0441 (10)0.0006 (6)0.0027 (7)0.0087 (7)
C40.0426 (11)0.0852 (16)0.0346 (11)0.0000.0069 (9)0.000
C50.0400 (10)0.0642 (14)0.0395 (11)0.0000.0072 (8)0.000
F10.0745 (10)0.1105 (12)0.0393 (8)0.0000.0190 (7)0.000
O10.1022 (11)0.0610 (8)0.0715 (10)0.0050 (6)0.0359 (8)0.0121 (6)
O20.0938 (10)0.0622 (9)0.0628 (9)0.0038 (6)0.0355 (7)0.0032 (5)
Geometric parameters (Å, º) top
C1—O21.235 (2)C3—H30.9300
C1—O11.2826 (19)C4—F11.343 (2)
C1—C21.483 (2)C4—C3i1.377 (2)
C2—C51.3841 (18)C5—C2i1.3841 (19)
C2—C31.392 (2)C5—H50.9300
C3—C41.377 (2)O1—H10.8201
O2—C1—O1123.73 (15)C2—C3—H3121.1
O2—C1—C2119.91 (13)F1—C4—C3118.37 (11)
O1—C1—C2116.35 (15)F1—C4—C3i118.36 (11)
C5—C2—C3120.34 (15)C3—C4—C3i123.3 (2)
C5—C2—C1118.83 (15)C2—C5—C2i120.3 (2)
C3—C2—C1120.83 (14)C2—C5—H5119.9
C4—C3—C2117.89 (16)C2i—C5—H5119.9
C4—C3—H3121.1C1—O1—H1113.5
O2—C1—C2—C52.3 (3)C1—C2—C3—C4179.97 (14)
O1—C1—C2—C5178.51 (16)C2—C3—C4—F1179.40 (14)
O2—C1—C2—C3177.68 (14)C2—C3—C4—C3i0.3 (3)
O1—C1—C2—C31.5 (3)C3—C2—C5—C2i0.3 (3)
C5—C2—C3—C40.0 (3)C1—C2—C5—C2i179.72 (12)
Symmetry code: (i) x, y+3/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2ii0.821.812.625 (2)174
C5—H5···F1iii0.932.523.404 (2)160
Symmetry codes: (ii) x+1, y+1, z+2; (iii) x1, y, z+1.

Experimental details

Crystal data
Chemical formulaC8H5FO4
Mr184.12
Crystal system, space groupMonoclinic, P21/m
Temperature (K)297
a, b, c (Å)3.7736 (8), 16.292 (4), 6.2753 (14)
β (°) 91.871 (5)
V3)385.60 (14)
Z2
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.22 × 0.20 × 0.15
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.969, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
2201, 743, 603
Rint0.018
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.161, 1.04
No. of reflections743
No. of parameters64
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.15

Computer programs: APEX2 (Bruker, 2003), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2005), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.812.625 (2)174
C5—H5···F1ii0.932.523.404 (2)160
Symmetry codes: (i) x+1, y+1, z+2; (ii) x1, y, z+1.
 

Acknowledgements

The authors gratefully acknowledge the Jiangsu Province Outstanding Science and Technology Innovation Team and Changzhou University for financial support.

References

First citationBhogala, B. R., Basavoju, S. & Nangia, A. (2005). CrystEngComm, 7, 551–562.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDerissen, J. L. (1974). Acta Cryst. B30, 2764–2765.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Z.-H., Chen, S.-C., Mi, J.-L., He, M.-Y., Chen, Q., Wu, Z.-H. & Hu, Z.-J. (2010). Inorg. Chem. Commun. 13, 1435–1438.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds