organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

tert-Butyl 2-hy­dr­oxy-3-(4-methyl­benzene­sulfonamido)­butano­ate

aSchool of Chemistry, University of KwaZulu–Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa, and bResearch Centre for Synthesis and Catalysis, Department of Chemistry, University of Johannesburg, PO Box 524 Auckland Park, Johannesburg 2006, South Africa
*Correspondence e-mail: boowaga@uj.ac.za

(Received 3 February 2011; accepted 9 February 2011; online 19 February 2011)

In the crystal of the title compound, C15H23NO5S, mol­ecules are linked through N—H⋯O and O—H⋯O hydrogen-bond inter­actions, resulting in centrosymmetric dimers in which the N—H⋯O inter­actions generate R22(12) rings and the O—H⋯O inter­actions generate R22(14) rings. Weak inter­molecular C—H⋯O inter­actions are also observed.

Related literature

For related structures of β-amino alcohols, see: Lohray et al. (2002[Lohray, B. B., Thombare, P. S. & Bhushan, V. (2002). PINSA, 68A, 391-1073.]); Bodkin et al. (2008[Bodkin, J. A., Bacskay, G. B. & McLead, M. D. (2008). Org. Biomol. Chem. pp. 2544-2553.]). For the structures of tosyl­amino compounds, see: Coote et al. (2008[Coote, S. C., O'Brien, P. & Whitwood, A. C. (2008). Org. Biomol. Chem. 6, 4299-4314.]); Liu et al. (2005[Liu, Z., Fan, Y., Li, R., Zhou, B. & Wu, L. (2005). Tetrahedron Lett. 46, 1023-1025.]); Fadlalla et al. (2010[Fadlalla, M. I., Friedrich, H. B., Maguire, G. E. M. & Omondi, B. (2010). Acta Cryst. E66, o3279-o3280.]). For the synthesis of the title compound, see: Naicker et al. (2008[Naicker, T., Datye, A. & Friedrich, H. B. (2008). Appl. Catal. A, 350, 96-102.]); Govender et al. (2003[Govender, M., Friedrich, H. B., Makhoba, X., Ngcobo, T. D. & Onani, M. O. (2003). Chem. Commun. pp. 2922-2923.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C15H23NO5S

  • Mr = 329.4

  • Triclinic, [P \overline 1]

  • a = 9.6038 (8) Å

  • b = 9.9059 (8) Å

  • c = 10.1064 (11) Å

  • α = 119.342 (2)°

  • β = 92.307 (2)°

  • γ = 93.422 (2)°

  • V = 833.95 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 100 K

  • 0.22 × 0.18 × 0.14 mm

Data collection
  • Bruker X8 APEXII 4K Kappa CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.954, Tmax = 0.970

  • 24635 measured reflections

  • 4192 independent reflections

  • 3712 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.083

  • S = 1.05

  • 4192 reflections

  • 209 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1D⋯O2i 0.842 (16) 2.059 (16) 2.8625 (12) 159.5 (14)
O3—H3⋯O4i 0.84 2.40 3.2041 (12) 162
C1—H1C⋯O4ii 0.98 2.54 3.4936 (14) 164
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y+2, -z+2.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2007[Bruker (2007). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus and XPREP (Bruker, 2007[Bruker (2007). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The aminohydroxylation reaction of alkenes is the most simple, single step reaction in the production of β-amino alcohols. The product (β-amino alcohol) is present in many natural products and biologically active compounds (such as Acranil which is an antiprotozoal drug) (Bodkin et al., 2008, Lohray et al., 2002). Furthermore, β-amino alcohols are utilized in asymmetric catalysis in the synthesis of chiral ligands. As part of investigating new heterogeneous route to the aminohydroxylation reaction to produce β-amino alcohols, we report the crystal structure of the title compound (I). The molecular structure of (I) is related to that of (2,3)-Methyl 2-hydroxy-3-(4-methylbenzenesulfonamido)-3-phenylpropanoate (Fadlalla et al., (2010). Other related structures have been reported by Coote et al. (2008) and Liu et al., (2005).

Fig. I shows the asymetric unit of (I). The compound is chiral and has an S chirality at C6 and an R chirality at C7. In the crystal, adjacent molecules are connected by a pair of N—H···O and O—H···O hydrogen bonds (Fig. 2) that result in centrosymmetric dimers that can be described by R22(12) and R22(14) graph set notations (Bernstein et al. 1995) respectively. In addition, weak C—H···O intermolecular interactions (Table 1) contribute to the stability of the crystal lattice.

Related literature top

For related structures of β-amino alcohols, see: Lohray et al. (2002); Bodkin et al. (2008). For related structures of tosylamino compounds, see: Coote et al. (2008); Liu et al. (2005); Fadlalla et al. (2010). For the synthesis of the title compound, see: Naicker et al. (2008); Govender et al. (2003). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

The title compound (I) was obtained through a modified literature method (Naicker et al., 2008, Govender et al., 2003).To a nitrogen saturated Schlenk tube 6 ml of a mixture of acetonitrile and water (1:1 v/v), tert-butylcrotonate (76 µL, 0.478 mmol), chloramine-T (0.956 g, 0.956 mmol), hydrotalcite-like catalyst (0.03 g) were added in that order. The catalyst was gravity filtered off after 15 h. The reaction mixture was then washed with sodium sulfite (1 g in 20 ml of de-ionized water) followed by 15 ml of ethyl acetate. The aqueous layer was separated from the organic layer and further washed by 3x 15 ml of ethyl acetate. The solvent of the combined organic mixture was removed in vacuo. The resulting crude product was purified by preparative high preasure liquid chromatography to yield the title compound as a white solid. Crystals of I were obtained by slow evaporation of a hexane layered solution of the compound in dichloro methane at room temperature (m.p. 142–145 K).

Spectroscopic data: 1H NMR (400 MHz, CDCl3, δ. p.p.m.): = 0.9 (d, 3H), 1.5 (s, 9H), 2.4 (s, 3H), 3.2 (d, 1H), 3.8 (m, 2H), 4.7 (d, 1H), 7.3 (d, 2H), 7.7 (d, 2H). 13C NMR (100 MHz, CDCl3, δ. p.p.m.): = 17.9 (s,1 C), 21.5 (s, 1 C), 27.9 (s, 3 C), 51.5 (s, 1 C), 73.6 (s, 1 C), 84.1 (s, 1 C), 126.9 (s, 2 C), 138.6 (s, 1 C), 143.3 (s, 1 C), 171.6 (s, 1 C). IR (cm-1): = 3446 (m), (OH), 3260 (m), (NH), 2985 (w), 2919 (w), 1598 (w), (ar), 1716 (m), (C=O), 1048 (m), (S=O). Mass calculated = 329, MS = 351 m/z (M + Na).

Refinement top

The methyl, methine and aromatic H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C) for aromatic, C—H = 0.98 Å and Uiso(H) = 1.2Ueq(C) for CH3, C—H = 1.00 Å and Uiso(H) = 1.2Ueq(C) for CH. N—H = 0.84 Å and Uiso(H) = 1.2Ueq(N) for N—H and O—H = 0.84 Å and Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus and XPREP (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of (I) (50% probability displacement ellipsoids). H atoms have been omited for clarity.
[Figure 2] Fig. 2. N—H···O and O—H···O hydrogen bond interactions in the crystal structure of (I). [Symmetry operators: (i) = 1 - x, 1 - y, 1 - z; (ii) = 1 - x, 2 - y, 2 - z]
tert-Butyl 2-hydroxy-3-(4-methylbenzenesulfonamido)butanoate top
Crystal data top
C15H23NO5SZ = 2
Mr = 329.4F(000) = 352
Triclinic, P1Dx = 1.312 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.6038 (8) ÅCell parameters from 24635 reflections
b = 9.9059 (8) Åθ = 2.1–28.5°
c = 10.1064 (11) ŵ = 0.22 mm1
α = 119.342 (2)°T = 100 K
β = 92.307 (2)°Block, colourless
γ = 93.422 (2)°0.22 × 0.18 × 0.14 mm
V = 833.95 (13) Å3
Data collection top
Bruker X8 APEXII 4K Kappa CCD
diffractometer
3712 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ϕ and ω scansθmax = 28.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1212
Tmin = 0.954, Tmax = 0.970k = 1313
24635 measured reflectionsl = 1313
4192 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0395P)2 + 0.3237P]
where P = (Fo2 + 2Fc2)/3
4192 reflections(Δ/σ)max = 0.005
209 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
C15H23NO5Sγ = 93.422 (2)°
Mr = 329.4V = 833.95 (13) Å3
Triclinic, P1Z = 2
a = 9.6038 (8) ÅMo Kα radiation
b = 9.9059 (8) ŵ = 0.22 mm1
c = 10.1064 (11) ÅT = 100 K
α = 119.342 (2)°0.22 × 0.18 × 0.14 mm
β = 92.307 (2)°
Data collection top
Bruker X8 APEXII 4K Kappa CCD
diffractometer
4192 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
3712 reflections with I > 2σ(I)
Tmin = 0.954, Tmax = 0.970Rint = 0.031
24635 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.083H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.45 e Å3
4192 reflectionsΔρmin = 0.39 e Å3
209 parameters
Special details top

Experimental. The intensity data was collected on a Bruker X8 Apex 4 K CCD diffractometer using an exposure time of 15 sec/per frame. A total of 3328 frames were collected with a frame width of 0.5° covering upto θ = 28.45° with 99.8% completeness accomplished.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.74584 (13)1.08296 (13)0.93414 (13)0.0208 (2)
H1A0.65621.1180.91930.031*
H1B0.81951.12230.89420.031*
H1C0.76851.12251.04310.031*
C20.87462 (12)0.84588 (14)0.86348 (14)0.0241 (2)
H2A0.94440.87720.81320.036*
H2B0.86290.73220.81450.036*
H2C0.90610.88960.97120.036*
C30.61532 (13)0.83957 (14)0.90149 (13)0.0222 (2)
H3A0.61560.72620.85170.033*
H3B0.52630.86610.87360.033*
H3C0.6270.88361.01220.033*
C40.73538 (11)0.90605 (13)0.85019 (12)0.0165 (2)
C50.68030 (10)0.71782 (12)0.58068 (12)0.0145 (2)
C60.63194 (11)0.69956 (12)0.42678 (12)0.0151 (2)
H60.70640.74910.39390.018*
C70.49600 (11)0.77696 (12)0.43670 (12)0.0152 (2)
H70.51490.8910.50940.018*
C80.44465 (12)0.75423 (15)0.28179 (13)0.0223 (2)
H8A0.36030.80850.29190.033*
H8B0.42280.6430.21010.033*
H8C0.51780.79650.24380.033*
C90.12195 (11)0.73713 (13)0.43575 (12)0.0166 (2)
C100.05152 (11)0.58888 (13)0.37062 (13)0.0177 (2)
H100.07390.51980.40670.021*
C110.05154 (11)0.54303 (14)0.25272 (13)0.0197 (2)
H110.09840.44140.20710.024*
C120.08741 (11)0.64442 (15)0.19995 (13)0.0209 (2)
C130.01768 (12)0.79315 (15)0.26927 (14)0.0233 (2)
H130.04250.86390.23620.028*
C140.08753 (12)0.84021 (14)0.38584 (14)0.0215 (2)
H140.13520.94130.43080.026*
C150.19933 (13)0.59239 (18)0.07100 (15)0.0296 (3)
H15A0.15920.53020.02630.044*
H15B0.23580.68380.07330.044*
H15C0.27560.52950.08240.044*
N10.39695 (9)0.71013 (11)0.50168 (10)0.01484 (18)
O10.70108 (8)0.86607 (8)0.68847 (8)0.01528 (15)
O20.69788 (8)0.60683 (9)0.59739 (9)0.01913 (17)
O30.60741 (8)0.53975 (9)0.31707 (9)0.01922 (17)
H30.65640.48790.34310.029*
O40.21687 (9)0.71817 (10)0.66814 (9)0.02355 (18)
O50.29082 (9)0.95624 (10)0.65376 (10)0.02641 (19)
S10.25877 (3)0.79036 (3)0.58022 (3)0.01691 (8)
H1D0.3859 (16)0.6124 (18)0.4581 (17)0.025 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0283 (6)0.0164 (5)0.0150 (5)0.0004 (4)0.0005 (4)0.0059 (4)
C20.0216 (5)0.0238 (6)0.0233 (6)0.0015 (4)0.0067 (4)0.0095 (5)
C30.0261 (6)0.0222 (5)0.0196 (5)0.0003 (4)0.0039 (4)0.0114 (5)
C40.0196 (5)0.0169 (5)0.0124 (5)0.0001 (4)0.0021 (4)0.0072 (4)
C50.0108 (4)0.0148 (5)0.0162 (5)0.0007 (4)0.0006 (4)0.0065 (4)
C60.0152 (5)0.0141 (5)0.0140 (5)0.0003 (4)0.0008 (4)0.0055 (4)
C70.0159 (5)0.0144 (5)0.0160 (5)0.0000 (4)0.0002 (4)0.0083 (4)
C80.0221 (5)0.0290 (6)0.0201 (5)0.0010 (4)0.0021 (4)0.0159 (5)
C90.0138 (5)0.0186 (5)0.0178 (5)0.0042 (4)0.0029 (4)0.0088 (4)
C100.0153 (5)0.0201 (5)0.0206 (5)0.0044 (4)0.0031 (4)0.0119 (4)
C110.0152 (5)0.0230 (5)0.0211 (5)0.0016 (4)0.0018 (4)0.0112 (5)
C120.0135 (5)0.0337 (6)0.0211 (5)0.0060 (4)0.0051 (4)0.0171 (5)
C130.0196 (5)0.0310 (6)0.0306 (6)0.0089 (5)0.0064 (5)0.0229 (5)
C140.0192 (5)0.0197 (5)0.0287 (6)0.0046 (4)0.0042 (4)0.0140 (5)
C150.0204 (6)0.0507 (8)0.0263 (6)0.0044 (5)0.0003 (5)0.0256 (6)
N10.0145 (4)0.0121 (4)0.0174 (4)0.0014 (3)0.0016 (3)0.0068 (4)
O10.0187 (4)0.0130 (3)0.0129 (3)0.0001 (3)0.0015 (3)0.0058 (3)
O20.0199 (4)0.0148 (4)0.0221 (4)0.0016 (3)0.0027 (3)0.0090 (3)
O30.0220 (4)0.0143 (4)0.0157 (4)0.0026 (3)0.0009 (3)0.0031 (3)
O40.0227 (4)0.0316 (5)0.0163 (4)0.0011 (3)0.0028 (3)0.0118 (4)
O50.0257 (4)0.0159 (4)0.0268 (4)0.0034 (3)0.0006 (3)0.0022 (3)
S10.01644 (13)0.01627 (13)0.01483 (13)0.00257 (9)0.00163 (9)0.00506 (10)
Geometric parameters (Å, º) top
C1—C41.5218 (15)C8—H8B0.98
C1—H1A0.98C8—H8C0.98
C1—H1B0.98C9—C141.3921 (15)
C1—H1C0.98C9—C101.3949 (15)
C2—C41.5235 (15)C9—S11.7733 (11)
C2—H2A0.98C10—C111.3881 (15)
C2—H2B0.98C10—H100.95
C2—H2C0.98C11—C121.4012 (16)
C3—C41.5245 (16)C11—H110.95
C3—H3A0.98C12—C131.3938 (18)
C3—H3B0.98C12—C151.5106 (16)
C3—H3C0.98C13—C141.3914 (17)
C4—O11.4978 (12)C13—H130.95
C5—O21.2115 (13)C14—H140.95
C5—O11.3277 (12)C15—H15A0.98
C5—C61.5244 (14)C15—H15B0.98
C6—O31.4161 (12)C15—H15C0.98
C6—C71.5353 (14)N1—S11.6172 (9)
C6—H61N1—H1D0.842 (16)
C7—N11.4750 (13)O3—H30.84
C7—C81.5245 (15)O4—S11.4422 (9)
C7—H71O5—S11.4393 (9)
C8—H8A0.98
C4—C1—H1A109.5C7—C8—H8B109.5
C4—C1—H1B109.5H8A—C8—H8B109.5
H1A—C1—H1B109.5C7—C8—H8C109.5
C4—C1—H1C109.5H8A—C8—H8C109.5
H1A—C1—H1C109.5H8B—C8—H8C109.5
H1B—C1—H1C109.5C14—C9—C10120.57 (10)
C4—C2—H2A109.5C14—C9—S1120.59 (9)
C4—C2—H2B109.5C10—C9—S1118.82 (8)
H2A—C2—H2B109.5C11—C10—C9119.49 (10)
C4—C2—H2C109.5C11—C10—H10120.3
H2A—C2—H2C109.5C9—C10—H10120.3
H2B—C2—H2C109.5C10—C11—C12120.95 (11)
C4—C3—H3A109.5C10—C11—H11119.5
C4—C3—H3B109.5C12—C11—H11119.5
H3A—C3—H3B109.5C13—C12—C11118.43 (10)
C4—C3—H3C109.5C13—C12—C15121.30 (11)
H3A—C3—H3C109.5C11—C12—C15120.27 (11)
H3B—C3—H3C109.5C14—C13—C12121.41 (10)
O1—C4—C1102.44 (8)C14—C13—H13119.3
O1—C4—C2109.60 (9)C12—C13—H13119.3
C1—C4—C2111.41 (9)C13—C14—C9119.13 (11)
O1—C4—C3108.99 (9)C13—C14—H14120.4
C1—C4—C3111.22 (9)C9—C14—H14120.4
C2—C4—C3112.66 (10)C12—C15—H15A109.5
O2—C5—O1125.85 (10)C12—C15—H15B109.5
O2—C5—C6122.05 (9)H15A—C15—H15B109.5
O1—C5—C6112.09 (9)C12—C15—H15C109.5
O3—C6—C5109.87 (8)H15A—C15—H15C109.5
O3—C6—C7108.58 (8)H15B—C15—H15C109.5
C5—C6—C7110.83 (8)C7—N1—S1123.52 (7)
O3—C6—H6109.2C7—N1—H1D116.2 (10)
C5—C6—H6109.2S1—N1—H1D112.5 (10)
C7—C6—H6109.2C5—O1—C4119.50 (8)
N1—C7—C8114.28 (9)C6—O3—H3109.5
N1—C7—C6105.79 (8)O5—S1—O4120.06 (5)
C8—C7—C6110.98 (9)O5—S1—N1107.61 (5)
N1—C7—H7108.5O4—S1—N1105.57 (5)
C8—C7—H7108.5O5—S1—C9108.09 (5)
C6—C7—H7108.5O4—S1—C9106.33 (5)
C7—C8—H8A109.5N1—S1—C9108.80 (5)
O2—C5—C6—O32.43 (14)S1—C9—C14—C13178.17 (9)
O1—C5—C6—O3178.31 (8)C8—C7—N1—S176.81 (11)
O2—C5—C6—C7122.43 (11)C6—C7—N1—S1160.79 (7)
O1—C5—C6—C758.31 (11)O2—C5—O1—C46.69 (15)
O3—C6—C7—N167.16 (10)C6—C5—O1—C4174.08 (8)
C5—C6—C7—N153.61 (11)C1—C4—O1—C5178.29 (9)
O3—C6—C7—C857.32 (11)C2—C4—O1—C563.33 (12)
C5—C6—C7—C8178.09 (9)C3—C4—O1—C560.39 (12)
C14—C9—C10—C111.46 (16)C7—N1—S1—O533.34 (10)
S1—C9—C10—C11177.12 (8)C7—N1—S1—O4162.69 (8)
C9—C10—C11—C121.07 (17)C7—N1—S1—C983.54 (9)
C10—C11—C12—C130.37 (17)C14—C9—S1—O515.26 (11)
C10—C11—C12—C15179.70 (10)C10—C9—S1—O5166.16 (9)
C11—C12—C13—C141.47 (17)C14—C9—S1—O4145.40 (9)
C15—C12—C13—C14178.60 (11)C10—C9—S1—O436.01 (10)
C12—C13—C14—C91.10 (18)C14—C9—S1—N1101.32 (10)
C10—C9—C14—C130.39 (17)C10—C9—S1—N177.26 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1D···O2i0.842 (16)2.059 (16)2.8625 (12)159.5 (14)
O3—H3···O4i0.842.403.2041 (12)162
C1—H1C···O4ii0.982.543.4936 (14)164
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+2, z+2.

Experimental details

Crystal data
Chemical formulaC15H23NO5S
Mr329.4
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)9.6038 (8), 9.9059 (8), 10.1064 (11)
α, β, γ (°)119.342 (2), 92.307 (2), 93.422 (2)
V3)833.95 (13)
Z2
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.22 × 0.18 × 0.14
Data collection
DiffractometerBruker X8 APEXII 4K Kappa CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.954, 0.970
No. of measured, independent and
observed [I > 2σ(I)] reflections
24635, 4192, 3712
Rint0.031
(sin θ/λ)max1)0.670
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.083, 1.05
No. of reflections4192
No. of parameters209
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.45, 0.39

Computer programs: APEX2 (Bruker, 2007), SAINT-Plus (Bruker, 2007), SAINT-Plus and XPREP (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005) and ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1D···O2i0.842 (16)2.059 (16)2.8625 (12)159.5 (14)
O3—H3···O4i0.842.403.2041 (12)162
C1—H1C···O4ii0.982.543.4936 (14)164
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+2, z+2.
 

Acknowledgements

Financial assistance from Mintek and THRIP is gratefully acknowledged.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBodkin, J. A., Bacskay, G. B. & McLead, M. D. (2008). Org. Biomol. Chem. pp. 2544–2553.  Web of Science CrossRef Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCoote, S. C., O'Brien, P. & Whitwood, A. C. (2008). Org. Biomol. Chem. 6, 4299–4314.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFadlalla, M. I., Friedrich, H. B., Maguire, G. E. M. & Omondi, B. (2010). Acta Cryst. E66, o3279–o3280.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGovender, M., Friedrich, H. B., Makhoba, X., Ngcobo, T. D. & Onani, M. O. (2003). Chem. Commun. pp. 2922–2923.  Google Scholar
First citationLiu, Z., Fan, Y., Li, R., Zhou, B. & Wu, L. (2005). Tetrahedron Lett. 46, 1023–1025.  Web of Science CSD CrossRef CAS Google Scholar
First citationLohray, B. B., Thombare, P. S. & Bhushan, V. (2002). PINSA, 68A, 391–1073.  Google Scholar
First citationNaicker, T., Datye, A. & Friedrich, H. B. (2008). Appl. Catal. A, 350, 96–102.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds