metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 3| March 2011| Pages m320-m321

Bis[N-(2-hy­dr­oxy­eth­yl)-N-propyl­di­thio­carbamato-κ2S,S′]bis­­(4-{[(pyridin-4-yl­methyl­­idene)hydrazinyl­­idene]meth­yl}pyridine-κN1)cadmium

a5959 FM 1960 Road West, Houston, Texas 77069, USA, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 28 January 2011; accepted 7 February 2011; online 12 February 2011)

The complete mol­ecule of the title compound, [Cd(C6H12NOS2)2(C12H10N4)2], is generated by crystallographic inversion symmetry. The distorted octa­hedral trans-N2S4 donor set for the Cd2+ ion is defined by two symmetrically S,S′-chelating dithio­carbamate anions and two pyridine N atoms derived from two monodentate 4-pyridine­aldazine (or 4-{[(pyridin-4-yl­methyl­idene)hydrazinyl­idene}meth­yl]pyridine) mol­ecules [dihedral angle between the aromatic rings = 17.33 (8)°]. In the crystal, mol­ecules are connected into a supra­molecular chain via O—H⋯N hydrogen bonds involving the 4-pyridine­aldazine N atoms not involved in coordination to cadmium. Weak C—H⋯O and C—H⋯N links consolidate the packing.

Related literature

For background to supra­molecular coordination polymers of zinc-triad 1,1-dithiol­ates, see: Tiekink (2003[Tiekink, E. R. T. (2003). CrystEngComm, 5, 101-113.]). For the use of steric effects to control supra­molecular aggregation patterns, see: Chen et al. (2006[Chen, D., Lai, C. S. & Tiekink, E. R. T. (2006). CrystEngComm, 8, 51-58.]). For structural studies on hydroxyl-substituted dithio­carbamate ligands, see Benson et al. (2007[Benson, R. E., Ellis, C. A., Lewis, C. E. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 930-940.]); Song & Tiekink (2009[Song, J. C. & Tiekink, E. R. T. (2009). Acta Cryst. E65, m1669-m1670.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C6H12NOS2)2(C12H10N4)2]

  • Mr = 889.45

  • Triclinic, [P \overline 1]

  • a = 8.532 (3) Å

  • b = 10.951 (4) Å

  • c = 11.184 (5) Å

  • α = 79.59 (3)°

  • β = 88.06 (3)°

  • γ = 78.23 (2)°

  • V = 1006.2 (7) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.80 mm−1

  • T = 98 K

  • 0.25 × 0.16 × 0.04 mm

Data collection
  • Rigaku AFC12/SATURN724 CCD diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.719, Tmax = 1

  • 10677 measured reflections

  • 4150 independent reflections

  • 4009 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.062

  • S = 1.08

  • 4150 reflections

  • 245 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cd—S1 2.6379 (10)
Cd—S2 2.6626 (10)
Cd—N2 2.5403 (17)
S1—Cd—S2 68.83 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1o⋯N5i 0.84 (2) 1.98 (2) 2.810 (2) 176 (2)
C10—H10⋯O1ii 0.95 2.55 3.480 (3) 168
C3—H3a⋯N4iii 0.99 2.61 3.369 (3) 134
Symmetry codes: (i) x+2, y, z-1; (ii) -x+1, -y, -z+1; (iii) x+1, y, z-1.

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2005[Molecular Structure Corporation & Rigaku (2005). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: PATTY in DIRDIF (Beurskens et al., 1992[Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., Garcia-Granda, S., Gould, R. O., Smits, J. M. M. & Smykalla, C. (1992). The DIRDIF Program System. Technical Report. Crystallography Laboratory, University of Nijmegen, The Netherlands. ]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Interest in the title compound, (I), relates to controlling supramolecular aggregation patterns in the zinc-triad 1,1-thiolates (Tiekink, 2003; Chen et al., 2006). With functionalized dithiocarbamate ligands carrying hydrogen bonding potential, smaller aggregates can be linked into 2-D and 3-D architectures (Benson et al., 2007; Song & Tiekink, 2009). In (I), the cadmium atom is located on a centre of inversion and is chelated by symmetrically coordinating dithiocarbamate ligands, Table 1 and Fig. 1. The octahedral N2S4 donor set is completed by two pyridine-N atoms derived from two monodentate 4-pyridinealdazine ligands.

The monomeric molecules are connected into a supramolecular chain via O–H···N hydrogen bonds, Table 2, that lead to the formation of 40-membered [CdSCNC2OH···NC4N2C4N]2 synthons, Fig. 2. These chains are linked into layers via C–H···O interactions, Table 1, which that stack along [1 0 1]; consolidation of these layers into a 3-D array is afforded by C—H···Nazo contacts, Table 2 and Fig. 3.

Related literature top

For background to supramolecular coordination polymers of zinc-triad 1,1-dithiolates, see: Tiekink (2003). For the use of steric effects to control supramolecular aggregation patterns, see: Chen et al. (2006). For structural studies on hydroxyl-substituted dithiocarbamate ligands, see Benson et al. (2007); Song & Tiekink (2009).

Experimental top

Compound (I) was prepared following the standard literature procedure (Song & Tiekink, 2009) from the reaction of Cd[S2CN(CH2CH2OH)(nPr)]2 and 4-[(1E)-[(E)-2-(pyridin-4-ylmethylidene)hydrazin-1-ylidene]methyl]pyridine (Sigma Aldrich). Yellow plates of (I) were obtained from the slow evaporation of a chloroform/acetonitrile (3/1) solution.

Refinement top

C-bound H-atoms were placed in calculated positions (C–H 0.95–0.99 Å) and were included in the refinement in the riding model approximation with Uiso(H) set to 1.2–1.5Ueq(C). The O-bound H-atom was located in a difference Fourier map and refined with an O–H restraint of 0.84±0.01 Å, and with Uiso(H) = 1.5Ueq(O). The reflection (8 1 2) was removed from the final refinement owing to poor agreement.

Computing details top

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); cell refinement: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); data reduction: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); program(s) used to solve structure: PATTY in DIRDIF (Beurskens et al., 1992); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing displacement ellipsoids at the 70% probability level. The Cd atom is located on a centre of inversion and i = 1 - x, 1 - y, 1 - z.
[Figure 2] Fig. 2. Supramolecular chain in (I) mediated by O–H···N (orange dashed lines) hydrogen bonds. Colour code: Cd, orange; S, yellow; O, red; N, blue; C, grey; and H, green.
[Figure 3] Fig. 3. Unit-cell contents in (I) viewed in projection down the a axis.
Bis[N-(2-hydroxyethyl)-N-propyldithiocarbamato- κ2S,S']bis(4-{[(pyridin-4- ylmethylidene)hydrazinylidene]methyl}pyridine-κN1)cadmium top
Crystal data top
[Cd(C6H12NOS2)2(C12H10N4)2]Z = 1
Mr = 889.45F(000) = 458
Triclinic, P1Dx = 1.468 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71070 Å
a = 8.532 (3) ÅCell parameters from 3485 reflections
b = 10.951 (4) Åθ = 2.4–30.3°
c = 11.184 (5) ŵ = 0.80 mm1
α = 79.59 (3)°T = 98 K
β = 88.06 (3)°Plate, yellow
γ = 78.23 (2)°0.25 × 0.16 × 0.04 mm
V = 1006.2 (7) Å3
Data collection top
Rigaku AFC12K/SATURN724 CCD
diffractometer
4150 independent reflections
Radiation source: fine-focus sealed tube4009 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω scansθmax = 26.5°, θmin = 2.4°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1010
Tmin = 0.719, Tmax = 1k = 1312
10677 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.062H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0288P)2 + 0.6008P]
where P = (Fo2 + 2Fc2)/3
4150 reflections(Δ/σ)max < 0.001
245 parametersΔρmax = 0.40 e Å3
1 restraintΔρmin = 0.40 e Å3
Crystal data top
[Cd(C6H12NOS2)2(C12H10N4)2]γ = 78.23 (2)°
Mr = 889.45V = 1006.2 (7) Å3
Triclinic, P1Z = 1
a = 8.532 (3) ÅMo Kα radiation
b = 10.951 (4) ŵ = 0.80 mm1
c = 11.184 (5) ÅT = 98 K
α = 79.59 (3)°0.25 × 0.16 × 0.04 mm
β = 88.06 (3)°
Data collection top
Rigaku AFC12K/SATURN724 CCD
diffractometer
4150 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
4009 reflections with I > 2σ(I)
Tmin = 0.719, Tmax = 1Rint = 0.023
10677 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0251 restraint
wR(F2) = 0.062H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.40 e Å3
4150 reflectionsΔρmin = 0.40 e Å3
245 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd0.50000.50000.50000.01706 (6)
S10.67567 (5)0.26992 (4)0.55937 (3)0.01562 (9)
S20.48740 (5)0.36286 (4)0.32801 (4)0.01587 (9)
O10.88422 (15)0.05660 (12)0.17754 (11)0.0223 (3)
H1o0.954 (2)0.094 (2)0.1432 (19)0.033*
N10.67484 (15)0.13324 (12)0.38469 (11)0.0120 (3)
N20.26143 (17)0.42763 (14)0.61140 (13)0.0192 (3)
N30.25800 (17)0.36129 (14)0.82625 (13)0.0194 (3)
N40.37162 (17)0.28924 (14)0.87834 (12)0.0191 (3)
N50.88990 (18)0.19365 (15)1.06431 (14)0.0245 (3)
C10.61822 (18)0.24449 (15)0.41986 (14)0.0135 (3)
C20.62455 (19)0.10536 (15)0.26935 (14)0.0156 (3)
H2A0.51390.15260.25010.019*
H2B0.62390.01380.27960.019*
C30.7325 (2)0.14035 (16)0.16368 (15)0.0196 (3)
H3A0.68240.13560.08660.024*
H3B0.74650.22850.16010.024*
C40.79259 (19)0.03218 (15)0.45840 (14)0.0150 (3)
H4A0.86040.07170.50370.018*
H4B0.86300.01580.40330.018*
C50.7154 (2)0.05962 (16)0.54826 (15)0.0185 (3)
H5A0.64210.09570.50430.022*
H5B0.65170.01370.60800.022*
C60.8430 (2)0.16666 (17)0.61485 (17)0.0239 (4)
H6A0.79110.22540.67150.036*
H6B0.91370.13110.66020.036*
H6C0.90590.21210.55570.036*
C70.1257 (2)0.50814 (17)0.63223 (18)0.0254 (4)
H70.11970.59630.60490.031*
C80.0057 (2)0.46933 (17)0.69130 (17)0.0238 (4)
H80.09890.52970.70410.029*
C90.0008 (2)0.34018 (16)0.73174 (14)0.0169 (3)
C100.1403 (2)0.25663 (16)0.70970 (16)0.0203 (3)
H100.14930.16790.73520.024*
C110.2661 (2)0.30418 (16)0.65018 (16)0.0205 (3)
H110.36080.24580.63620.025*
C120.1326 (2)0.28869 (16)0.79403 (14)0.0177 (3)
H120.12550.19950.81070.021*
C130.5012 (2)0.35972 (17)0.90688 (15)0.0200 (3)
H130.51190.44920.89290.024*
C140.6338 (2)0.30118 (17)0.96168 (14)0.0188 (3)
C150.7640 (2)0.37321 (18)1.01209 (17)0.0248 (4)
H150.76810.46041.01270.030*
C160.8877 (2)0.31554 (19)1.06143 (17)0.0269 (4)
H160.97620.36591.09520.032*
C170.7628 (2)0.12403 (18)1.01712 (16)0.0247 (4)
H170.76120.03671.01920.030*
C180.6341 (2)0.17338 (18)0.96559 (16)0.0228 (4)
H180.54680.12060.93320.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd0.01757 (10)0.01303 (10)0.02083 (10)0.00255 (7)0.00354 (7)0.00493 (7)
S10.0170 (2)0.01481 (19)0.01487 (19)0.00153 (15)0.00065 (15)0.00389 (15)
S20.0170 (2)0.01234 (19)0.0169 (2)0.00014 (15)0.00203 (15)0.00179 (15)
O10.0183 (6)0.0224 (6)0.0251 (6)0.0043 (5)0.0080 (5)0.0026 (5)
N10.0114 (6)0.0119 (6)0.0122 (6)0.0014 (5)0.0004 (5)0.0016 (5)
N20.0185 (7)0.0181 (7)0.0218 (7)0.0050 (6)0.0034 (6)0.0048 (6)
N30.0178 (7)0.0218 (7)0.0184 (7)0.0064 (6)0.0024 (5)0.0007 (6)
N40.0188 (7)0.0228 (7)0.0161 (7)0.0080 (6)0.0024 (5)0.0003 (6)
N50.0222 (8)0.0305 (9)0.0219 (8)0.0094 (7)0.0047 (6)0.0035 (6)
C10.0114 (7)0.0144 (8)0.0147 (7)0.0042 (6)0.0032 (6)0.0014 (6)
C20.0165 (8)0.0145 (8)0.0158 (8)0.0018 (6)0.0002 (6)0.0037 (6)
C30.0222 (9)0.0195 (8)0.0156 (8)0.0012 (7)0.0027 (6)0.0030 (6)
C40.0127 (7)0.0138 (8)0.0169 (8)0.0004 (6)0.0007 (6)0.0020 (6)
C50.0167 (8)0.0168 (8)0.0210 (8)0.0043 (7)0.0009 (6)0.0003 (6)
C60.0224 (9)0.0202 (9)0.0266 (9)0.0051 (7)0.0034 (7)0.0044 (7)
C70.0230 (9)0.0162 (8)0.0348 (10)0.0033 (7)0.0087 (8)0.0008 (7)
C80.0174 (9)0.0198 (9)0.0320 (10)0.0012 (7)0.0055 (7)0.0023 (7)
C90.0168 (8)0.0207 (8)0.0146 (8)0.0062 (7)0.0003 (6)0.0039 (6)
C100.0217 (9)0.0158 (8)0.0245 (9)0.0048 (7)0.0021 (7)0.0055 (7)
C110.0193 (8)0.0175 (8)0.0259 (9)0.0031 (7)0.0036 (7)0.0083 (7)
C120.0181 (8)0.0198 (8)0.0153 (8)0.0055 (7)0.0024 (6)0.0015 (6)
C130.0198 (9)0.0213 (9)0.0178 (8)0.0049 (7)0.0006 (6)0.0003 (7)
C140.0171 (8)0.0241 (9)0.0146 (8)0.0054 (7)0.0000 (6)0.0003 (6)
C150.0238 (9)0.0215 (9)0.0283 (9)0.0043 (7)0.0040 (7)0.0039 (7)
C160.0206 (9)0.0304 (10)0.0290 (10)0.0037 (8)0.0076 (7)0.0062 (8)
C170.0255 (9)0.0246 (9)0.0260 (9)0.0096 (8)0.0052 (7)0.0056 (7)
C180.0216 (9)0.0248 (9)0.0229 (9)0.0054 (7)0.0045 (7)0.0067 (7)
Geometric parameters (Å, º) top
Cd—S12.6379 (10)C4—H4B0.9900
Cd—S22.6626 (10)C5—C61.527 (2)
Cd—N22.5403 (17)C5—H5A0.9900
Cd—S1i2.6379 (10)C5—H5B0.9900
Cd—S2i2.6626 (10)C6—H6A0.9800
Cd—N2i2.5403 (17)C6—H6B0.9800
S1—C11.7369 (17)C6—H6C0.9800
S2—C11.7286 (18)C7—C81.385 (2)
O1—C31.421 (2)C7—H70.9500
O1—H1o0.835 (10)C8—C91.395 (2)
N1—C11.339 (2)C8—H80.9500
N1—C21.475 (2)C9—C101.390 (2)
N1—C41.479 (2)C9—C121.471 (2)
N2—C111.336 (2)C10—C111.386 (2)
N2—C71.347 (2)C10—H100.9500
N3—C121.280 (2)C11—H110.9500
N3—N41.418 (2)C12—H120.9500
N4—C131.279 (2)C13—C141.475 (2)
N5—C161.333 (3)C13—H130.9500
N5—C171.344 (2)C14—C151.391 (2)
C2—C31.516 (2)C14—C181.393 (3)
C2—H2A0.9900C15—C161.388 (3)
C2—H2B0.9900C15—H150.9500
C3—H3A0.9900C16—H160.9500
C3—H3B0.9900C17—C181.385 (2)
C4—C51.521 (2)C17—H170.9500
C4—H4A0.9900C18—H180.9500
N2i—Cd—N2180C4—C5—C6110.58 (14)
N2i—Cd—S189.42 (4)C4—C5—H5A109.5
N2—Cd—S190.58 (4)C6—C5—H5A109.5
N2i—Cd—S1i90.58 (4)C4—C5—H5B109.5
N2—Cd—S1i89.42 (4)C6—C5—H5B109.5
S1—Cd—S1i180H5A—C5—H5B108.1
N2i—Cd—S287.62 (4)C5—C6—H6A109.5
N2—Cd—S292.38 (4)C5—C6—H6B109.5
S1—Cd—S268.83 (3)H6A—C6—H6B109.5
S1i—Cd—S2111.17 (3)C5—C6—H6C109.5
N2i—Cd—S2i92.38 (4)H6A—C6—H6C109.5
N2—Cd—S2i87.62 (4)H6B—C6—H6C109.5
S1—Cd—S2i111.17 (3)N2—C7—C8123.52 (17)
S1i—Cd—S2i68.83 (3)N2—C7—H7118.2
S2—Cd—S2i180C8—C7—H7118.2
C1—S1—Cd86.05 (6)C7—C8—C9119.02 (16)
C1—S2—Cd85.43 (6)C7—C8—H8120.5
C3—O1—H1o109.5 (16)C9—C8—H8120.5
C1—N1—C2121.74 (13)C10—C9—C8117.67 (15)
C1—N1—C4121.96 (13)C10—C9—C12118.88 (15)
C2—N1—C4116.29 (13)C8—C9—C12123.44 (16)
C11—N2—C7116.95 (15)C11—C10—C9119.30 (16)
C11—N2—Cd119.88 (11)C11—C10—H10120.3
C7—N2—Cd123.16 (11)C9—C10—H10120.3
C12—N3—N4110.47 (14)N2—C11—C10123.54 (16)
C13—N4—N3111.93 (14)N2—C11—H11118.2
C16—N5—C17116.98 (16)C10—C11—H11118.2
N1—C1—S2120.59 (12)N3—C12—C9121.48 (16)
N1—C1—S1119.77 (12)N3—C12—H12119.3
S2—C1—S1119.64 (10)C9—C12—H12119.3
N1—C2—C3113.01 (13)N4—C13—C14119.59 (16)
N1—C2—H2A109.0N4—C13—H13120.2
C3—C2—H2A109.0C14—C13—H13120.2
N1—C2—H2B109.0C15—C14—C18117.63 (16)
C3—C2—H2B109.0C15—C14—C13120.38 (16)
H2A—C2—H2B107.8C18—C14—C13121.99 (16)
O1—C3—C2110.27 (14)C16—C15—C14118.89 (17)
O1—C3—H3A109.6C16—C15—H15120.6
C2—C3—H3A109.6C14—C15—H15120.6
O1—C3—H3B109.6N5—C16—C15123.90 (17)
C2—C3—H3B109.6N5—C16—H16118.0
H3A—C3—H3B108.1C15—C16—H16118.0
N1—C4—C5113.22 (13)N5—C17—C18123.21 (17)
N1—C4—H4A108.9N5—C17—H17118.4
C5—C4—H4A108.9C18—C17—H17118.4
N1—C4—H4B108.9C17—C18—C14119.38 (17)
C5—C4—H4B108.9C17—C18—H18120.3
H4A—C4—H4B107.7C14—C18—H18120.3
N2i—Cd—S1—C186.27 (7)C4—N1—C2—C387.99 (17)
N2—Cd—S1—C193.73 (7)N1—C2—C3—O170.19 (17)
S1i—Cd—S1—C195 (100)C1—N1—C4—C590.95 (18)
S2—Cd—S1—C11.40 (5)C2—N1—C4—C589.78 (16)
S2i—Cd—S1—C1178.60 (5)N1—C4—C5—C6175.96 (13)
N2i—Cd—S2—C188.89 (7)C11—N2—C7—C80.3 (3)
N2—Cd—S2—C191.11 (7)Cd—N2—C7—C8179.02 (14)
S1—Cd—S2—C11.41 (5)N2—C7—C8—C90.1 (3)
S1i—Cd—S2—C1178.59 (5)C7—C8—C9—C100.3 (3)
S2i—Cd—S2—C129 (100)C7—C8—C9—C12179.20 (17)
N2i—Cd—N2—C11146 (100)C8—C9—C10—C110.5 (2)
S1—Cd—N2—C1110.78 (13)C12—C9—C10—C11179.47 (15)
S1i—Cd—N2—C11169.22 (13)C7—N2—C11—C100.1 (3)
S2—Cd—N2—C1158.06 (13)Cd—N2—C11—C10178.83 (13)
S2i—Cd—N2—C11121.94 (13)C9—C10—C11—N20.3 (3)
N2i—Cd—N2—C735 (100)N4—N3—C12—C9176.90 (14)
S1—Cd—N2—C7170.58 (14)C10—C9—C12—N3173.70 (15)
S1i—Cd—N2—C79.42 (14)C8—C9—C12—N37.4 (3)
S2—Cd—N2—C7120.58 (14)N3—N4—C13—C14179.61 (14)
S2i—Cd—N2—C759.42 (14)N4—C13—C14—C15169.03 (16)
C12—N3—N4—C13177.28 (14)N4—C13—C14—C1810.7 (3)
C2—N1—C1—S22.1 (2)C18—C14—C15—C161.1 (3)
C4—N1—C1—S2177.14 (10)C13—C14—C15—C16179.14 (16)
C2—N1—C1—S1177.52 (10)C17—N5—C16—C150.6 (3)
C4—N1—C1—S13.2 (2)C14—C15—C16—N50.4 (3)
Cd—S2—C1—N1178.09 (12)C16—N5—C17—C180.8 (3)
Cd—S2—C1—S12.29 (8)N5—C17—C18—C140.1 (3)
Cd—S1—C1—N1178.07 (12)C15—C14—C18—C170.9 (3)
Cd—S1—C1—S22.31 (8)C13—C14—C18—C17179.34 (16)
C1—N1—C2—C391.28 (18)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1o···N5ii0.84 (2)1.98 (2)2.810 (2)176 (2)
C10—H10···O1iii0.952.553.480 (3)168
C3—H3a···N4iv0.992.613.369 (3)134
Symmetry codes: (ii) x+2, y, z1; (iii) x+1, y, z+1; (iv) x+1, y, z1.

Experimental details

Crystal data
Chemical formula[Cd(C6H12NOS2)2(C12H10N4)2]
Mr889.45
Crystal system, space groupTriclinic, P1
Temperature (K)98
a, b, c (Å)8.532 (3), 10.951 (4), 11.184 (5)
α, β, γ (°)79.59 (3), 88.06 (3), 78.23 (2)
V3)1006.2 (7)
Z1
Radiation typeMo Kα
µ (mm1)0.80
Crystal size (mm)0.25 × 0.16 × 0.04
Data collection
DiffractometerRigaku AFC12K/SATURN724 CCD
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.719, 1
No. of measured, independent and
observed [I > 2σ(I)] reflections
10677, 4150, 4009
Rint0.023
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.062, 1.08
No. of reflections4150
No. of parameters245
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.40, 0.40

Computer programs: CrystalClear (Molecular Structure Corporation & Rigaku, 2005), PATTY in DIRDIF (Beurskens et al., 1992), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Selected geometric parameters (Å, º) top
Cd—S12.6379 (10)Cd—N22.5403 (17)
Cd—S22.6626 (10)
S1—Cd—S268.83 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1o···N5i0.835 (19)1.977 (19)2.810 (2)176 (2)
C10—H10···O1ii0.952.553.480 (3)168
C3—H3a···N4iii0.992.613.369 (3)134
Symmetry codes: (i) x+2, y, z1; (ii) x+1, y, z+1; (iii) x+1, y, z1.
 

References

First citationBenson, R. E., Ellis, C. A., Lewis, C. E. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 930–940.  Web of Science CSD CrossRef CAS Google Scholar
First citationBeurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., Garcia-Granda, S., Gould, R. O., Smits, J. M. M. & Smykalla, C. (1992). The DIRDIF Program System. Technical Report. Crystallography Laboratory, University of Nijmegen, The Netherlands.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChen, D., Lai, C. S. & Tiekink, E. R. T. (2006). CrystEngComm, 8, 51–58.  Web of Science CSD CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationMolecular Structure Corporation & Rigaku (2005). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, J. C. & Tiekink, E. R. T. (2009). Acta Cryst. E65, m1669–m1670.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTiekink, E. R. T. (2003). CrystEngComm, 5, 101–113.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 3| March 2011| Pages m320-m321
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds