organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Zwitterionic form of tris­­({[5-(4-meth­­oxy­phenyl­azo)salicyl­­idene]amino}­eth­yl)amine

aFaculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran, and bChemistry Department, Isalmic Azad University, Buinzahra Branch, Qazvin, Iran
*Correspondence e-mail: saleh@basu.ac.ir

(Received 31 January 2011; accepted 6 February 2011; online 12 February 2011)

The title compound (systematic name: 2-{[2-(bis­{2-[({2-hy­droxy-5-[(4-meth­oxy­phen­yl)diazen­yl]phen­yl}methyl­idene)amino]­eth­yl}amino)­eth­yl]aza­niumylidenemeth­yl}-4-[(4-meth­oxy­phen­yl)diazen­yl]phenolate), C48H48N10O6, exists as a zwitterion in the solid state. The three arms of the tripodal mol­ecule are located close to each other and an intra­molecular hydrogen bond occurs in each arm (O—H⋯N in two arms and N—H⋯O in the zwitterionic arm). The dihedral angles between the aromatic rings in the three arms are 16.36 (14), 23.94 (14) and, for the zwitterionic arm, 37.14 (14)°. In the crystal, a weak inter­moleclar N—H⋯O hydrogen bond occurs.

Related literature

For tripodal Schiff base ligands, see: Kanesato et al. (2000[Kanesato, M., Ngassapa, F. N. & Yokoyama, T. (2000). Anal. Sci. (Japan), 16, 781-782.]) and for azo compounds, see: Butcher et al. (2005[Butcher, R. J., Basu Baul, T. S., Singh, K. S. & Smith, F. E. (2005). Acta Cryst. E61, o1007-o1009.]). For further synthetic details, see: Dinçalp et al. (2007[Dinçalp, H., Toker, F., Durucasu, I., Avciba, S. N. & Icli, S. (2007). Dyes Pigments, 75, 11-24.]).

[Scheme 1]

Experimental

Crystal data
  • C48H48N10O6

  • Mr = 860.96

  • Triclinic, [P \overline 1]

  • a = 10.5613 (9) Å

  • b = 12.1234 (5) Å

  • c = 17.2107 (9) Å

  • α = 86.418 (3)°

  • β = 89.308 (2)°

  • γ = 88.084 (3)°

  • V = 2198.0 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 150 K

  • 0.22 × 0.20 × 0.16 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.827, Tmax = 0.990

  • 19855 measured reflections

  • 9781 independent reflections

  • 4152 reflections with I > 2σ(I)

  • Rint = 0.071

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.187

  • S = 0.99

  • 9781 reflections

  • 589 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯N4 1.07 (4) 1.58 (4) 2.543 (3) 146 (3)
O1—H1⋯N2 0.98 (4) 1.61 (4) 2.534 (3) 157 (3)
N3—H2⋯O2 1.02 (4) 1.71 (4) 2.585 (3) 142 (3)
N3—H2⋯O2i 1.02 (4) 2.48 (4) 3.155 (3) 123 (3)
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: COLLECT (Nonius, 2002[Nonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A edited by C. W. Carter Jr & R. M. Sweet pp. 307-326. London: Academic Press.]); data reduction: DENZO-SMN; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Herein, we report the synthesis and X-ray crystal structure of the title compound, (I), (Fig. 1), a tripodal Schiff base ligand containing three azo groups. For tripodal Schiff base ligands see: Kanesato et al. (2000) and for azo compounds see: Butcher et al. (2005).

The title compound adopts a cage-like conformation in the solid state. The geometry around the bridghead N atom of the compound is approximately pyramidal, since the angles C1–N1–C33, C1–N1–C17 and C33–N1–C17 have values of 112.3 (2), 113.5 (2) and 112.8 (2)°, respectively. The average of NN bond lengths[1.25 (3) Å] is in the expected range and is in good agreement with values found in other similar compounds. Interestingly the hydrogen atom of one of three OH groups has transferred to one of three imine groups through intramolecular hydrogen bonding producing a zwitterionic compound. Three arms of tripodal ligand are located close to each other and in all of them there is an intramolecularhydrogen bonding (table 1).

Related literature top

For tripodal Schiff base ligands, see: Kanesato et al. (2000) and for azo compounds, see: Butcher et al. (2005). For further synthetic details, see: Dinçalp et al. (2007).

Experimental top

Azo dye (5-(4-methoxyphenylazo)salicylaldehyde) was synthesized according to the literature procedure (Dinçalp et al., 2007). Then to a solution of above aldehyde (3 mmol) in ethanol (70 ml) was added tren (1 mmol) in the same solvent (10 ml) (see Scheme I). The solution was stirred for 12 h at 40°C. The resulting orange precipitate was filtered and dried in vacuum. Orange blocks of (I) were obtained by slow evaporation from a acetonitril solution at room temperature after 24 h.

Refinement top

The H(C) atom positions were calculated and refined in isotropic approximatiom within riding model with the Uiso(H) parameters equal to 1.2 Ueq(Ci) where U(Ci) is the equivalent thermal parameters of the carbon atoms to which corresponding H atoms are bonded. 'H atoms bonded to C atoms were placed in calculated positions with C-H distances in the range 0.95-0.99 Å and were included in the refinement in a riding-model approximation with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmethyl). H atoms bonded to O and N atoms were refined independently with isotropic displacement parameters.

Computing details top

Data collection: COLLECT (Nonius, 2002); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the structure of (I), with displacement ellipsoids drawn at the 50% probability level. All C-bonded H atoms omitted for clarity.
2-{[2-(bis{2-[({2-hydroxy-5-[(4-methoxyphenyl)diazenyl]phenyl}methylidene)amino]ethyl}amino)ethyl]azaniumylidenemethyl}-4-[(4-methoxyphenyl)diazenyl]phenolate top
Crystal data top
C48H48N10O6Z = 2
Mr = 860.96F(000) = 908
Triclinic, P1Dx = 1.301 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.5613 (9) ÅCell parameters from 7794 reflections
b = 12.1234 (5) Åθ = 2.6–27.5°
c = 17.2107 (9) ŵ = 0.09 mm1
α = 86.418 (3)°T = 150 K
β = 89.308 (2)°Block, orange
γ = 88.084 (3)°0.22 × 0.20 × 0.16 mm
V = 2198.0 (2) Å3
Data collection top
Nonius KappaCCD
diffractometer
9781 independent reflections
Radiation source: fine-focus sealed tube4152 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.071
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 2.6°
ϕ scans and ω scans with κ offsetsh = 1313
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
k = 1515
Tmin = 0.827, Tmax = 0.990l = 2222
19855 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.187H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.0768P)2]
where P = (Fo2 + 2Fc2)/3
9781 reflections(Δ/σ)max = 0.001
589 parametersΔρmax = 0.37 e Å3
2 restraintsΔρmin = 0.23 e Å3
Crystal data top
C48H48N10O6γ = 88.084 (3)°
Mr = 860.96V = 2198.0 (2) Å3
Triclinic, P1Z = 2
a = 10.5613 (9) ÅMo Kα radiation
b = 12.1234 (5) ŵ = 0.09 mm1
c = 17.2107 (9) ÅT = 150 K
α = 86.418 (3)°0.22 × 0.20 × 0.16 mm
β = 89.308 (2)°
Data collection top
Nonius KappaCCD
diffractometer
9781 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
4152 reflections with I > 2σ(I)
Tmin = 0.827, Tmax = 0.990Rint = 0.071
19855 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0622 restraints
wR(F2) = 0.187H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 0.37 e Å3
9781 reflectionsΔρmin = 0.23 e Å3
589 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2448 (2)0.82743 (16)0.82789 (12)0.0474 (6)
O20.43622 (18)0.45882 (17)0.57762 (12)0.0495 (6)
O30.0630 (2)0.8117 (2)0.50993 (12)0.0576 (6)
O40.1109 (2)0.08081 (19)0.91613 (15)0.0776 (8)
O50.47340 (19)0.00203 (17)0.79102 (13)0.0582 (6)
O60.57085 (19)0.29892 (18)1.01599 (12)0.0571 (6)
N10.3726 (2)0.8543 (2)0.56017 (14)0.0444 (6)
N20.3882 (2)0.74854 (19)0.72451 (13)0.0403 (6)
N30.3183 (3)0.6273 (2)0.50901 (14)0.0431 (6)
N40.0959 (2)0.8958 (2)0.59704 (14)0.0438 (6)
N50.0284 (2)0.4183 (2)0.88438 (14)0.0460 (6)
N60.0856 (2)0.3371 (2)0.85796 (14)0.0427 (6)
N70.0348 (2)0.3043 (2)0.66786 (13)0.0418 (6)
N80.0348 (2)0.2007 (2)0.68282 (13)0.0425 (6)
N90.2363 (2)0.5682 (2)0.77249 (14)0.0457 (6)
N100.3386 (2)0.5194 (2)0.76315 (14)0.0475 (7)
C10.4720 (3)0.8657 (2)0.61690 (17)0.0468 (8)
H1A0.44890.92780.64950.056*
H1B0.55210.88350.58910.056*
C20.4926 (3)0.7609 (2)0.66887 (17)0.0439 (8)
H2A0.49830.69610.63660.053*
H2B0.57330.76440.69720.053*
C30.3336 (3)0.6552 (2)0.73432 (15)0.0368 (7)
H3A0.35840.59630.70290.044*
C40.2343 (2)0.6388 (2)0.79291 (15)0.0355 (7)
C50.1799 (3)0.5360 (2)0.80621 (16)0.0393 (7)
H5A0.20520.47660.77540.047*
C60.0884 (3)0.5204 (3)0.86465 (17)0.0422 (7)
C70.0480 (3)0.6087 (3)0.90776 (17)0.0476 (8)
H7A0.01640.59840.94630.057*
C80.1006 (3)0.7108 (3)0.89495 (16)0.0459 (8)
H8A0.07280.77050.92480.055*
C90.1939 (3)0.7264 (2)0.83858 (16)0.0384 (7)
C100.0247 (3)0.2334 (2)0.87651 (16)0.0405 (7)
C110.0921 (3)0.1410 (3)0.85677 (18)0.0494 (8)
H11A0.17330.14850.83300.059*
C120.0447 (3)0.0371 (3)0.87057 (19)0.0574 (9)
H12A0.09260.02640.85640.069*
C130.0730 (3)0.0262 (3)0.90515 (19)0.0508 (8)
C140.1426 (3)0.1186 (3)0.92557 (17)0.0520 (9)
H14A0.22370.11140.94950.062*
C150.0925 (3)0.2223 (3)0.91061 (16)0.0468 (8)
H15A0.13990.28630.92420.056*
C160.2313 (4)0.0982 (3)0.9522 (2)0.0927 (15)
H16A0.24750.17750.95630.139*
H16B0.29740.05900.92080.139*
H16C0.23180.07011.00440.139*
C170.4180 (3)0.8058 (3)0.48855 (17)0.0487 (8)
H17A0.49970.76540.49890.058*
H17B0.43330.86590.44820.058*
C180.3250 (3)0.7275 (2)0.45807 (17)0.0489 (8)
H18A0.24010.76450.45440.059*
H18B0.35150.70800.40520.059*
C190.2148 (3)0.5907 (2)0.54053 (16)0.0422 (7)
H19A0.13820.63300.53250.051*
C200.2118 (3)0.4892 (2)0.58677 (16)0.0391 (7)
C210.0946 (3)0.4468 (2)0.61236 (16)0.0392 (7)
H21A0.01930.49100.60440.047*
C220.0871 (3)0.3435 (2)0.64833 (16)0.0397 (7)
C230.2004 (3)0.2813 (2)0.66447 (16)0.0411 (7)
H23A0.19590.21010.69060.049*
C240.3155 (3)0.3206 (2)0.64355 (15)0.0413 (7)
H24A0.38970.27770.65730.050*
C250.3276 (3)0.4250 (2)0.60136 (16)0.0393 (7)
C260.1541 (3)0.1589 (2)0.70770 (16)0.0404 (7)
C270.1660 (3)0.0458 (3)0.7050 (2)0.0548 (9)
H27A0.09830.00270.68440.066*
C280.2738 (3)0.0052 (3)0.7316 (2)0.0573 (9)
H28A0.28100.08260.72830.069*
C290.3711 (3)0.0563 (3)0.76274 (18)0.0453 (8)
C300.3613 (3)0.1697 (2)0.76609 (16)0.0430 (8)
H30A0.42880.21250.78730.052*
C310.2526 (3)0.2202 (2)0.73831 (16)0.0413 (7)
H31A0.24590.29790.74040.050*
C320.5733 (3)0.0585 (3)0.8261 (2)0.0722 (11)
H32A0.64010.00810.84350.108*
H32B0.60810.11470.78810.108*
H32C0.54100.09450.87090.108*
C330.2976 (3)0.9573 (3)0.54508 (19)0.0515 (9)
H33A0.25760.95640.49340.062*
H33B0.35471.02060.54360.062*
C340.1956 (3)0.9737 (3)0.60625 (18)0.0497 (8)
H34A0.23250.96170.65880.060*
H34B0.16001.05030.60060.060*
C350.0569 (3)0.8342 (2)0.65497 (18)0.0420 (7)
H35A0.09570.83760.70420.050*
C360.0453 (3)0.7596 (2)0.64655 (17)0.0379 (7)
C370.0930 (3)0.6951 (2)0.71012 (17)0.0413 (7)
H37A0.05650.70030.75990.050*
C380.1911 (3)0.6244 (2)0.70259 (17)0.0412 (7)
C390.2429 (3)0.6148 (3)0.62893 (18)0.0484 (8)
H39A0.30810.56410.62250.058*
C400.1999 (3)0.6784 (3)0.56589 (18)0.0491 (8)
H40A0.23700.67250.51640.059*
C410.1031 (3)0.7508 (3)0.57366 (17)0.0436 (8)
C420.3878 (3)0.4641 (2)0.83188 (18)0.0424 (7)
C430.3285 (3)0.4523 (2)0.90327 (18)0.0476 (8)
H43A0.24740.48220.90910.057*
C440.3864 (3)0.3974 (2)0.96617 (19)0.0484 (8)
H44A0.34510.38921.01500.058*
C450.5053 (3)0.3540 (2)0.95763 (18)0.0437 (8)
C460.5658 (3)0.3664 (2)0.88634 (18)0.0466 (8)
H46A0.64800.33840.88070.056*
C470.5060 (3)0.4197 (2)0.82372 (18)0.0445 (8)
H47A0.54610.42600.77450.053*
C480.5098 (3)0.2782 (3)1.08894 (19)0.0662 (10)
H48A0.56680.23861.12550.099*
H48B0.48840.34861.10970.099*
H48C0.43220.23311.08190.099*
H10.308 (4)0.816 (3)0.787 (2)0.103 (14)*
H20.392 (4)0.573 (3)0.519 (2)0.100 (14)*
H30.005 (4)0.867 (3)0.529 (2)0.103 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0573 (14)0.0363 (13)0.0490 (14)0.0036 (11)0.0010 (11)0.0046 (10)
O20.0392 (12)0.0557 (14)0.0529 (13)0.0072 (11)0.0028 (10)0.0031 (11)
O30.0633 (15)0.0720 (16)0.0368 (13)0.0080 (13)0.0009 (11)0.0047 (11)
O40.0704 (17)0.0500 (15)0.110 (2)0.0222 (14)0.0129 (15)0.0250 (14)
O50.0429 (13)0.0481 (14)0.0844 (17)0.0111 (11)0.0115 (12)0.0067 (12)
O60.0515 (13)0.0604 (15)0.0587 (15)0.0159 (12)0.0064 (11)0.0113 (12)
N10.0423 (14)0.0430 (16)0.0467 (16)0.0039 (13)0.0005 (12)0.0069 (12)
N20.0393 (14)0.0391 (15)0.0419 (15)0.0059 (12)0.0013 (11)0.0052 (12)
N30.0450 (16)0.0394 (16)0.0443 (16)0.0041 (14)0.0011 (12)0.0046 (12)
N40.0435 (15)0.0435 (16)0.0435 (16)0.0001 (13)0.0017 (12)0.0037 (13)
N50.0510 (16)0.0430 (15)0.0435 (16)0.0004 (13)0.0029 (12)0.0005 (13)
N60.0430 (14)0.0414 (16)0.0436 (16)0.0015 (13)0.0007 (12)0.0027 (13)
N70.0406 (15)0.0424 (16)0.0421 (15)0.0036 (13)0.0012 (11)0.0010 (12)
N80.0380 (14)0.0400 (16)0.0494 (16)0.0053 (12)0.0022 (11)0.0001 (12)
N90.0362 (14)0.0437 (16)0.0563 (17)0.0001 (13)0.0005 (12)0.0020 (13)
N100.0423 (15)0.0434 (16)0.0563 (17)0.0005 (13)0.0014 (13)0.0011 (13)
C10.0449 (18)0.0451 (19)0.0500 (19)0.0146 (16)0.0008 (15)0.0068 (15)
C20.0349 (16)0.0456 (19)0.0502 (19)0.0052 (15)0.0028 (14)0.0069 (15)
C30.0391 (16)0.0346 (17)0.0362 (17)0.0026 (14)0.0023 (13)0.0011 (13)
C40.0361 (16)0.0338 (17)0.0363 (17)0.0036 (14)0.0021 (13)0.0022 (14)
C50.0417 (17)0.0373 (18)0.0386 (17)0.0049 (14)0.0070 (14)0.0043 (14)
C60.0416 (17)0.0457 (18)0.0383 (17)0.0076 (15)0.0042 (14)0.0091 (15)
C70.0518 (19)0.053 (2)0.0372 (18)0.0022 (17)0.0066 (15)0.0029 (16)
C80.058 (2)0.0410 (19)0.0384 (18)0.0017 (16)0.0006 (15)0.0017 (15)
C90.0428 (17)0.0359 (18)0.0363 (17)0.0045 (15)0.0029 (14)0.0027 (14)
C100.0433 (18)0.0397 (19)0.0377 (18)0.0064 (16)0.0026 (14)0.0071 (14)
C110.0462 (19)0.043 (2)0.058 (2)0.0001 (17)0.0081 (16)0.0002 (16)
C120.060 (2)0.037 (2)0.075 (2)0.0009 (17)0.0048 (19)0.0001 (17)
C130.054 (2)0.043 (2)0.054 (2)0.0083 (18)0.0071 (16)0.0164 (16)
C140.0422 (18)0.068 (2)0.044 (2)0.0058 (19)0.0040 (15)0.0052 (17)
C150.0526 (19)0.045 (2)0.0428 (19)0.0007 (16)0.0025 (15)0.0013 (15)
C160.070 (3)0.095 (3)0.110 (3)0.047 (3)0.019 (2)0.045 (3)
C170.0464 (18)0.052 (2)0.046 (2)0.0053 (16)0.0106 (15)0.0057 (16)
C180.0484 (18)0.053 (2)0.0441 (19)0.0024 (17)0.0008 (15)0.0067 (16)
C190.0408 (17)0.0424 (17)0.0440 (18)0.0059 (15)0.0021 (14)0.0053 (13)
C200.0423 (17)0.0392 (16)0.0362 (17)0.0047 (15)0.0038 (13)0.0053 (12)
C210.0374 (17)0.0362 (18)0.0443 (18)0.0005 (14)0.0031 (13)0.0066 (14)
C220.0361 (17)0.0387 (18)0.0442 (18)0.0038 (15)0.0024 (14)0.0021 (14)
C230.0442 (18)0.0394 (18)0.0398 (18)0.0033 (15)0.0009 (14)0.0015 (14)
C240.0404 (17)0.0441 (19)0.0394 (18)0.0001 (15)0.0052 (14)0.0016 (15)
C250.0413 (18)0.0425 (19)0.0350 (17)0.0046 (15)0.0008 (13)0.0070 (14)
C260.0352 (17)0.0413 (19)0.0447 (18)0.0060 (15)0.0000 (14)0.0003 (15)
C270.0396 (18)0.041 (2)0.084 (3)0.0007 (16)0.0092 (17)0.0078 (18)
C280.0412 (19)0.040 (2)0.092 (3)0.0058 (17)0.0081 (18)0.0106 (18)
C290.0367 (17)0.043 (2)0.056 (2)0.0108 (16)0.0003 (15)0.0011 (16)
C300.0397 (17)0.0408 (19)0.0478 (19)0.0021 (15)0.0069 (14)0.0010 (15)
C310.0443 (18)0.0352 (17)0.0441 (18)0.0046 (15)0.0001 (14)0.0022 (14)
C320.054 (2)0.062 (3)0.100 (3)0.010 (2)0.029 (2)0.003 (2)
C330.052 (2)0.044 (2)0.057 (2)0.0073 (17)0.0002 (16)0.0115 (16)
C340.0513 (19)0.0378 (19)0.059 (2)0.0016 (16)0.0034 (16)0.0024 (16)
C350.0391 (17)0.0427 (19)0.0432 (19)0.0066 (15)0.0024 (14)0.0002 (15)
C360.0352 (16)0.0368 (17)0.0410 (18)0.0071 (14)0.0008 (13)0.0004 (14)
C370.0365 (16)0.0456 (19)0.0416 (18)0.0012 (15)0.0070 (13)0.0000 (15)
C380.0345 (16)0.0414 (18)0.0465 (19)0.0064 (15)0.0035 (14)0.0016 (15)
C390.0434 (18)0.048 (2)0.055 (2)0.0021 (16)0.0027 (16)0.0147 (17)
C400.0484 (19)0.061 (2)0.0383 (18)0.0025 (17)0.0013 (15)0.0097 (16)
C410.0406 (17)0.050 (2)0.0397 (19)0.0070 (16)0.0021 (14)0.0007 (15)
C420.0376 (17)0.0347 (18)0.054 (2)0.0017 (14)0.0000 (15)0.0007 (15)
C430.0365 (17)0.0442 (19)0.062 (2)0.0005 (15)0.0075 (16)0.0000 (16)
C440.0391 (18)0.051 (2)0.055 (2)0.0069 (16)0.0086 (15)0.0059 (16)
C450.0391 (17)0.0350 (18)0.057 (2)0.0041 (15)0.0034 (15)0.0004 (15)
C460.0372 (17)0.0437 (19)0.059 (2)0.0045 (15)0.0053 (16)0.0011 (16)
C470.0399 (17)0.0423 (19)0.051 (2)0.0005 (15)0.0059 (15)0.0035 (15)
C480.066 (2)0.072 (3)0.060 (2)0.018 (2)0.0120 (19)0.0141 (19)
Geometric parameters (Å, º) top
O1—C91.355 (3)C17—C181.509 (4)
O1—H10.98 (4)C17—H17A0.9900
O2—C251.284 (3)C17—H17B0.9900
O3—C411.355 (3)C18—H18A0.9900
O3—H31.07 (4)C18—H18B0.9900
O4—C131.371 (3)C19—C201.424 (4)
O4—C161.425 (4)C19—H19A0.9500
O5—C291.378 (3)C20—C211.411 (4)
O5—C321.416 (4)C20—C251.444 (4)
O6—C451.366 (3)C21—C221.366 (4)
O6—C481.423 (3)C21—H21A0.9500
N1—C11.459 (3)C22—C231.414 (4)
N1—C331.467 (4)C23—C241.357 (4)
N1—C171.467 (4)C23—H23A0.9500
N2—C31.288 (3)C24—C251.428 (4)
N2—C21.457 (3)C24—H24A0.9500
N3—C191.294 (3)C26—C311.377 (4)
N3—C181.457 (4)C26—C271.385 (4)
N3—H21.02 (4)C27—C281.373 (4)
N4—C351.281 (3)C27—H27A0.9500
N4—C341.454 (3)C28—C291.372 (4)
N5—N61.245 (3)C28—H28A0.9500
N5—C61.429 (3)C29—C301.388 (4)
N6—C101.447 (3)C30—C311.385 (4)
N7—N81.266 (3)C30—H30A0.9500
N7—C221.417 (3)C31—H31A0.9500
N8—C261.425 (3)C32—H32A0.9800
N9—N101.266 (3)C32—H32B0.9800
N9—C381.430 (4)C32—H32C0.9800
N10—C421.424 (4)C33—C341.514 (4)
C1—C21.518 (4)C33—H33A0.9900
C1—H1A0.9900C33—H33B0.9900
C1—H1B0.9900C34—H34A0.9900
C2—H2A0.9900C34—H34B0.9900
C2—H2B0.9900C35—C361.445 (4)
C3—C41.456 (4)C35—H35A0.9500
C3—H3A0.9500C36—C371.403 (4)
C4—C51.395 (3)C36—C411.414 (4)
C4—C91.412 (4)C37—C381.380 (4)
C5—C61.395 (4)C37—H37A0.9500
C5—H5A0.9500C38—C391.400 (4)
C6—C71.393 (4)C39—C401.373 (4)
C7—C81.378 (4)C39—H39A0.9500
C7—H7A0.9500C40—C411.382 (4)
C8—C91.384 (4)C40—H40A0.9500
C8—H8A0.9500C42—C431.383 (4)
C10—C111.366 (4)C42—C471.388 (4)
C10—C151.371 (4)C43—C441.382 (4)
C11—C121.376 (4)C43—H43A0.9500
C11—H11A0.9500C44—C451.390 (4)
C12—C131.379 (4)C44—H44A0.9500
C12—H12A0.9500C45—C461.388 (4)
C13—C141.381 (4)C46—C471.379 (4)
C14—C151.388 (4)C46—H46A0.9500
C14—H14A0.9500C47—H47A0.9500
C15—H15A0.9500C48—H48A0.9800
C16—H16A0.9800C48—H48B0.9800
C16—H16B0.9800C48—H48C0.9800
C16—H16C0.9800
C9—O1—H1102 (2)C22—C21—H21A119.3
C41—O3—H3107 (2)C20—C21—H21A119.3
C13—O4—C16117.4 (3)C21—C22—C23118.8 (3)
C29—O5—C32117.3 (2)C21—C22—N7117.9 (3)
C45—O6—C48117.7 (2)C23—C22—N7123.2 (3)
C1—N1—C33112.3 (2)C24—C23—C22121.7 (3)
C1—N1—C17113.5 (2)C24—C23—H23A119.2
C33—N1—C17112.8 (2)C22—C23—H23A119.2
C3—N2—C2119.8 (3)C23—C24—C25121.5 (3)
C19—N3—C18124.2 (3)C23—C24—H24A119.2
C19—N3—H2111 (2)C25—C24—H24A119.2
C18—N3—H2124 (2)O2—C25—C24121.2 (3)
C35—N4—C34120.9 (3)O2—C25—C20122.4 (3)
N6—N5—C6113.1 (2)C24—C25—C20116.4 (3)
N5—N6—C10113.6 (2)C31—C26—C27118.7 (3)
N8—N7—C22113.0 (3)C31—C26—N8125.4 (3)
N7—N8—C26114.7 (3)C27—C26—N8115.8 (3)
N10—N9—C38113.0 (2)C28—C27—C26121.3 (3)
N9—N10—C42114.6 (2)C28—C27—H27A119.4
N1—C1—C2111.9 (2)C26—C27—H27A119.4
N1—C1—H1A109.2C29—C28—C27119.7 (3)
C2—C1—H1A109.2C29—C28—H28A120.1
N1—C1—H1B109.2C27—C28—H28A120.1
C2—C1—H1B109.2C28—C29—O5116.0 (3)
H1A—C1—H1B107.9C28—C29—C30120.1 (3)
N2—C2—C1110.1 (2)O5—C29—C30123.9 (3)
N2—C2—H2A109.6C31—C30—C29119.6 (3)
C1—C2—H2A109.6C31—C30—H30A120.2
N2—C2—H2B109.6C29—C30—H30A120.2
C1—C2—H2B109.6C26—C31—C30120.7 (3)
H2A—C2—H2B108.2C26—C31—H31A119.7
N2—C3—C4120.8 (3)C30—C31—H31A119.7
N2—C3—H3A119.6O5—C32—H32A109.5
C4—C3—H3A119.6O5—C32—H32B109.5
C5—C4—C9119.0 (2)H32A—C32—H32B109.5
C5—C4—C3120.7 (3)O5—C32—H32C109.5
C9—C4—C3120.3 (2)H32A—C32—H32C109.5
C4—C5—C6120.1 (3)H32B—C32—H32C109.5
C4—C5—H5A120.0N1—C33—C34112.5 (2)
C6—C5—H5A120.0N1—C33—H33A109.1
C7—C6—C5119.9 (3)C34—C33—H33A109.1
C7—C6—N5115.3 (3)N1—C33—H33B109.1
C5—C6—N5124.9 (3)C34—C33—H33B109.1
C8—C7—C6120.6 (3)H33A—C33—H33B107.8
C8—C7—H7A119.7N4—C34—C33109.4 (2)
C6—C7—H7A119.7N4—C34—H34A109.8
C7—C8—C9120.0 (3)C33—C34—H34A109.8
C7—C8—H8A120.0N4—C34—H34B109.8
C9—C8—H8A120.0C33—C34—H34B109.8
O1—C9—C8118.7 (3)H34A—C34—H34B108.2
O1—C9—C4120.9 (2)N4—C35—C36121.0 (3)
C8—C9—C4120.5 (3)N4—C35—H35A119.5
C11—C10—C15119.3 (3)C36—C35—H35A119.5
C11—C10—N6115.4 (3)C37—C36—C41117.3 (3)
C15—C10—N6125.4 (3)C37—C36—C35121.8 (3)
C10—C11—C12121.3 (3)C41—C36—C35120.9 (3)
C10—C11—H11A119.3C38—C37—C36122.0 (3)
C12—C11—H11A119.3C38—C37—H37A119.0
C11—C12—C13119.3 (3)C36—C37—H37A119.0
C11—C12—H12A120.4C37—C38—C39119.0 (3)
C13—C12—H12A120.4C37—C38—N9116.7 (3)
O4—C13—C12114.4 (3)C39—C38—N9124.2 (3)
O4—C13—C14125.3 (3)C40—C39—C38120.3 (3)
C12—C13—C14120.3 (3)C40—C39—H39A119.9
C13—C14—C15119.1 (3)C38—C39—H39A119.9
C13—C14—H14A120.5C39—C40—C41120.7 (3)
C15—C14—H14A120.5C39—C40—H40A119.6
C10—C15—C14120.8 (3)C41—C40—H40A119.6
C10—C15—H15A119.6O3—C41—C40118.9 (3)
C14—C15—H15A119.6O3—C41—C36120.5 (3)
O4—C16—H16A109.5C40—C41—C36120.6 (3)
O4—C16—H16B109.5C43—C42—C47119.4 (3)
H16A—C16—H16B109.5C43—C42—N10125.8 (3)
O4—C16—H16C109.5C47—C42—N10114.8 (3)
H16A—C16—H16C109.5C44—C43—C42120.5 (3)
H16B—C16—H16C109.5C44—C43—H43A119.8
N1—C17—C18112.3 (2)C42—C43—H43A119.8
N1—C17—H17A109.1C43—C44—C45119.7 (3)
C18—C17—H17A109.1C43—C44—H44A120.1
N1—C17—H17B109.1C45—C44—H44A120.1
C18—C17—H17B109.1O6—C45—C46115.5 (2)
H17A—C17—H17B107.9O6—C45—C44124.4 (3)
N3—C18—C17110.9 (2)C46—C45—C44120.1 (3)
N3—C18—H18A109.5C47—C46—C45119.5 (3)
C17—C18—H18A109.5C47—C46—H46A120.2
N3—C18—H18B109.5C45—C46—H46A120.2
C17—C18—H18B109.5C46—C47—C42120.7 (3)
H18A—C18—H18B108.1C46—C47—H47A119.6
N3—C19—C20122.2 (3)C42—C47—H47A119.6
N3—C19—H19A118.9O6—C48—H48A109.5
C20—C19—H19A118.9O6—C48—H48B109.5
C21—C20—C19120.0 (3)H48A—C48—H48B109.5
C21—C20—C25120.0 (3)O6—C48—H48C109.5
C19—C20—C25119.8 (3)H48A—C48—H48C109.5
C22—C21—C20121.4 (3)H48B—C48—H48C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···N41.07 (4)1.58 (4)2.543 (3)146 (3)
O1—H1···N20.98 (4)1.61 (4)2.534 (3)157 (3)
N3—H2···O21.02 (4)1.71 (4)2.585 (3)142 (3)
N3—H2···O2i1.02 (4)2.48 (4)3.155 (3)123 (3)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC48H48N10O6
Mr860.96
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)10.5613 (9), 12.1234 (5), 17.2107 (9)
α, β, γ (°)86.418 (3), 89.308 (2), 88.084 (3)
V3)2198.0 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.22 × 0.20 × 0.16
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995)
Tmin, Tmax0.827, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
19855, 9781, 4152
Rint0.071
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.187, 0.99
No. of reflections9781
No. of parameters589
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.37, 0.23

Computer programs: COLLECT (Nonius, 2002), DENZO-SMN (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···N41.07 (4)1.58 (4)2.543 (3)146 (3)
O1—H1···N20.98 (4)1.61 (4)2.534 (3)157 (3)
N3—H2···O21.02 (4)1.71 (4)2.585 (3)142 (3)
N3—H2···O2i1.02 (4)2.48 (4)3.155 (3)123 (3)
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

We are grateful to Bu-Ali Sina University for financial support.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationButcher, R. J., Basu Baul, T. S., Singh, K. S. & Smith, F. E. (2005). Acta Cryst. E61, o1007–o1009.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDinçalp, H., Toker, F., Durucasu, I., Avciba, S. N. & Icli, S. (2007). Dyes Pigments, 75, 11–24.  Google Scholar
First citationKanesato, M., Ngassapa, F. N. & Yokoyama, T. (2000). Anal. Sci. (Japan), 16, 781–782.  CrossRef CAS Google Scholar
First citationNonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A edited by C. W. Carter Jr & R. M. Sweet pp. 307–326. London: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds