organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(S)-1-(2-Chloro­phen­yl)-2-oxo­cyclo­hexan-1-aminium D-tartrate

aYaupon Therapeutics, Inc., 259 North Radnor-Chester Road, Suite 205, Radnor, PA 19087, USA, bDepartment of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA, cDepartment of Chemistry, University of Kentucky, Lexington, KY 40536, USA, and dResodyn Corporation, 130 North Main Street, Suite 600, Butte, MT 59701, USA
*Correspondence e-mail: pcrooks@email.uky.edu

(Received 6 December 2010; accepted 17 February 2011; online 26 February 2011)

In the title compound, C12H15ClNO+·C4H5O6, the cyclo­hexa­none ring adopts a chair conformation. The benzene ring is significantly twisted so that it is in an almost perpendicular position to the C—N bond with a CAr—CAr—C—N torsion angle of −96.5 (5)°. Intermolecular N—H⋯O and O—H⋯O hydrogen bonds are observed in the crystal structure.

Related literature

For background to ketamine, see: Holtman (2006[Holtman, J. R. (2006). J. Pain, 7, Issue 4, S44.]); Holtman et al. (2006[Holtman, J., Johnson, J., Crooks, P. & Wala, E. (2006). J. Pain, 7, Issue 4, S43.]); Heshmati et al. (2003[Heshmati, F., Zeinali, M., Noroozinia, H., Abbacivash, R. & Mahoori, A. (2003). Iran. J. Allergy Asthma Immunol. 2, 175-80.]); Kohrs & Durieux (1998[Kohrs, R. & Durieux, M. E. (1998). Anesth. Analg. 87, 1186-1193.]). For the synthesis, see: Hong & Davisson (1982[Hong, S. C. & Davisson, J. N. (1982). J. Pharm. Sci. 71, 912-914.]); Parcell & Sanchez (1981[Parcell, R. F. & Sanchez, P. J. (1981). J. Org. Chem. 46, 5055-5060.]).

[Scheme 1]

Experimental

Crystal data
  • C12H15ClNO+·C4H5O6

  • Mr = 373.78

  • Orthorhombic, P 21 21 21

  • a = 7.1411 (2) Å

  • b = 9.9878 (4) Å

  • c = 23.7530 (11) Å

  • V = 1694.16 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 90 K

  • 0.20 × 0.20 × 0.03 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.949, Tmax = 0.992

  • 13735 measured reflections

  • 2986 independent reflections

  • 1519 reflections with I > 2σ(I)

  • Rint = 0.110

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.139

  • S = 0.96

  • 2986 reflections

  • 230 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.27 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1241 Friedel pairs

  • Flack parameter: 0.10 (10)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O7i 0.91 1.81 2.715 (5) 176
N1—H1B⋯O4 0.91 2.05 2.856 (5) 147
N1—H1C⋯O3ii 0.91 2.29 2.893 (5) 123
N1—H1C⋯O5ii 0.91 2.37 3.001 (5) 126
O2—H2A⋯O1iii 0.84 2.60 3.388 (5) 157
O5—H5A⋯O6iv 0.84 2.09 2.864 (5) 153
O6—H6⋯O4v 0.84 1.64 2.460 (5) 166
O6—H6⋯O3v 0.84 2.62 3.265 (5) 134
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (v) x+1, y, z.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97 and local procedures.

Supporting information


Comment top

KetalarTM, the racemic mixture of R- and S-Ketamines is becoming the sedative and anesthetic of choice for emergency sedation in children and victims with unknown medical history, e.g. from traffic accidents to battlefield conditions, because it causes minimal respiratory depression in comparison to other anesthetics (Heshmati et al., 2003). S-Ketamine was found 3–4 times more potent as an anesthetic than its R-enantiomer, and twice as potent as KetalarTM with fewer side effects such as psychedelic, disorientation and anxiety (Kohrs & Durieux, 1998). S-Norketamine, the major metabolite of S-Ketamine in humans and animals, is emerging as a novel drug for treatment of neuropathic pain (Holtman et al., 2006) and for analgesia (Holtman, 2006). To confirm the absolute configuration of (+)-norketamine, herein we report on the X-ray crystallographic characterization of crystalline S-norketamine D-tartrate salt.

Related literature top

For background to ketamine, see: Holtman (2006); Holtman et al. (2006); Heshmati et al. (2003); Kohrs & Durieux (1998). For the synthesis, see: Hong & Davisson (1982); Parcell & Sanchez (1981).

Experimental top

S-Norketamine was obtained as a D-tartrate salt form via chiral resolution of racemic norketamine by fractional crystallization of the D-tartrate salt (Hong & Davisson, 1982). Racemic norketamine was produced in large quantity according to literature report (Parcell & Sanchez, 1981). The chiral purity of the product was determined by chiral HPLC on a Chiralcel OJ—H column, and afforded ee% > 99%. The specific rotation of the tartrate salt is [a]D + 55.7° (c = 2, H2O), and the specific rotations for the corresponding corresponding free base and HCl salt are [a]D + 3.6° (c = 2, EtOH) and [a]D + 75.9° (c = 1, H2O), respectively.

Refinement top

H atoms were found in difference Fourier maps and subsequently placed in idealized positions with constrained distances of 0.95 Å (CArH), 1.00 Å (R3CH), 0.99 Å (R2CH2), 0.84 Å (O—H), 0.91 Å (NH3), and with Uiso(H) values set to either 1.2Ueq or 1.5Ueq (NH3, OH) of the attached atom.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and local procedures.

Figures top
[Figure 1] Fig. 1. A view of the molecules with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
(S)-1-(2-Chlorophenyl)-2-oxocyclohexan-1-aminium D-tartrate top
Crystal data top
C12H15ClNO+·C4H5O6F(000) = 784
Mr = 373.78Dx = 1.465 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2155 reflections
a = 7.1411 (2) Åθ = 1.0–27.5°
b = 9.9878 (4) ŵ = 0.27 mm1
c = 23.7530 (11) ÅT = 90 K
V = 1694.16 (11) Å3Plate, colourless
Z = 40.20 × 0.20 × 0.03 mm
Data collection top
Nonius KappaCCD
diffractometer
2986 independent reflections
Radiation source: fine-focus sealed tube1519 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.110
Detector resolution: 9.1 pixels mm-1θmax = 25.0°, θmin = 1.7°
ω scans at fixed χ = 55°h = 88
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
k = 1111
Tmin = 0.949, Tmax = 0.992l = 2728
13735 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.060H-atom parameters constrained
wR(F2) = 0.139 w = 1/[σ2(Fo2) + (0.0568P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.96(Δ/σ)max < 0.001
2986 reflectionsΔρmax = 0.28 e Å3
230 parametersΔρmin = 0.27 e Å3
0 restraintsAbsolute structure: Flack (1983), 1241 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.10 (10)
Crystal data top
C12H15ClNO+·C4H5O6V = 1694.16 (11) Å3
Mr = 373.78Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.1411 (2) ŵ = 0.27 mm1
b = 9.9878 (4) ÅT = 90 K
c = 23.7530 (11) Å0.20 × 0.20 × 0.03 mm
Data collection top
Nonius KappaCCD
diffractometer
2986 independent reflections
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
1519 reflections with I > 2σ(I)
Tmin = 0.949, Tmax = 0.992Rint = 0.110
13735 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.060H-atom parameters constrained
wR(F2) = 0.139Δρmax = 0.28 e Å3
S = 0.96Δρmin = 0.27 e Å3
2986 reflectionsAbsolute structure: Flack (1983), 1241 Friedel pairs
230 parametersAbsolute structure parameter: 0.10 (10)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.3664 (2)0.71723 (16)0.91603 (9)0.0776 (7)
O10.4054 (5)0.4009 (4)0.92986 (16)0.0391 (11)
N10.5914 (5)0.4734 (4)0.83868 (16)0.0254 (12)
H1A0.67860.43520.81580.038*
H1B0.54530.54850.82200.038*
H1C0.49640.41440.84480.038*
C10.5939 (7)0.7596 (6)0.8988 (2)0.0418 (17)
C20.6335 (10)0.8933 (6)0.8922 (3)0.057 (2)
H20.53810.95850.89730.069*
C30.8128 (10)0.9322 (6)0.8779 (2)0.0449 (18)
H30.84031.02420.87200.054*
C40.9520 (9)0.8374 (6)0.8723 (2)0.0339 (15)
H41.07640.86430.86380.041*
C50.9097 (7)0.7021 (5)0.8790 (2)0.0282 (15)
H51.00580.63750.87400.034*
C60.7292 (7)0.6595 (5)0.8931 (2)0.0246 (14)
C70.6805 (7)0.5100 (5)0.8940 (2)0.0226 (13)
C80.8535 (7)0.4174 (5)0.9031 (2)0.0291 (14)
H8A0.81550.32290.89780.035*
H8B0.95010.43870.87460.035*
C90.9367 (8)0.4348 (6)0.9620 (2)0.0399 (16)
H9A1.04700.37560.96620.048*
H9B0.97910.52850.96690.048*
C100.7954 (9)0.4015 (6)1.0067 (2)0.0489 (18)
H10A0.85030.41841.04430.059*
H10B0.76260.30541.00430.059*
C110.6186 (9)0.4861 (7)0.9995 (2)0.0505 (19)
H11A0.52310.45881.02740.061*
H11B0.64810.58191.00550.061*
C120.5447 (9)0.4655 (5)0.9409 (2)0.0321 (14)
C130.5503 (8)0.6596 (5)0.6984 (3)0.0266 (14)
C140.7637 (7)0.6537 (5)0.6976 (2)0.0242 (14)
H140.80390.56620.71410.029*
C150.8443 (7)0.7649 (5)0.7331 (2)0.0218 (13)
H150.79420.75380.77210.026*
C161.0558 (8)0.7639 (6)0.7370 (2)0.0255 (14)
O20.8330 (5)0.6619 (4)0.64159 (14)0.0297 (10)
H2A0.75410.70120.62120.045*
O30.4634 (5)0.6867 (3)0.65555 (16)0.0291 (10)
O40.4745 (5)0.6434 (3)0.74860 (16)0.0334 (10)
O50.7747 (5)0.8881 (3)0.71191 (15)0.0287 (10)
H5A0.83660.95170.72570.043*
O61.1301 (5)0.6502 (3)0.74840 (16)0.0304 (9)
H61.24640.65470.74360.046*
O71.1404 (5)0.8705 (3)0.72982 (14)0.0269 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0331 (10)0.0394 (9)0.160 (2)0.0090 (9)0.0157 (11)0.0109 (12)
O10.029 (3)0.038 (2)0.050 (3)0.0149 (19)0.003 (2)0.008 (2)
N10.025 (3)0.019 (2)0.032 (3)0.001 (2)0.000 (2)0.002 (2)
C10.031 (4)0.027 (4)0.068 (5)0.004 (3)0.004 (3)0.005 (3)
C20.045 (4)0.030 (4)0.096 (6)0.009 (4)0.009 (4)0.008 (4)
C30.066 (5)0.026 (4)0.042 (4)0.011 (4)0.025 (4)0.004 (3)
C40.041 (4)0.033 (4)0.028 (3)0.009 (3)0.003 (3)0.003 (3)
C50.030 (4)0.029 (4)0.026 (3)0.006 (3)0.002 (3)0.001 (3)
C60.031 (3)0.026 (3)0.017 (3)0.001 (3)0.001 (3)0.000 (3)
C70.024 (3)0.021 (3)0.023 (3)0.005 (3)0.005 (3)0.001 (3)
C80.030 (3)0.021 (3)0.036 (4)0.001 (3)0.005 (3)0.005 (3)
C90.043 (4)0.037 (4)0.040 (4)0.000 (3)0.004 (4)0.010 (3)
C100.053 (5)0.055 (5)0.039 (4)0.008 (4)0.010 (4)0.010 (4)
C110.056 (5)0.068 (5)0.027 (4)0.013 (4)0.016 (4)0.004 (4)
C120.035 (4)0.028 (4)0.033 (4)0.009 (3)0.005 (3)0.001 (3)
C130.023 (3)0.014 (3)0.043 (4)0.003 (3)0.007 (3)0.005 (3)
C140.023 (3)0.022 (3)0.028 (4)0.002 (3)0.002 (3)0.010 (3)
C150.018 (3)0.023 (3)0.025 (3)0.003 (3)0.001 (3)0.003 (3)
C160.031 (4)0.030 (4)0.016 (3)0.006 (3)0.007 (3)0.001 (3)
O20.030 (2)0.031 (2)0.028 (2)0.004 (2)0.0047 (19)0.0057 (18)
O30.025 (2)0.022 (2)0.040 (2)0.0016 (18)0.012 (2)0.0039 (19)
O40.027 (2)0.035 (2)0.039 (2)0.0003 (19)0.005 (2)0.010 (2)
O50.028 (2)0.014 (2)0.044 (2)0.0049 (17)0.0106 (19)0.0062 (19)
O60.013 (2)0.027 (2)0.052 (3)0.0024 (19)0.002 (2)0.010 (2)
O70.027 (2)0.023 (2)0.031 (2)0.0046 (19)0.0049 (19)0.0026 (18)
Geometric parameters (Å, º) top
Cl1—C11.728 (6)C9—H9A0.9900
O1—C121.214 (6)C9—H9B0.9900
N1—C71.505 (6)C10—C111.529 (8)
N1—H1A0.9100C10—H10A0.9900
N1—H1B0.9100C10—H10B0.9900
N1—H1C0.9100C11—C121.503 (8)
C1—C21.374 (8)C11—H11A0.9900
C1—C61.397 (7)C11—H11B0.9900
C2—C31.380 (8)C13—O31.223 (6)
C2—H20.9500C13—O41.320 (6)
C3—C41.379 (7)C13—C141.525 (7)
C3—H30.9500C14—O21.423 (5)
C4—C51.393 (7)C14—C151.508 (6)
C4—H40.9500C14—H141.0000
C5—C61.398 (7)C15—O51.419 (5)
C5—H50.9500C15—C161.513 (6)
C6—C71.533 (7)C15—H151.0000
C7—C121.542 (7)C16—O71.237 (6)
C7—C81.558 (7)C16—O61.282 (6)
C8—C91.531 (7)O2—H2A0.8400
C8—H8A0.9900O5—H5A0.8400
C8—H8B0.9900O6—H60.8400
C9—C101.501 (7)
C7—N1—H1A109.5C10—C9—H9B109.4
C7—N1—H1B109.5C8—C9—H9B109.4
H1A—N1—H1B109.5H9A—C9—H9B108.0
C7—N1—H1C109.5C9—C10—C11110.7 (5)
H1A—N1—H1C109.5C9—C10—H10A109.5
H1B—N1—H1C109.5C11—C10—H10A109.5
C2—C1—C6122.9 (6)C9—C10—H10B109.5
C2—C1—Cl1117.3 (5)C11—C10—H10B109.5
C6—C1—Cl1119.8 (4)H10A—C10—H10B108.1
C1—C2—C3119.5 (6)C12—C11—C10108.5 (5)
C1—C2—H2120.2C12—C11—H11A110.0
C3—C2—H2120.2C10—C11—H11A110.0
C4—C3—C2119.9 (6)C12—C11—H11B110.0
C4—C3—H3120.0C10—C11—H11B110.0
C2—C3—H3120.0H11A—C11—H11B108.4
C3—C4—C5119.9 (6)O1—C12—C11124.0 (6)
C3—C4—H4120.1O1—C12—C7120.9 (5)
C5—C4—H4120.1C11—C12—C7114.1 (5)
C4—C5—C6121.5 (5)O3—C13—O4124.8 (5)
C4—C5—H5119.2O3—C13—C14120.4 (5)
C6—C5—H5119.2O4—C13—C14114.6 (5)
C1—C6—C5116.3 (5)O2—C14—C15110.3 (4)
C1—C6—C7122.6 (5)O2—C14—C13110.9 (4)
C5—C6—C7120.6 (5)C15—C14—C13110.3 (5)
N1—C7—C6108.6 (4)O2—C14—H14108.4
N1—C7—C12107.1 (4)C15—C14—H14108.4
C6—C7—C12115.7 (4)C13—C14—H14108.4
N1—C7—C8108.2 (4)O5—C15—C14107.9 (4)
C6—C7—C8113.6 (4)O5—C15—C16112.2 (4)
C12—C7—C8103.2 (4)C14—C15—C16114.3 (4)
C9—C8—C7111.5 (4)O5—C15—H15107.4
C9—C8—H8A109.3C14—C15—H15107.4
C7—C8—H8A109.3C16—C15—H15107.4
C9—C8—H8B109.3O7—C16—O6126.1 (5)
C7—C8—H8B109.3O7—C16—C15118.3 (5)
H8A—C8—H8B108.0O6—C16—C15115.6 (5)
C10—C9—C8111.1 (5)C14—O2—H2A109.5
C10—C9—H9A109.4C15—O5—H5A109.5
C8—C9—H9A109.4C16—O6—H6109.5
C6—C1—C2—C31.5 (10)C9—C10—C11—C1255.6 (7)
Cl1—C1—C2—C3179.4 (5)C10—C11—C12—O1107.0 (6)
C1—C2—C3—C42.1 (10)C10—C11—C12—C761.8 (6)
C2—C3—C4—C52.2 (9)N1—C7—C12—O16.8 (6)
C3—C4—C5—C61.8 (8)C6—C7—C12—O1128.1 (5)
C2—C1—C6—C51.0 (8)C8—C7—C12—O1107.2 (5)
Cl1—C1—C6—C5179.9 (4)N1—C7—C12—C11175.9 (5)
C2—C1—C6—C7173.0 (5)C6—C7—C12—C1162.8 (6)
Cl1—C1—C6—C77.9 (7)C8—C7—C12—C1161.9 (6)
C4—C5—C6—C11.2 (8)O3—C13—C14—O29.2 (7)
C4—C5—C6—C7173.3 (5)O4—C13—C14—O2175.6 (4)
C1—C6—C7—N175.1 (6)O3—C13—C14—C15113.3 (5)
C5—C6—C7—N196.5 (5)O4—C13—C14—C1561.9 (6)
C1—C6—C7—C1245.3 (7)O2—C14—C15—O565.8 (5)
C5—C6—C7—C12143.0 (5)C13—C14—C15—O557.0 (6)
C1—C6—C7—C8164.5 (5)O2—C14—C15—C1659.7 (6)
C5—C6—C7—C823.9 (6)C13—C14—C15—C16177.5 (5)
N1—C7—C8—C9172.2 (4)O5—C15—C16—O79.9 (7)
C6—C7—C8—C967.1 (6)C14—C15—C16—O7133.1 (5)
C12—C7—C8—C959.0 (5)O5—C15—C16—O6170.8 (4)
C7—C8—C9—C1059.8 (6)C14—C15—C16—O647.6 (6)
C8—C9—C10—C1156.0 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O7i0.911.812.715 (5)176
N1—H1B···O40.912.052.856 (5)147
N1—H1C···O10.912.132.642 (5)115
N1—H1C···O3ii0.912.292.893 (5)123
N1—H1C···O5ii0.912.373.001 (5)126
O2—H2A···O30.842.242.672 (5)112
O2—H2A···O1iii0.842.603.388 (5)157
O5—H5A···O6iv0.842.092.864 (5)153
O6—H6···O4v0.841.642.460 (5)166
O6—H6···O3v0.842.623.265 (5)134
Symmetry codes: (i) x+2, y1/2, z+3/2; (ii) x+1, y1/2, z+3/2; (iii) x+1, y+1/2, z+3/2; (iv) x+2, y+1/2, z+3/2; (v) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC12H15ClNO+·C4H5O6
Mr373.78
Crystal system, space groupOrthorhombic, P212121
Temperature (K)90
a, b, c (Å)7.1411 (2), 9.9878 (4), 23.7530 (11)
V3)1694.16 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.20 × 0.20 × 0.03
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.949, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
13735, 2986, 1519
Rint0.110
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.139, 0.96
No. of reflections2986
No. of parameters230
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.27
Absolute structureFlack (1983), 1241 Friedel pairs
Absolute structure parameter0.10 (10)

Computer programs: COLLECT (Nonius, 1998), SCALEPACK (Otwinowski & Minor, 1997), DENZO-SMN (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and local procedures.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O7i0.911.812.715 (5)176
N1—H1B···O40.912.052.856 (5)147
N1—H1C···O10.912.132.642 (5)115
N1—H1C···O3ii0.912.292.893 (5)123
N1—H1C···O5ii0.912.373.001 (5)126
O2—H2A···O30.842.242.672 (5)112
O2—H2A···O1iii0.842.603.388 (5)157
O5—H5A···O6iv0.842.092.864 (5)153
O6—H6···O4v0.841.642.460 (5)166
O6—H6···O3v0.842.623.265 (5)134
Symmetry codes: (i) x+2, y1/2, z+3/2; (ii) x+1, y1/2, z+3/2; (iii) x+1, y+1/2, z+3/2; (iv) x+2, y+1/2, z+3/2; (v) x+1, y, z.
 

Acknowledgements

The research was funded by the US Army Medical Research Material Command, Combat Casualty Care Research, Fort Detrick, MD contract W81XWH-06–1-0275 (MB) and by Yaupon Therapeutics, Inc. (MH, GZ, MS, SP and PAC).

References

First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHeshmati, F., Zeinali, M., Noroozinia, H., Abbacivash, R. & Mahoori, A. (2003). Iran. J. Allergy Asthma Immunol. 2, 175–80.  PubMed CAS Google Scholar
First citationHoltman, J. R. (2006). J. Pain, 7, Issue 4, S44.  Google Scholar
First citationHoltman, J., Johnson, J., Crooks, P. & Wala, E. (2006). J. Pain, 7, Issue 4, S43.  Google Scholar
First citationHong, S. C. & Davisson, J. N. (1982). J. Pharm. Sci. 71, 912–914.  CrossRef CAS PubMed Web of Science Google Scholar
First citationKohrs, R. & Durieux, M. E. (1998). Anesth. Analg. 87, 1186–1193.  Web of Science CAS PubMed Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationParcell, R. F. & Sanchez, P. J. (1981). J. Org. Chem. 46, 5055–5060.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds