organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 3| March 2011| Pages o581-o582

tert-Butyl N-{(1S)-1-[(2,4-dihy­dr­oxy­benzyl­­idene)hydrazinecarbon­yl]-2-hy­dr­oxy­eth­yl}carbamate ethanol monosolvate

aFundação Oswaldo Cruz, Instituto de Tecnologia em Fármacos – Farmanguinhos, R. Sizenando Nabuco, 100, Manguinhos, 21041-250, Rio de Janeiro, RJ, Brazil, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, cCHEMSOL, 1 Harcourt Road, Aberdeen AB15 5NY, Scotland, and dCentro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Casa Amarela, Campus de Manguinhos, Av. Brasil 4365, 21040-900 Rio de Janeiro, RJ, Brazil
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 27 January 2011; accepted 30 January 2011; online 9 February 2011)

The mol­ecule of the title ethanol solvate, C15H21N3O6·C2H6O, adopts a curved shape; the conformation about the imine bond [N=N = 1.287 (3) Å] is E. The amide residues occupy positions almost orthogonal to each other [dihedral angle = 85.7 (2)°]. In the crystal, a network of O—H⋯O, O—H⋯N and N—H⋯O hydrogen bonds leads to the formation of supra­molecular arrays in the ab plane with the ethanol mol­ecules lying to the periphery on either side. Disorder in the solvent ethanol mol­ecule was evident with two positions being resolved for the C atoms [site occupancy of the major component = 0.612 (10)].

Related literature

For background to the use of L-serine derivatives in anti-tumour therapy, see: Jiao et al. (2009[Jiao, X., Wang, L., Xiao, Q., Xie, P. & Liang, X. (2009). J. Asian Nat. Prod. Res. 11, 274-280.]); Yakura et al. (2007[Yakura, T., Yoshimoto, Y., Ishida, C. & Mabuchi, S. (2007). Tetrahedron, 63, 4429-4438.]); Takahashi et al. (1988[Takahashi, A., Nakamura, H., Ikeda, D., Naganawa, H., Kameyama, T., Kurasawa, S., Okami, Y., Takeuchi, T. & Iitaka, Y. (1988). J. Antibiot. 41, 1568-1574.]); Sin et al. (1998[Sin, N., Meng, L., Auth, H. & Crews, C. M. (1998). Bioorg. Med. Chem. 6, 1209-1217.]). For background to N-acyl­hydrazone derivatives from L-serine for anti-tumour testing, see: Rollas & Küçükgüzel (2007[Rollas, S. & Küçükgüzel, S. G. (2007). Molecules, 12, 1910-1939.]); Terzioğlu & Gürsoy (2003[Terzioğlu, N. & Gürsoy, A. (2003). Eur. J. Med. Chem. 38, 633-643.]). For related structures, see: Pinheiro et al. (2010[Pinheiro, A. C., Souza, M. V. N. de, Tiekink, E. R. T., Wardell, J. L. & Wardell, S. M. S. V. (2010). Acta Cryst. E66, o1004-o1005.]); de Souza et al. (2010[Souza, M. V. N. de, Pinheiro, A. C., Tiekink, E. R. T., Wardell, S. M. S. V. & Wardell, J. L. (2010). Acta Cryst. E66, o3253-o3254.]).

[Scheme 1]

Experimental

Crystal data
  • C15H21N3O6·C2H6O

  • Mr = 385.42

  • Monoclinic, C 2

  • a = 17.4054 (4) Å

  • b = 8.7266 (2) Å

  • c = 15.0105 (4) Å

  • β = 122.219 (2)°

  • V = 1928.87 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 120 K

  • 0.16 × 0.14 × 0.06 mm

Data collection
  • Bruker–Nonius Roper CCD camera on κ-goniostat diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.897, Tmax = 1.000

  • 19885 measured reflections

  • 2369 independent reflections

  • 2303 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.099

  • S = 1.06

  • 2369 reflections

  • 271 parameters

  • 7 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1o⋯N1 0.86 (3) 1.89 (3) 2.643 (3) 147 (3)
N2—H2n⋯O3i 0.86 (3) 1.91 (2) 2.760 (2) 171 (2)
O2—H2o⋯O5ii 0.83 (3) 1.86 (3) 2.669 (3) 165 (3)
N3—H3n⋯O4iii 0.86 (3) 2.08 (3) 2.926 (3) 173 (2)
O4—H4o⋯O7iv 0.83 (1) 1.94 (2) 2.761 (3) 167 (3)
O7—H7o⋯O2v 0.84 (1) 2.05 (2) 2.858 (2) 162 (4)
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+2]; (ii) -x, y, -z+2; (iii) -x+1, y, -z+2; (iv) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+1]; (v) -x, y, -z+1.

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Several L-serine derivatives have been found to have potential in anti-tumour therapy, for example, conagenin, a naturally occurring serine derivative, was shown to improve the anti-tumour efficacy of adriamycin and mitomycin C against murine leukemias (Jiao et al., 2009; Yakura et al., 2007). Other L-serine derivatives reported as potential new anti-tumour agents include the antibiotic thrazarine, which sensitizes tumour cells to macrophage-mediated cytolysis (Takahashi et al., 1988), and eponemycin, an immunomodulator, which plays a crucial role in tumour progression and metastases by supplying essential nutrients to B16 melanoma cells (Sin et al., 1998). Following on from such reports, we have synthesized some N-acylhydrazones derivatives from L-serine to use in anti-tumour testing. The choice of N-acylhydrazonyl derivatives was suggested by publications indicating that compounds with such groups can aid anti-tumoural activities (Rollas et al., 2007; Terzioğlu et al., 2003). In continuation of on-going structural studies of these compounds (Pinheiro et al., 2010; de Souza et al., 2010), we now report the structure of the ethanol solvate of tert-butyl (1S)-2-[2-(2,4-dihydroxybenzylidene)hydrazino]-1-(hydroxymethyl)-2-oxoethylcarbamate, (I).

Although the absolute structure of (I), Fig. 1, could not be determined experimentally, the assignment of the S-configuration at the C9 atom is based on a starting reagent. The overall conformation of the molecule is curved with the major kink occurring at the C9 atom. The dihydroxybenzene ring is slightly twisted out of the plane of the hydrazine residue with the C2—C1—C7—N1 torsion angle being -8.2 (3) °. The conformation about the N1—C7 imine bond [1.287 (3) Å] is E. Each of the carbonyl groups is diagonally opposite the amine group and the dihedral angle formed between the two amide residues is 85.7 (2) °.

As expected with four hydroxyl and two amine donors, there is significant hydrogen bonding operating in the crystal structure, Table 1. While the O1-hydroxy group forms an intramolecular O–H···N hydrogen bond with the hydrazine-N1 atom, the remaining interactions are intermolecular in nature. The O2-hydroxy group forms an O—H···O hydrogen bond with the O5-carbonyl, and the O3-hydroxyl group linked to the chiral centre is connected to the ethanol molecule which in turn forms a hydrogen bond to the O2-hydroxyl group. The N2-amine is connected to the O3-carbonyl and the N3-amine forms a hydrogen bond with the O4-hydroxyl. The result of the hydrogen bonding is the formation of layers of molecules in the ab plane sandwiched by ethanol molecules. The layers stack along the c axis, Fig. 2.

Related literature top

For background to the use of L-serine derivatives in anti-tumour therapy, see: Jiao et al. (2009); Yakura et al. (2007); Takahashi et al. (1988); Sin et al. (1998). For background to N-acylhydrazone derivatives from L-serine for anti-tumour testing, see: Rollas & Küçükgüzel (2007); Terzioğlu & Gürsoy (2003). For related structures, see: Pinheiro et al. (2010); de Souza et al. (2010).

Experimental top

To a stirred solution of tert-butyl (1S)-2-hydrazino-1-(hydroxymethyl)-2-oxoethylcarbamate (1.0 mmol) in ethanol (10 ml) at room temperature was added 2,4-dihydroxybenzaldehyde (1.05 mmol). The reaction mixture was stirred for 4 h. at 1073 K and concentrated under reduced pressure. The residue was purified by washing with cold ethanol (3 x 10 ml), affording the target molecule in 74% yield, m.pt. 423–424 K. The colourless block used in the structure determination was grown from EtOH. 1H NMR (500 MHz, DMSO-d6) δ (p.p.m.): 11.50 (1H, s, NHN), 11.30 (1H, s), 9.92 (1H, s), 8.30 (1H, s, N=CH), 7.26 (1H, d, J = 8.4 Hz, H6), 6.80 (1H, d, J = 7.7 Hz, NHCH), 6.35–6.30 (1H, m, H5), 6.29 (1H, s, H3), 4.95 (1H, s, OH), 4.02 (1H, m, CH), 3.70–3.50 (2H, m, CH2OH); 1.39 (9H, s, (CH3)3C). 13C NMR (125 MHz, DMSO-d6) δ (p.p.m.): 170.8, 160.3, 157.9, 155.2, 141.8, 128.0, 110.4, 107.6, 102.3, 78.0, 61.1, 53.9, 28.2. IR (cm-1; KBr): 3200 (O—H), 1678 (COCH and COO). EM/ESI: [M—H]: 338.3.

Refinement top

The C-bound H atoms were geometrically placed (C–H = 0.95–0.99 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C). The O– and N-bound H atoms were located from a difference map and refined with the distance restraints O–H = 0.84 ± 0.01 and N–H = 0.86±0.01 Å, and with Uiso(H) = zUeq(carrier atom); z = 1.5 for O and z = 1.2 for N. Disorder was resolved in the solvent ethanol molecule in that two distinct positions were discerned for the C atoms. From fractional anisotropic refinement, the major component had a site occupancy factor = 0.612 (10). In the absence of significant anomalous scattering effects, 2067 Friedel pairs were averaged in the final refinement. However, the absolute configuration was assigned on the basis of the chirality of the L-serine starting material. The maximum and minimum residual electron density peaks of 0.61 and 0.33 e Å-3, respectively, were located 0.42 Å and 0.37 Å from the H6 and H16a atoms, respectively.

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 50% probability level. The ethanol molecule of solvation has been omitted.
[Figure 2] Fig. 2. A view in projection down the b axis of the stacking of two-dimensional supramolecular arrays in the ab plane in (I) with the O—H···O and N—H···O hydrogen bonding shown as orange and blue dashed lines, respectively.
tert-Butyl N-{(1S)-1-[(2,4-dihydroxybenzylidene)hydrazinecarbonyl]- 2-hydroxyethyl}carbamate ethanol monosolvate top
Crystal data top
C15H21N3O6·C2H6OF(000) = 824
Mr = 385.42Dx = 1.327 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2yCell parameters from 4327 reflections
a = 17.4054 (4) Åθ = 2.9–27.5°
b = 8.7266 (2) ŵ = 0.10 mm1
c = 15.0105 (4) ÅT = 120 K
β = 122.219 (2)°Block, colourless
V = 1928.87 (8) Å30.16 × 0.14 × 0.06 mm
Z = 4
Data collection top
Bruker–Nonius Roper CCD camera on κ-goniostat
diffractometer
2369 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode CCD2303 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.2°
ϕ and ω scansh = 2222
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
k = 1111
Tmin = 0.897, Tmax = 1.000l = 1919
19885 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0606P)2 + 1.0679P]
where P = (Fo2 + 2Fc2)/3
2369 reflections(Δ/σ)max = 0.001
271 parametersΔρmax = 0.61 e Å3
7 restraintsΔρmin = 0.33 e Å3
Crystal data top
C15H21N3O6·C2H6OV = 1928.87 (8) Å3
Mr = 385.42Z = 4
Monoclinic, C2Mo Kα radiation
a = 17.4054 (4) ŵ = 0.10 mm1
b = 8.7266 (2) ÅT = 120 K
c = 15.0105 (4) Å0.16 × 0.14 × 0.06 mm
β = 122.219 (2)°
Data collection top
Bruker–Nonius Roper CCD camera on κ-goniostat
diffractometer
2369 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
2303 reflections with I > 2σ(I)
Tmin = 0.897, Tmax = 1.000Rint = 0.041
19885 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0367 restraints
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.61 e Å3
2369 reflectionsΔρmin = 0.33 e Å3
271 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.01014 (11)0.6314 (2)0.76103 (14)0.0306 (4)
H1o0.0421 (13)0.674 (4)0.796 (2)0.046*
O20.30367 (9)0.6766 (2)0.69839 (12)0.0259 (3)
H2o0.3330 (19)0.728 (3)0.717 (2)0.039*
O30.27544 (10)0.67257 (19)0.95473 (12)0.0251 (3)
O40.39535 (10)0.8716 (2)0.89717 (11)0.0266 (3)
H4o0.3474 (13)0.853 (4)0.8402 (14)0.040*
O50.39849 (11)0.7949 (2)1.22519 (13)0.0333 (4)
O60.53955 (10)0.7219 (2)1.26444 (11)0.0267 (4)
N10.11580 (11)0.8217 (2)0.89800 (13)0.0219 (4)
N20.20132 (11)0.8878 (2)0.95418 (14)0.0221 (4)
H2n0.2041 (18)0.9793 (16)0.976 (2)0.027*
N30.44121 (11)0.8160 (2)1.10779 (13)0.0206 (4)
H3n0.4884 (12)0.824 (3)1.104 (2)0.025*
C10.04087 (13)0.8468 (3)0.83868 (15)0.0209 (4)
C20.06834 (13)0.7128 (2)0.77631 (15)0.0204 (4)
C30.15725 (13)0.6607 (3)0.72779 (15)0.0214 (4)
H30.17590.57220.68430.026*
C40.21852 (13)0.7390 (3)0.74340 (15)0.0205 (4)
C50.19388 (13)0.8728 (3)0.80333 (16)0.0237 (4)
H50.23680.92620.81240.028*
C60.10573 (14)0.9263 (3)0.84935 (16)0.0230 (4)
H60.08881.01860.88890.028*
C70.05209 (14)0.9025 (3)0.89384 (16)0.0218 (4)
H70.06600.99980.92730.026*
C80.27609 (13)0.8076 (2)0.97909 (15)0.0193 (4)
C90.36197 (12)0.9053 (2)1.03518 (15)0.0192 (4)
H90.35360.98761.07560.023*
C100.37737 (13)0.9809 (3)0.95365 (16)0.0232 (4)
H10A0.32281.04080.90350.028*
H10B0.42921.05280.99000.028*
C110.45577 (14)0.7797 (3)1.20233 (17)0.0227 (4)
C120.57832 (15)0.6887 (3)1.37713 (16)0.0303 (5)
C130.52980 (18)0.5534 (4)1.3883 (2)0.0379 (6)
H13A0.46690.58181.36290.057*
H13B0.56080.52341.46260.057*
H13C0.53020.46721.34670.057*
C140.5758 (2)0.8318 (4)1.4328 (2)0.0445 (7)
H14A0.59880.91901.41260.067*
H14B0.61390.81661.50920.067*
H14C0.51320.85211.41270.067*
C150.67546 (16)0.6455 (4)1.41358 (19)0.0429 (7)
H15A0.67510.55481.37480.064*
H15B0.70930.62271.48910.064*
H15C0.70450.73091.40030.064*
O70.27404 (12)0.3530 (2)0.28565 (16)0.0403 (4)
H7o0.292 (3)0.443 (2)0.304 (3)0.060*
C160.3454 (10)0.245 (2)0.3050 (12)0.0525 (8)0.612 (10)
H16A0.39950.30290.31820.063*0.612 (10)
H16B0.32410.18160.24130.063*0.612 (10)
C170.3713 (5)0.1452 (9)0.3940 (6)0.0495 (14)0.612 (10)
H17A0.39260.20730.45740.074*0.612 (10)
H17B0.42000.07650.40460.074*0.612 (10)
H17C0.31860.08450.38010.074*0.612 (10)
C180.3420 (13)0.249 (3)0.3037 (18)0.0525 (8)0.388 (10)
H18A0.37950.29400.27890.063*0.388 (10)
H18B0.31330.15470.26210.063*0.388 (10)
C190.4010 (8)0.2074 (14)0.4154 (9)0.0495 (14)0.388 (10)
H19A0.44270.29220.45380.074*0.388 (10)
H19B0.43600.11550.42190.074*0.388 (10)
H19C0.36370.18690.44500.074*0.388 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0239 (7)0.0322 (9)0.0381 (9)0.0014 (7)0.0182 (7)0.0059 (7)
O20.0155 (7)0.0351 (9)0.0283 (8)0.0018 (6)0.0124 (6)0.0029 (7)
O30.0231 (7)0.0197 (7)0.0301 (7)0.0008 (6)0.0126 (6)0.0001 (6)
O40.0205 (7)0.0384 (9)0.0223 (7)0.0012 (7)0.0123 (6)0.0005 (7)
O50.0274 (8)0.0464 (10)0.0352 (8)0.0105 (8)0.0227 (7)0.0136 (8)
O60.0211 (7)0.0410 (10)0.0188 (7)0.0088 (7)0.0111 (6)0.0070 (7)
N10.0152 (7)0.0239 (9)0.0251 (8)0.0026 (7)0.0097 (7)0.0006 (7)
N20.0169 (8)0.0203 (9)0.0271 (8)0.0025 (7)0.0104 (7)0.0017 (7)
N30.0154 (7)0.0261 (9)0.0205 (8)0.0034 (7)0.0097 (6)0.0031 (7)
C10.0180 (8)0.0233 (10)0.0208 (8)0.0006 (8)0.0100 (7)0.0034 (8)
C20.0187 (8)0.0238 (11)0.0196 (8)0.0019 (8)0.0109 (7)0.0035 (8)
C30.0193 (9)0.0250 (10)0.0192 (8)0.0005 (8)0.0098 (7)0.0001 (8)
C40.0147 (8)0.0272 (10)0.0188 (8)0.0007 (8)0.0084 (7)0.0042 (8)
C50.0188 (9)0.0300 (12)0.0246 (9)0.0041 (8)0.0132 (8)0.0026 (8)
C60.0218 (9)0.0245 (10)0.0247 (9)0.0009 (8)0.0137 (8)0.0004 (8)
C70.0199 (9)0.0218 (10)0.0231 (9)0.0018 (8)0.0109 (8)0.0000 (8)
C80.0184 (9)0.0201 (10)0.0200 (8)0.0001 (8)0.0106 (7)0.0035 (7)
C90.0158 (8)0.0190 (9)0.0216 (8)0.0009 (7)0.0091 (7)0.0003 (7)
C100.0175 (9)0.0248 (10)0.0265 (10)0.0001 (8)0.0113 (8)0.0034 (8)
C110.0200 (9)0.0255 (10)0.0230 (9)0.0020 (8)0.0116 (8)0.0028 (8)
C120.0291 (11)0.0417 (13)0.0195 (9)0.0073 (10)0.0127 (8)0.0072 (9)
C130.0358 (12)0.0448 (15)0.0369 (13)0.0103 (11)0.0219 (11)0.0141 (11)
C140.0570 (17)0.0470 (16)0.0246 (11)0.0099 (14)0.0184 (12)0.0012 (11)
C150.0255 (11)0.070 (2)0.0263 (11)0.0118 (12)0.0096 (9)0.0146 (12)
O70.0275 (8)0.0350 (10)0.0458 (10)0.0023 (8)0.0110 (8)0.0098 (9)
C160.0547 (19)0.0421 (17)0.0537 (18)0.0098 (15)0.0241 (16)0.0009 (14)
C170.047 (3)0.045 (4)0.054 (3)0.014 (2)0.025 (3)0.012 (3)
C180.0547 (19)0.0421 (17)0.0537 (18)0.0098 (15)0.0241 (16)0.0009 (14)
C190.047 (3)0.045 (4)0.054 (3)0.014 (2)0.025 (3)0.012 (3)
Geometric parameters (Å, º) top
O1—C21.353 (3)C9—H91.0000
O1—H1o0.86 (3)C10—H10A0.9900
O2—C41.372 (2)C10—H10B0.9900
O2—H2o0.83 (3)C12—C131.512 (4)
O3—C81.232 (3)C12—C141.516 (4)
O4—C101.417 (3)C12—C151.521 (3)
O4—H4o0.833 (10)C13—H13A0.9800
O5—C111.222 (3)C13—H13B0.9800
O6—C111.342 (2)C13—H13C0.9800
O6—C121.478 (2)C14—H14A0.9800
N1—C71.287 (3)C14—H14B0.9800
N1—N21.386 (2)C14—H14C0.9800
N2—C81.343 (3)C15—H15A0.9800
N2—H2n0.855 (10)C15—H15B0.9800
N3—C111.340 (3)C15—H15C0.9800
N3—C91.447 (2)O7—C181.400 (9)
N3—H3n0.86 (3)O7—C161.460 (8)
C1—C61.405 (3)O7—H7O0.842 (10)
C1—C21.412 (3)C16—C171.450 (12)
C1—C71.453 (3)C16—H16A0.9900
C2—C31.389 (3)C16—H16B0.9900
C3—C41.388 (3)C17—H17A0.9800
C3—H30.9500C17—H17B0.9800
C4—C51.394 (3)C17—H17C0.9800
C5—C61.385 (3)C18—C191.47 (2)
C5—H50.9500C18—H18A0.9900
C6—H60.9500C18—H18B0.9900
C7—H70.9500C19—H19A0.9800
C8—C91.525 (3)C19—H19B0.9800
C9—C101.535 (3)C19—H19C0.9800
C2—O1—H1o109 (3)O5—C11—N3123.4 (2)
C4—O2—H2o108 (2)O6—C11—N3110.28 (17)
C10—O4—H4o109 (2)O6—C12—C13109.8 (2)
C11—O6—C12122.20 (16)O6—C12—C14109.9 (2)
C7—N1—N2114.81 (18)C13—C12—C14113.6 (2)
C8—N2—N1121.30 (18)O6—C12—C15101.66 (17)
C8—N2—H2n122.1 (18)C13—C12—C15110.2 (2)
N1—N2—H2n116.4 (18)C14—C12—C15111.0 (2)
C11—N3—C9119.41 (16)C12—C13—H13A109.5
C11—N3—H3n116.2 (18)C12—C13—H13B109.5
C9—N3—H3n118.0 (19)H13A—C13—H13B109.5
C6—C1—C2118.39 (18)C12—C13—H13C109.5
C6—C1—C7119.2 (2)H13A—C13—H13C109.5
C2—C1—C7122.35 (18)H13B—C13—H13C109.5
O1—C2—C3117.67 (19)C12—C14—H14A109.5
O1—C2—C1121.84 (18)C12—C14—H14B109.5
C3—C2—C1120.49 (18)H14A—C14—H14B109.5
C2—C3—C4119.5 (2)C12—C14—H14C109.5
C2—C3—H3120.3H14A—C14—H14C109.5
C4—C3—H3120.3H14B—C14—H14C109.5
O2—C4—C3116.6 (2)C12—C15—H15A109.5
O2—C4—C5121.99 (18)C12—C15—H15B109.5
C3—C4—C5121.43 (18)H15A—C15—H15B109.5
C6—C5—C4118.80 (19)C12—C15—H15C109.5
C6—C5—H5120.6H15A—C15—H15C109.5
C4—C5—H5120.6H15B—C15—H15C109.5
C5—C6—C1121.4 (2)C18—O7—C160 (3)
C5—C6—H6119.3C18—O7—H7o114 (3)
C1—C6—H6119.3C16—O7—H7o114 (3)
N1—C7—C1120.9 (2)O7—C16—C17112.6 (7)
N1—C7—H7119.6O7—C16—H16A109.1
C1—C7—H7119.6C17—C16—H16A109.1
O3—C8—N2124.15 (19)O7—C16—H16B109.1
O3—C8—C9123.30 (18)C17—C16—H16B109.1
N2—C8—C9112.44 (18)H16A—C16—H16B107.8
N3—C9—C8112.03 (17)O7—C18—C19112.6 (15)
N3—C9—C10109.30 (16)O7—C18—H18A109.1
C8—C9—C10109.66 (16)C19—C18—H18A109.1
N3—C9—H9108.6O7—C18—H18B109.1
C8—C9—H9108.6C19—C18—H18B109.1
C10—C9—H9108.6H18A—C18—H18B107.8
O4—C10—C9112.07 (18)C18—C19—H19A109.5
O4—C10—H10A109.2C18—C19—H19B109.5
C9—C10—H10A109.2H19A—C19—H19B109.5
O4—C10—H10B109.2C18—C19—H19C109.5
C9—C10—H10B109.2H19A—C19—H19C109.5
H10A—C10—H10B107.9H19B—C19—H19C109.5
O5—C11—O6126.34 (19)
C7—N1—N2—C8169.49 (18)N1—N2—C8—C9176.62 (17)
C6—C1—C2—O1179.01 (19)C11—N3—C9—C878.9 (2)
C7—C1—C2—O12.6 (3)C11—N3—C9—C10159.32 (19)
C6—C1—C2—C30.6 (3)O3—C8—C9—N333.9 (3)
C7—C1—C2—C3177.78 (19)N2—C8—C9—N3149.72 (17)
O1—C2—C3—C4178.56 (18)O3—C8—C9—C1087.7 (2)
C1—C2—C3—C41.8 (3)N2—C8—C9—C1088.7 (2)
C2—C3—C4—O2176.30 (18)N3—C9—C10—O458.1 (2)
C2—C3—C4—C52.7 (3)C8—C9—C10—O465.0 (2)
O2—C4—C5—C6177.85 (19)C12—O6—C11—O59.2 (4)
C3—C4—C5—C61.1 (3)C12—O6—C11—N3172.7 (2)
C4—C5—C6—C11.5 (3)C9—N3—C11—O512.9 (4)
C2—C1—C6—C52.3 (3)C9—N3—C11—O6168.91 (18)
C7—C1—C6—C5176.19 (19)C11—O6—C12—C1369.9 (3)
N2—N1—C7—C1179.27 (17)C11—O6—C12—C1455.8 (3)
C6—C1—C7—N1170.21 (19)C11—O6—C12—C15173.4 (2)
C2—C1—C7—N18.2 (3)C18—O7—C16—C1798 (83)
N1—N2—C8—O30.3 (3)C16—O7—C18—C1952 (82)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1o···N10.86 (3)1.89 (3)2.643 (3)147 (3)
N2—H2n···O3i0.86 (3)1.91 (2)2.760 (2)171 (2)
O2—H2o···O5ii0.83 (3)1.86 (3)2.669 (3)165 (3)
N3—H3n···O4iii0.86 (3)2.08 (3)2.926 (3)173 (2)
O4—H4o···O7iv0.83 (1)1.94 (2)2.761 (3)167 (3)
O7—H7o···O2v0.84 (1)2.05 (2)2.858 (2)162 (4)
Symmetry codes: (i) x+1/2, y+1/2, z+2; (ii) x, y, z+2; (iii) x+1, y, z+2; (iv) x+1/2, y+1/2, z+1; (v) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC15H21N3O6·C2H6O
Mr385.42
Crystal system, space groupMonoclinic, C2
Temperature (K)120
a, b, c (Å)17.4054 (4), 8.7266 (2), 15.0105 (4)
β (°) 122.219 (2)
V3)1928.87 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.16 × 0.14 × 0.06
Data collection
DiffractometerBruker–Nonius Roper CCD camera on κ-goniostat
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.897, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
19885, 2369, 2303
Rint0.041
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.099, 1.06
No. of reflections2369
No. of parameters271
No. of restraints7
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.61, 0.33

Computer programs: , DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1o···N10.86 (3)1.89 (3)2.643 (3)147 (3)
N2—H2n···O3i0.86 (3)1.913 (17)2.760 (2)171 (2)
O2—H2o···O5ii0.83 (3)1.86 (3)2.669 (3)165 (3)
N3—H3n···O4iii0.86 (3)2.08 (3)2.926 (3)173 (2)
O4—H4o···O7iv0.833 (10)1.94 (2)2.761 (3)167 (3)
O7—H7o···O2v0.842 (10)2.051 (18)2.858 (2)162 (4)
Symmetry codes: (i) x+1/2, y+1/2, z+2; (ii) x, y, z+2; (iii) x+1, y, z+2; (iv) x+1/2, y+1/2, z+1; (v) x, y, z+1.
 

Footnotes

Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.

Acknowledgements

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England, and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES (Brazil).

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationJiao, X., Wang, L., Xiao, Q., Xie, P. & Liang, X. (2009). J. Asian Nat. Prod. Res. 11, 274–280.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPinheiro, A. C., Souza, M. V. N. de, Tiekink, E. R. T., Wardell, J. L. & Wardell, S. M. S. V. (2010). Acta Cryst. E66, o1004–o1005.  Web of Science CrossRef IUCr Journals Google Scholar
First citationRollas, S. & Küçükgüzel, S. G. (2007). Molecules, 12, 1910–1939.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSin, N., Meng, L., Auth, H. & Crews, C. M. (1998). Bioorg. Med. Chem. 6, 1209–1217.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSouza, M. V. N. de, Pinheiro, A. C., Tiekink, E. R. T., Wardell, S. M. S. V. & Wardell, J. L. (2010). Acta Cryst. E66, o3253–o3254.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTakahashi, A., Nakamura, H., Ikeda, D., Naganawa, H., Kameyama, T., Kurasawa, S., Okami, Y., Takeuchi, T. & Iitaka, Y. (1988). J. Antibiot. 41, 1568–1574.  CrossRef CAS PubMed Web of Science Google Scholar
First citationTerzioğlu, N. & Gürsoy, A. (2003). Eur. J. Med. Chem. 38, 633–643.  Web of Science PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYakura, T., Yoshimoto, Y., Ishida, C. & Mabuchi, S. (2007). Tetrahedron, 63, 4429–4438.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 3| March 2011| Pages o581-o582
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds