organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 3| March 2011| Pages o617-o618

3-{[6-(4-Chloro­phen­yl)imidazo[2,1-b][1,3,4]thia­diazol-2-yl]meth­yl}-1,2-benzoxazole

aDepartment of Studies in Chemistry, Bangalore University, Bangalore 560 001, India, and bDepartment of Chemistry, Karnatak University, Dharwad 580 003, India
*Correspondence e-mail: noorsb@rediffmail.com

(Received 1 January 2011; accepted 7 February 2011; online 12 February 2011)

In the title compound, C18H11ClN4OS, the benzisoxazole and imidazothia­diazole rings are inclined at an angle of 23.81 (7)° with respect to each other. The imidazothia­diazole and chloro­phenyl rings make a dihedral angle of 27.34 (3)°. In the crystal, inter­molecular C—H⋯N inter­actions generate a chain along the c axis and C—H⋯O inter­actions form centrosymmetric dimers resulting in an R22(26) graph-set motif. Moreover, the C—H⋯N and S⋯N [3.206 (4) Å] inter­actions links the mol­ecules into R(7) ring motifs. The packing is further stabilized by ππ stacking inter­actions between the thia­diazole rings with a shortest centroid–centroid distance of 3.497 (3) Å. In addition, C—H⋯π inter­actions are observed in the crystal structure

Related literature

For the preparation of the title compound see: Lamani et al. (2009[Lamani, R. S., Shetty, N. S., Ravindra, R. & Khazi, I. A. M. (2009). Eur. J. Med. Chem. 44, 2828-2833.]). For the biological activity of benzisoxazole derivatives, see: Priya et al. (2005[Priya, B. S., Basappa., Swamy, S. N., Rangappa, K. S. (2005). Bioorg. Med. Chem. 13, 2623-2628.]). For the use of five-membered heterocyclic ring 1,3,4-thia­diazo­les in the design of compounds, see: Katritzky (1984)[Katritzky, A. R. (1984). In Comprehensive Heterocyclic Chemistry. Oxford: Pergamon.]; Diamond & Sevrain (2003a[Diamond, S. & Sevrain, C. (2003a). Chem Abstr. 138, 198554.],b[Diamond, S. & Sevrain, C. (2003b). PCT Int. Appl. WO 2003016870.]); Nakao et al. (2002a[Nakao, H., Matsuzaki, Y., Tohnishi, M., Mmorimoto, M., Fujioka, S., Takemoto, T. & Mamezuka, K. (2002a). Chem Abstr. 137, 384845.],b[Nakao, H., Matsuzaki, Y., Tohnishi, M., Mmorimoto, M., Fujioka, S., Takemoto, T. & Mamezuka, K. (2002b). PCT Int. Appl. WO 2002092584.]). For related structures, see: Sun & Zhang (2009[Sun, Y. & Zhang, H.-H. (2009). Acta Cryst. E65, o1647.]). For hydrogen-bond motifs, see: Bernstein et al. 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. 34, 1555-1573.])

[Scheme 1]

Experimental

Crystal data
  • C18H11ClN4OS

  • Mr = 366.83

  • Monoclinic, C 2/c

  • a = 38.419 (7) Å

  • b = 5.7761 (10) Å

  • c = 14.772 (3) Å

  • β = 108.004 (5)°

  • V = 3117.5 (10) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.39 mm−1

  • T = 123 K

  • 0.18 × 0.16 × 0.16 mm

Data collection
  • Bruker SMART APEX CCD detector diffractometer

  • Absorption correction: multi-scan Bruker Smart Apex Tmin = 0.933, Tmax = 0.940

  • 8822 measured reflections

  • 3379 independent reflections

  • 2587 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.185

  • S = 1.31

  • 3379 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 0.74 e Å−3

  • Δρmin = −0.58 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C7–C12 and C13–C18 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯O1i 0.93 2.39 3.232 (4) 150
C2—H2B⋯N1ii 0.97 2.49 3.352 (4) 148
C5—H5⋯N1iii 0.93 2.60 3.478 (4) 157
C17—H17⋯Cg1iv 0.93 2.78 3.470 (4) 131
C11—H11⋯Cg2iv 0.93 2.93 3.548 (4) 126
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x, y-1, z; (iv) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 1998[Bruker (1998). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and CAMERON (Watkin et al., 1996)[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.]; software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Imidazo[2,1-b][1,3,4]thiadiazole derivatives are reported to possess diverse pharmacological properties such as anticancer, antitubercular, antibacterial, antifungal, anticonvulsant, analgesic and antisecretory activities. Moreover, the are known to possess important biological activities (Priya et al., 2005) and are useful in different therapies. Amongst them, five membered heterocyclic ring 1,3,4-thiadiazoles find wide application in designing compounds possessing useful properties (Katritzky et al., 1984; Diamond & Sevrain, 2003a,b; Nakao et al., 2002a,b). Due to the increasing importance of these heterocycles in biological and pharmaceutical fields, new chemical entities were synthesized by incorporating active pharmacophores in a single molecular frame work so as to enhance their biological activities.In the title compound, the benzisoxazole (O1/N4/C3/C13–18) and imidazothiadiazole (S1/N1—N3/C1/C4—C6) rings are individually planar similar to those reported earlier (Sun & Zhang, 2009) with maximum deviations of 0.038 (3)Å for C1 and 0.016 (3)Å for C3 respectively. The mean planes of the benzisoxazole and imidazothiadiazole are inclined at an angle 23.81 (7)° with each other. The imidazothiadiazole and chlorophenyl rings make a dihedral angle of 27.34 (3)°. The thiadiazole moiety displays differences in the bond lengths between S1—C1/S1—C4 [1.756 (3)/1.736 (3)]. This can be attributed to the resonance effects of the imidazole ring which is stronger than that due to thiadiazole group. The crystal structure is stabilized by intermolecular C—H···N, C—H···O and S···N interactions. The C—H···N interaction generates chain like pattern along c axis. The C—H···O interaction forms centrosymmetric head-to-head dimers about inversion centers corresponding to R22(26) graph set motif (Bernstein et al., 1995). The C—H···N interaction along with S···N [3.206 (4) Å]interaction results in a ring motif with a graph set R(7). The molecular packing is further stabilized by π-π stacking interactions between thiadiazole rings (Cg3: centroid of S1/C1/N2/N3/C4) with the shortest centroid—centroid distance 3.497 (3) Å. In addition, π-ring interactions of the type C—H···Cg (Cg being the centroids of rings C7—C12 and C13—C18) are also observed in the crystal structure; details have been given in Table 1.

Related literature top

For the preparation of the title compound see: Lamani et al. (2009). For the biological activity of benzisoxazole derivatives, see: Priya et al. (2005). For the use of five-membered heterocyclic ring 1,3,4-thiadiazoles in the design of compounds, see: Katritzky (1984); Diamond & Sevrain (2003a,b); Nakao et al. (2002a,b). For related structures, see: Sun & Zhang (2009). For hydrogen-bond motifs, see: Bernstein et al. 1995)

Experimental top

The title compound was synthesized by following the procedure reported earlier (Lamani et al., 2009).

Refinement top

The H atoms were placed at calculated positions in the riding model approximation with aromatic C—H = 0.93Å and methylene C—H = 0.97 Å, and Uiso(H) = 1.2Ueq(N/C).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and CAMERON (Watkin et al., 1996); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. ORTEP (Farrugia, 1997) view of the title compound, showing 50% probability ellipsoids and the atom numbering scheme.
[Figure 2] Fig. 2. A unit cell packing of the title compound depicting the C—H···N, C—H···O and S···N intermolecular interactions with dotted lines. H-atoms not involved in hydrogen bonding have been excluded.
3-{[6-(4-Chlorophenyl)imidazo[2,1-b][1,3,4]thiadiazol-2-yl]methyl}- 1,2-benzoxazole top
Crystal data top
C18H11ClN4OSF(000) = 1504
Mr = 366.83Dx = 1.563 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3379 reflections
a = 38.419 (7) Åθ = 2.2–27.0°
b = 5.7761 (10) ŵ = 0.39 mm1
c = 14.772 (3) ÅT = 123 K
β = 108.004 (5)°Block, yellow
V = 3117.5 (10) Å30.18 × 0.16 × 0.16 mm
Z = 8
Data collection top
Bruker SMART APEX CCD detector
diffractometer
3379 independent reflections
Radiation source: fine-focus sealed tube2587 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
ω scansθmax = 27.0°, θmin = 2.2°
Absorption correction: multi-scan
Bruker Smart Apex
h = 4648
Tmin = 0.933, Tmax = 0.940k = 67
8822 measured reflectionsl = 1814
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.185H-atom parameters constrained
S = 1.31 w = 1/[σ2(Fo2) + (0.0894P)2]
where P = (Fo2 + 2Fc2)/3
3379 reflections(Δ/σ)max < 0.001
226 parametersΔρmax = 0.74 e Å3
0 restraintsΔρmin = 0.58 e Å3
Crystal data top
C18H11ClN4OSV = 3117.5 (10) Å3
Mr = 366.83Z = 8
Monoclinic, C2/cMo Kα radiation
a = 38.419 (7) ŵ = 0.39 mm1
b = 5.7761 (10) ÅT = 123 K
c = 14.772 (3) Å0.18 × 0.16 × 0.16 mm
β = 108.004 (5)°
Data collection top
Bruker SMART APEX CCD detector
diffractometer
3379 independent reflections
Absorption correction: multi-scan
Bruker Smart Apex
2587 reflections with I > 2σ(I)
Tmin = 0.933, Tmax = 0.940Rint = 0.051
8822 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.185H-atom parameters constrained
S = 1.31Δρmax = 0.74 e Å3
3379 reflectionsΔρmin = 0.58 e Å3
226 parameters
Special details top

Experimental. The compound was synthesized by following the procedure given in Lamani et al., (2009)

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.19871 (8)0.2236 (5)0.1424 (2)0.0151 (6)
C20.16451 (8)0.1564 (5)0.1657 (2)0.0183 (7)
H2A0.15650.00710.13660.022*
H2B0.17110.13550.23410.022*
C30.13263 (8)0.3171 (5)0.1363 (2)0.0166 (7)
C40.25323 (8)0.4023 (5)0.1246 (2)0.0160 (7)
C50.28417 (8)0.0835 (6)0.1177 (2)0.0167 (6)
H50.29100.07040.11570.020*
C60.30436 (8)0.2790 (5)0.1142 (2)0.0149 (6)
C70.34193 (8)0.2930 (5)0.1098 (2)0.0148 (7)
C80.35464 (9)0.4896 (5)0.0746 (2)0.0181 (7)
H80.33890.61390.05270.022*
C90.39034 (9)0.5024 (5)0.0718 (2)0.0192 (7)
H90.39860.63400.04840.023*
C100.41322 (8)0.3176 (6)0.1039 (2)0.0183 (7)
C110.40183 (9)0.1192 (6)0.1396 (2)0.0206 (7)
H110.41780.00380.16160.025*
C120.36610 (8)0.1082 (6)0.1418 (2)0.0178 (7)
H120.35800.02440.16490.021*
C130.07777 (9)0.4766 (5)0.1117 (2)0.0176 (7)
C140.04157 (9)0.5159 (6)0.1076 (2)0.0209 (7)
H140.02920.65190.08340.025*
C150.02526 (9)0.3370 (6)0.1424 (2)0.0219 (7)
H150.00100.35190.14070.026*
C160.04440 (8)0.1336 (6)0.1800 (3)0.0212 (7)
H160.03260.01880.20360.025*
C170.08036 (8)0.1001 (6)0.1828 (2)0.0178 (7)
H170.09280.03520.20740.021*
C180.09718 (8)0.2764 (5)0.1474 (2)0.0166 (7)
O10.09977 (6)0.6281 (4)0.08271 (17)0.0222 (5)
N10.28445 (7)0.4813 (4)0.11762 (19)0.0161 (6)
N20.22129 (7)0.0628 (5)0.13533 (19)0.0171 (6)
N30.25177 (7)0.1673 (4)0.12454 (19)0.0158 (6)
N40.13496 (7)0.5207 (5)0.1006 (2)0.0208 (6)
S10.21240 (2)0.51078 (13)0.13431 (6)0.0182 (2)
Cl10.45843 (2)0.33439 (15)0.10073 (6)0.0267 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0141 (14)0.0126 (15)0.0175 (16)0.0005 (12)0.0032 (13)0.0015 (12)
C20.0170 (15)0.0154 (16)0.0248 (18)0.0016 (12)0.0095 (14)0.0034 (13)
C30.0197 (15)0.0141 (15)0.0155 (16)0.0028 (12)0.0049 (13)0.0002 (12)
C40.0202 (15)0.0121 (15)0.0152 (16)0.0008 (12)0.0047 (13)0.0006 (12)
C50.0152 (14)0.0138 (15)0.0214 (16)0.0032 (12)0.0062 (13)0.0002 (13)
C60.0131 (14)0.0162 (16)0.0153 (16)0.0011 (12)0.0042 (13)0.0011 (12)
C70.0137 (14)0.0156 (16)0.0159 (16)0.0034 (12)0.0054 (12)0.0023 (12)
C80.0206 (16)0.0157 (16)0.0191 (17)0.0021 (12)0.0078 (14)0.0006 (12)
C90.0252 (17)0.0161 (17)0.0176 (17)0.0052 (13)0.0086 (14)0.0021 (12)
C100.0142 (14)0.0231 (17)0.0179 (17)0.0048 (12)0.0051 (13)0.0056 (13)
C110.0231 (16)0.0177 (17)0.0220 (18)0.0049 (13)0.0084 (14)0.0019 (13)
C120.0193 (15)0.0169 (16)0.0178 (17)0.0012 (13)0.0067 (13)0.0014 (13)
C130.0190 (16)0.0158 (16)0.0204 (17)0.0004 (12)0.0096 (14)0.0009 (13)
C140.0194 (16)0.0200 (17)0.0220 (18)0.0035 (13)0.0042 (14)0.0000 (13)
C150.0177 (16)0.0283 (19)0.0209 (18)0.0017 (13)0.0077 (14)0.0013 (14)
C160.0149 (15)0.0216 (17)0.0276 (19)0.0029 (13)0.0075 (14)0.0010 (14)
C170.0172 (15)0.0163 (16)0.0202 (17)0.0005 (12)0.0060 (13)0.0023 (13)
C180.0136 (14)0.0178 (16)0.0183 (16)0.0011 (12)0.0049 (13)0.0003 (13)
O10.0200 (11)0.0167 (12)0.0325 (14)0.0044 (9)0.0120 (11)0.0055 (10)
N10.0114 (12)0.0167 (14)0.0206 (14)0.0006 (10)0.0054 (11)0.0008 (11)
N20.0127 (12)0.0178 (14)0.0211 (15)0.0055 (10)0.0059 (11)0.0001 (11)
N30.0174 (13)0.0115 (13)0.0189 (15)0.0012 (10)0.0059 (11)0.0013 (10)
N40.0147 (13)0.0244 (16)0.0251 (16)0.0015 (11)0.0087 (12)0.0010 (12)
S10.0184 (4)0.0124 (4)0.0257 (5)0.0008 (3)0.0096 (4)0.0007 (3)
Cl10.0177 (4)0.0329 (5)0.0318 (5)0.0021 (3)0.0110 (4)0.0057 (4)
Geometric parameters (Å, º) top
C1—N21.297 (4)C9—C101.371 (4)
C1—C21.508 (4)C9—H90.9300
C1—S11.756 (3)C10—C111.387 (5)
C2—C31.490 (4)C10—Cl11.755 (3)
C2—H2A0.9700C11—C121.384 (4)
C2—H2B0.9700C11—H110.9300
C3—N41.304 (4)C12—H120.9300
C3—C181.440 (4)C13—O11.374 (4)
C4—N11.316 (4)C13—C141.392 (4)
C4—N31.358 (4)C13—C181.389 (4)
C4—S11.736 (3)C14—C151.387 (5)
C5—C61.380 (4)C14—H140.9300
C5—N31.369 (4)C15—C161.406 (5)
C5—H50.9300C15—H150.9300
C6—N11.406 (4)C16—C171.383 (4)
C6—C71.468 (4)C16—H160.9300
C7—C121.398 (4)C17—C181.392 (4)
C7—C81.398 (4)C17—H170.9300
C8—C91.387 (4)O1—N41.436 (3)
C8—H80.9300N2—N31.370 (3)
N2—C1—C2119.1 (3)C12—C11—C10118.5 (3)
N2—C1—S1116.7 (2)C12—C11—H11120.7
C2—C1—S1124.0 (2)C10—C11—H11120.7
C3—C2—C1117.9 (3)C11—C12—C7121.1 (3)
C3—C2—H2A107.8C11—C12—H12119.4
C1—C2—H2A107.8C7—C12—H12119.4
C3—C2—H2B107.8O1—C13—C14125.8 (3)
C1—C2—H2B107.8O1—C13—C18109.8 (3)
H2A—C2—H2B107.2C14—C13—C18124.4 (3)
N4—C3—C18112.3 (3)C13—C14—C15115.0 (3)
N4—C3—C2121.8 (3)C13—C14—H14122.5
C18—C3—C2125.9 (3)C15—C14—H14122.5
N1—C4—N3112.7 (3)C14—C15—C16121.9 (3)
N1—C4—S1138.5 (3)C14—C15—H15119.1
N3—C4—S1108.8 (2)C16—C15—H15119.1
C6—C5—N3104.3 (3)C17—C16—C15121.6 (3)
C6—C5—H5127.8C17—C16—H16119.2
N3—C5—H5127.8C15—C16—H16119.2
C5—C6—N1111.2 (3)C16—C17—C18117.5 (3)
C5—C6—C7128.2 (3)C16—C17—H17121.3
N1—C6—C7120.6 (3)C18—C17—H17121.3
C12—C7—C8118.3 (3)C17—C18—C13119.7 (3)
C12—C7—C6120.2 (3)C17—C18—C3136.7 (3)
C8—C7—C6121.5 (3)C13—C18—C3103.7 (3)
C9—C8—C7121.1 (3)C13—O1—N4107.6 (2)
C9—C8—H8119.4C4—N1—C6103.5 (2)
C7—C8—H8119.4C1—N2—N3108.1 (3)
C10—C9—C8118.8 (3)C4—N3—N2118.5 (3)
C10—C9—H9120.6C4—N3—C5108.4 (3)
C8—C9—H9120.6N2—N3—C5133.0 (3)
C9—C10—C11122.1 (3)C3—N4—O1106.6 (2)
C9—C10—Cl1118.8 (2)C4—S1—C187.82 (14)
C11—C10—Cl1119.1 (2)
N2—C1—C2—C3155.9 (3)O1—C13—C18—C30.9 (3)
S1—C1—C2—C330.1 (4)C14—C13—C18—C3179.8 (3)
C1—C2—C3—N47.1 (5)N4—C3—C18—C17177.9 (4)
C1—C2—C3—C18176.2 (3)C2—C3—C18—C170.9 (6)
N3—C5—C6—N10.8 (3)N4—C3—C18—C131.6 (4)
N3—C5—C6—C7177.9 (3)C2—C3—C18—C13178.6 (3)
C5—C6—C7—C1222.8 (5)C14—C13—O1—N4179.2 (3)
N1—C6—C7—C12155.8 (3)C18—C13—O1—N40.0 (3)
C5—C6—C7—C8157.7 (3)N3—C4—N1—C60.8 (3)
N1—C6—C7—C823.7 (4)S1—C4—N1—C6178.9 (3)
C12—C7—C8—C90.3 (5)C5—C6—N1—C41.0 (3)
C6—C7—C8—C9179.2 (3)C7—C6—N1—C4177.8 (3)
C7—C8—C9—C100.2 (5)C2—C1—N2—N3173.3 (3)
C8—C9—C10—C110.3 (5)S1—C1—N2—N31.1 (3)
C8—C9—C10—Cl1179.8 (2)N1—C4—N3—N2177.4 (3)
C9—C10—C11—C120.5 (5)S1—C4—N3—N22.5 (3)
Cl1—C10—C11—C12180.0 (2)N1—C4—N3—C50.3 (4)
C10—C11—C12—C70.7 (5)S1—C4—N3—C5179.5 (2)
C8—C7—C12—C110.6 (5)C1—N2—N3—C40.9 (4)
C6—C7—C12—C11179.0 (3)C1—N2—N3—C5177.1 (3)
O1—C13—C14—C15179.3 (3)C6—C5—N3—C40.3 (3)
C18—C13—C14—C150.1 (5)C6—C5—N3—N2176.1 (3)
C13—C14—C15—C160.9 (5)C18—C3—N4—O11.7 (4)
C14—C15—C16—C171.1 (5)C2—C3—N4—O1178.8 (3)
C15—C16—C17—C180.4 (5)C13—O1—N4—C31.1 (3)
C16—C17—C18—C130.4 (5)N1—C4—S1—C1177.4 (4)
C16—C17—C18—C3179.8 (4)N3—C4—S1—C12.4 (2)
O1—C13—C18—C17178.7 (3)N2—C1—S1—C42.1 (3)
C14—C13—C18—C170.6 (5)C2—C1—S1—C4172.1 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C7–C12 and C13–C18 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C9—H9···O1i0.932.393.232 (4)150
C2—H2B···N1ii0.972.493.352 (4)148
C5—H5···N1iii0.932.603.478 (4)157
C17—H17···Cg1iv0.932.783.470 (4)131
C11—H11···Cg2iv0.932.933.548 (4)126
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x+1/2, y1/2, z+1/2; (iii) x, y1, z; (iv) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC18H11ClN4OS
Mr366.83
Crystal system, space groupMonoclinic, C2/c
Temperature (K)123
a, b, c (Å)38.419 (7), 5.7761 (10), 14.772 (3)
β (°) 108.004 (5)
V3)3117.5 (10)
Z8
Radiation typeMo Kα
µ (mm1)0.39
Crystal size (mm)0.18 × 0.16 × 0.16
Data collection
DiffractometerBruker SMART APEX CCD detector
diffractometer
Absorption correctionMulti-scan
Bruker Smart Apex
Tmin, Tmax0.933, 0.940
No. of measured, independent and
observed [I > 2σ(I)] reflections
8822, 3379, 2587
Rint0.051
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.185, 1.31
No. of reflections3379
No. of parameters226
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.74, 0.58

Computer programs: SMART (Bruker, 1998), SAINT-Plus (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and CAMERON (Watkin et al., 1996), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C7–C12 and C13–C18 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C9—H9···O1i0.932.3923.232 (4)150
C2—H2B···N1ii0.972.4903.352 (4)148
C5—H5···N1iii0.932.6003.478 (4)157
C17—H17···Cg1iv0.932.7813.470 (4)131
C11—H11···Cg2iv0.932.9263.548 (4)126
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x+1/2, y1/2, z+1/2; (iii) x, y1, z; (iv) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

NSB is thankful to the University Grants Commission (UGC), India, for financial assistance and the Department of Science and Technology, (DST), India, for the data-collection facility under the IRHPA–DST program.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. 34, 1555–1573.  CrossRef CAS Google Scholar
First citationBruker (1998). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDiamond, S. & Sevrain, C. (2003a). Chem Abstr. 138, 198554.  Google Scholar
First citationDiamond, S. & Sevrain, C. (2003b). PCT Int. Appl. WO 2003016870.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKatritzky, A. R. (1984). In Comprehensive Heterocyclic Chemistry. Oxford: Pergamon.  Google Scholar
First citationLamani, R. S., Shetty, N. S., Ravindra, R. & Khazi, I. A. M. (2009). Eur. J. Med. Chem. 44, 2828–2833.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNakao, H., Matsuzaki, Y., Tohnishi, M., Mmorimoto, M., Fujioka, S., Takemoto, T. & Mamezuka, K. (2002a). Chem Abstr. 137, 384845.  Google Scholar
First citationNakao, H., Matsuzaki, Y., Tohnishi, M., Mmorimoto, M., Fujioka, S., Takemoto, T. & Mamezuka, K. (2002b). PCT Int. Appl. WO 2002092584.  Google Scholar
First citationPriya, B. S., Basappa., Swamy, S. N., Rangappa, K. S. (2005). Bioorg. Med. Chem. 13, 2623–2628.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, Y. & Zhang, H.-H. (2009). Acta Cryst. E65, o1647.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 3| March 2011| Pages o617-o618
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds