metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­aqua­(2-hy­dr­oxy­acetato-κ2O1,O2)magnesium nitrate

aSchool of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China
*Correspondence e-mail: yuesht@scnu.edu.cn

(Received 15 February 2011; accepted 21 February 2011; online 26 February 2011)

In the title complex, [Mg(C2H3O3)(H2O)4]NO3, the MgII cation is hexa­coordinated by four O atoms from water mol­ecules and two O atoms from a 2-hy­droxy­acetate ligand in a distorted octa­hedral coordination geometry. The structure exhibits a three-dimensional supra­molecular network, which is stabilized by nine different O—H⋯O hydrogen bonds.

Related literature

For related magnesium complexes, see: Erxleben & Schumacher (2001[Erxleben, A. & Schumacher, D. (2001). Eur. J. Inorg. Chem. pp. 3039-3046.]).

[Scheme 1]

Experimental

Crystal data
  • [Mg(C2H3O3)(H2O)4]NO3

  • Mr = 233.43

  • Monoclinic, P 21 /n

  • a = 5.777 (2) Å

  • b = 7.171 (3) Å

  • c = 23.045 (8) Å

  • β = 92.839 (4)°

  • V = 953.5 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 298 K

  • 0.20 × 0.18 × 0.18 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.956, Tmax = 0.960

  • 4632 measured reflections

  • 1713 independent reflections

  • 1424 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.115

  • S = 1.06

  • 1713 reflections

  • 141 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Selected bond lengths (Å)

Mg1—O3W 2.021 (2)
Mg1—O1W 2.033 (2)
Mg1—O2 2.0467 (19)
Mg1—O4W 2.052 (2)
Mg1—O2W 2.058 (2)
Mg1—O1 2.069 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3W—H3W1⋯O2i 0.85 1.88 2.719 (3) 167
O3W—H3W2⋯O6ii 0.85 2.05 2.860 (3) 160
O1—H3⋯O3i 0.88 (3) 1.76 (3) 2.638 (3) 172 (3)
O1W—H1W2⋯O4iii 0.85 1.90 2.747 (3) 173
O1W—H1W1⋯O6iv 0.85 2.06 2.905 (3) 174
O4W—H4W1⋯O3v 0.85 1.85 2.687 (3) 166
O4W—H4W2⋯O4vi 0.85 2.31 3.014 (3) 141
O2W—H2W1⋯O4 0.85 2.02 2.860 (3) 169
O2W—H2W2⋯O5vii 0.85 2.00 2.826 (3) 166
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y+1, -z; (iii) -x, -y+1, -z; (iv) x-1, y-1, z; (v) [-x-{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vi) x, y-1, z; (vii) x-1, y, z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The compound crystallizes in the monoclinic system, space group P21/n, an ORTEP view is shown in Fig. 1. The MgII ion is hexa-coordinated by four oxygen atoms from water and two oxygen atoms from 2-hydroxyacetato ions. The Mg—O distances are in the range of 2.021 (2)—2.069 (2) Å. The O—Mg—O bond angles fall in the range of 76.73 (8)—171.89 (10) °. The C—O distances of HOCH2COO- are within the range of 1.247 (3) Å to 1.413 (3) Å. This molecular complex exhibits a 3D structure via O—H···O hydrogen bonding interactions (Fig. 2).

Related literature top

For related magnesium complexes, see: Erxleben & Schumacher (2001).

Experimental top

A mixture of 2-hydroxyacetic acid (0.038 g, 0.5 mmol), Mg(NO3)2.6H2O (0.064 g, 0.25 mmol) and H2O (7 mL) was heated to 180 °C for 72 h in a 15 ml Teflon-lined stainless-steel autoclave and then cooled to room temperature at a rate of 5 °C/h. Colorless block crystals were collected and dried in air in ca. 48% yield based on Mg.

Refinement top

H atoms were positioned in calculated positions, with C—H = 0.93 (aromatic) and 0.96 Å (ethanol), and refined in riding mode with Uiso(H) = 1.5 Ueq(C) for ethanol and 1.2 Ueq(C) for the others. Water H atoms were restrained, with O—H = 0.85 (1)Å and H···H = 1.29 (1) Å.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Displacement ellipsoid plot (40% probability level) of the title compound.
[Figure 2] Fig. 2. The packing diagram of the title compound.
Tetraaqua(2-hydroxyacetato-κ2O1,O2)magnesium nitrate top
Crystal data top
[Mg(C2H3O3)(H2O)4]NO3F(000) = 488
Mr = 233.43Dx = 1.626 Mg m3
Dm = 1.626 Mg m3
Dm measured by not measured
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1638 reflections
a = 5.777 (2) Åθ = 2.8–26.0°
b = 7.171 (3) ŵ = 0.23 mm1
c = 23.045 (8) ÅT = 298 K
β = 92.839 (4)°Block, colorless
V = 953.5 (6) Å30.20 × 0.18 × 0.18 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
1713 independent reflections
Radiation source: fine-focus sealed tube1424 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 25.2°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 66
Tmin = 0.956, Tmax = 0.960k = 86
4632 measured reflectionsl = 2727
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0488P)2 + 0.7836P]
where P = (Fo2 + 2Fc2)/3
1713 reflections(Δ/σ)max < 0.001
141 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
[Mg(C2H3O3)(H2O)4]NO3V = 953.5 (6) Å3
Mr = 233.43Z = 4
Monoclinic, P21/nMo Kα radiation
a = 5.777 (2) ŵ = 0.23 mm1
b = 7.171 (3) ÅT = 298 K
c = 23.045 (8) Å0.20 × 0.18 × 0.18 mm
β = 92.839 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1713 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1424 reflections with I > 2σ(I)
Tmin = 0.956, Tmax = 0.960Rint = 0.027
4632 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.29 e Å3
1713 reflectionsΔρmin = 0.18 e Å3
141 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mg10.03285 (14)0.16089 (12)0.12732 (3)0.0330 (3)
O20.2625 (3)0.1820 (3)0.17242 (7)0.0381 (5)
O3W0.3575 (3)0.1539 (3)0.09850 (8)0.0480 (5)
H3W10.48640.16970.11720.080 (13)*
H3W20.39690.18910.06520.054 (9)*
O10.1570 (3)0.2201 (4)0.21105 (8)0.0507 (6)
O1W0.1370 (3)0.0888 (3)0.05123 (8)0.0431 (5)
H1W20.18780.14790.02130.065*
H1W10.19670.01710.04330.065*
O4W0.0493 (4)0.1211 (3)0.14223 (9)0.0520 (6)
H4W10.00470.18250.17120.078*
H4W20.14240.20070.12910.078*
O2W0.0052 (4)0.4340 (3)0.10109 (10)0.0557 (6)
H2W10.08180.49980.08050.083*
H2W20.12800.49910.09730.083*
N10.4889 (4)0.6773 (3)0.05397 (10)0.0436 (6)
O40.2764 (4)0.6940 (3)0.04229 (10)0.0606 (6)
O60.6310 (4)0.7402 (3)0.02097 (9)0.0599 (6)
O50.5496 (4)0.5979 (5)0.09917 (11)0.0840 (9)
C20.0077 (5)0.2379 (5)0.25407 (12)0.0396 (6)
C10.2471 (4)0.2188 (4)0.22541 (11)0.0337 (6)
O30.4157 (3)0.2385 (3)0.25663 (8)0.0503 (6)
H10.004 (5)0.352 (5)0.2734 (14)0.052 (9)*
H30.294 (6)0.232 (4)0.2291 (13)0.048 (8)*
H20.019 (5)0.144 (5)0.2852 (14)0.055 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mg10.0246 (4)0.0441 (5)0.0305 (4)0.0018 (4)0.0053 (3)0.0009 (4)
O20.0242 (9)0.0586 (12)0.0315 (9)0.0037 (8)0.0030 (7)0.0057 (8)
O3W0.0260 (10)0.0799 (15)0.0387 (11)0.0066 (9)0.0068 (8)0.0017 (10)
O10.0214 (10)0.0941 (17)0.0368 (10)0.0028 (10)0.0024 (8)0.0129 (10)
O1W0.0464 (11)0.0480 (11)0.0342 (10)0.0048 (9)0.0040 (8)0.0008 (8)
O4W0.0674 (14)0.0443 (12)0.0464 (11)0.0072 (10)0.0232 (10)0.0089 (9)
O2W0.0463 (12)0.0447 (12)0.0769 (15)0.0032 (10)0.0127 (11)0.0100 (11)
N10.0465 (15)0.0436 (14)0.0411 (13)0.0027 (11)0.0062 (11)0.0033 (10)
O40.0420 (13)0.0704 (16)0.0692 (15)0.0009 (11)0.0007 (10)0.0225 (12)
O60.0554 (13)0.0775 (16)0.0478 (12)0.0177 (12)0.0120 (10)0.0040 (11)
O50.0578 (16)0.131 (2)0.0627 (16)0.0079 (16)0.0018 (12)0.0440 (16)
C20.0284 (14)0.0565 (18)0.0343 (14)0.0019 (13)0.0048 (11)0.0107 (14)
C10.0268 (13)0.0393 (14)0.0353 (13)0.0008 (11)0.0052 (10)0.0053 (11)
O30.0283 (10)0.0824 (16)0.0408 (10)0.0016 (10)0.0083 (8)0.0188 (11)
Geometric parameters (Å, º) top
Mg1—O3W2.021 (2)O1W—H1W10.8499
Mg1—O1W2.033 (2)O4W—H4W10.8500
Mg1—O22.0467 (19)O4W—H4W20.8499
Mg1—O4W2.052 (2)O2W—H2W10.8499
Mg1—O2W2.058 (2)O2W—H2W20.8500
Mg1—O12.069 (2)N1—O51.223 (3)
O2—C11.248 (3)N1—O61.232 (3)
O3W—H3W10.8498N1—O41.250 (3)
O3W—H3W20.8498C2—C11.509 (4)
O1—C21.413 (3)C2—H10.94 (3)
O1—H30.88 (3)C2—H20.99 (3)
O1W—H1W20.8499C1—O31.247 (3)
O3W—Mg1—O1W97.25 (8)Mg1—O1W—H1W2134.9
O3W—Mg1—O2168.28 (8)Mg1—O1W—H1W1125.8
O1W—Mg1—O294.47 (8)H1W2—O1W—H1W198.7
O3W—Mg1—O4W89.68 (9)Mg1—O4W—H4W1129.0
O1W—Mg1—O4W84.85 (9)Mg1—O4W—H4W2128.8
O2—Mg1—O4W91.19 (8)H4W1—O4W—H4W298.7
O3W—Mg1—O2W90.83 (9)Mg1—O2W—H2W1129.4
O1W—Mg1—O2W87.06 (9)Mg1—O2W—H2W2129.0
O2—Mg1—O2W89.95 (9)H2W1—O2W—H2W298.7
O4W—Mg1—O2W171.89 (10)O5—N1—O6121.7 (3)
O3W—Mg1—O191.56 (8)O5—N1—O4117.7 (2)
O1W—Mg1—O1170.61 (8)O6—N1—O4120.6 (2)
O2—Mg1—O176.73 (8)O1—C2—C1108.6 (2)
O4W—Mg1—O192.00 (10)O1—C2—H1112 (2)
O2W—Mg1—O196.07 (10)C1—C2—H1109.3 (19)
C1—O2—Mg1119.44 (16)O1—C2—H2111.1 (19)
Mg1—O3W—H3W1129.3C1—C2—H2111.3 (19)
Mg1—O3W—H3W2125.7H1—C2—H2104 (3)
H3W1—O3W—H3W298.8O3—C1—O2124.6 (2)
C2—O1—Mg1117.30 (16)O3—C1—C2117.5 (2)
C2—O1—H3106 (2)O2—C1—C2117.8 (2)
Mg1—O1—H3136 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3W—H3W1···O2i0.851.882.719 (3)167
O3W—H3W2···O6ii0.852.052.860 (3)160
O1—H3···O3i0.88 (3)1.76 (3)2.638 (3)172 (3)
O1W—H1W2···O4iii0.851.902.747 (3)173
O1W—H1W1···O6iv0.852.062.905 (3)174
O4W—H4W1···O3v0.851.852.687 (3)166
O4W—H4W2···O4vi0.852.313.014 (3)141
O2W—H2W1···O40.852.022.860 (3)169
O2W—H2W2···O5vii0.852.002.826 (3)166
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z; (iii) x, y+1, z; (iv) x1, y1, z; (v) x1/2, y1/2, z+1/2; (vi) x, y1, z; (vii) x1, y, z.

Experimental details

Crystal data
Chemical formula[Mg(C2H3O3)(H2O)4]NO3
Mr233.43
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)5.777 (2), 7.171 (3), 23.045 (8)
β (°) 92.839 (4)
V3)953.5 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.20 × 0.18 × 0.18
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.956, 0.960
No. of measured, independent and
observed [I > 2σ(I)] reflections
4632, 1713, 1424
Rint0.027
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.115, 1.06
No. of reflections1713
No. of parameters141
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.29, 0.18

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Mg1—O3W2.021 (2)Mg1—O4W2.052 (2)
Mg1—O1W2.033 (2)Mg1—O2W2.058 (2)
Mg1—O22.0467 (19)Mg1—O12.069 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3W—H3W1···O2i0.851.882.719 (3)167
O3W—H3W2···O6ii0.852.052.860 (3)160
O1—H3···O3i0.88 (3)1.76 (3)2.638 (3)172 (3)
O1W—H1W2···O4iii0.851.902.747 (3)173
O1W—H1W1···O6iv0.852.062.905 (3)174
O4W—H4W1···O3v0.851.852.687 (3)166
O4W—H4W2···O4vi0.852.313.014 (3)141
O2W—H2W1···O40.852.022.860 (3)169
O2W—H2W2···O5vii0.852.002.826 (3)166
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z; (iii) x, y+1, z; (iv) x1, y1, z; (v) x1/2, y1/2, z+1/2; (vi) x, y1, z; (vii) x1, y, z.
 

Acknowledgements

This work was supported financially by the NSFC (grants 20971047 and U0734005), Guangdong Provincial Science and Technology Bureau (grant 2008B010600009) and the Key Research Program of Guangdong Provincial Universities Science and Technology innovation (grant cxzd1020).

References

First citationBruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationErxleben, A. & Schumacher, D. (2001). Eur. J. Inorg. Chem. pp. 3039–3046.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds