metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,4-Diazo­niabi­cyclo­[2.2.2]octane hexa­aqua­magnesium bis­­(sulfate)

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: fudavid88@yahoo.com.cn

(Received 29 January 2011; accepted 14 February 2011; online 19 February 2011)

In the title compound, (C6H14N2)[Mg(H2O)6](SO4)2, the MgII ion, lying on an inversion center, is coordinated by six water mol­ecules in a slightly distorted octa­hedral geometry. The 1,4-diazo­niabicyclo­[2.2.2]octane cation is located about a twofold rotation axis. Inter­molecular N—H⋯O and O—H⋯O hydrogen bonds link the cations and the anions into a three-dimensional network.

Related literature

For the properties and applications of amide salt compounds, see: Fu et al. (2007[Fu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H. & Huang, S. D. (2007). J. Am. Chem. Soc. 129, 5346-5347.], 2008[Fu, D.-W., Zhang, W. & Xiong, R.-G. (2008). Cryst. Growth Des. 8, 3461-3464.], 2009[Fu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994-997.]); Fu & Xiong (2008[Fu, D.-W. & Xiong, R.-G. (2008). Dalton Trans. pp. 3946-3948.]).

[Scheme 1]

Experimental

Crystal data
  • (C6H14N2)[Mg(H2O)6](SO4)2

  • Mr = 438.74

  • Monoclinic, C 2/c

  • a = 14.968 (3) Å

  • b = 9.1860 (18) Å

  • c = 14.334 (3) Å

  • β = 117.12 (3)°

  • V = 1754.2 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.41 mm−1

  • T = 298 K

  • 0.40 × 0.30 × 0.20 mm

Data collection
  • Rigaku SCXmini CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.89, Tmax = 0.95

  • 8747 measured reflections

  • 2014 independent reflections

  • 1839 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.169

  • S = 1.26

  • 2014 reflections

  • 116 parameters

  • H-atom parameters constrained

  • Δρmax = 1.30 e Å−3

  • Δρmin = −1.08 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O3i 0.91 1.87 2.734 (3) 157
O1W—H1WA⋯O3i 0.85 1.90 2.751 (3) 179
O1W—H1WB⋯O1ii 0.85 2.01 2.835 (3) 165
O2W—H2WA⋯O2 0.85 2.00 2.809 (3) 158
O2W—H2WB⋯O2iii 0.85 1.83 2.674 (3) 173
O3W—H3WA⋯O4iv 0.85 1.85 2.694 (3) 170
O3W—H3WB⋯O1iii 0.85 1.92 2.769 (3) 177
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (ii) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (iii) [-x+1, y, -z+{\script{1\over 2}}]; (iv) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Salts of amide have attracted more attention as phase transition dielectric materials for their applications in micro-electronics and memory storage (Fu et al., 2007, 2008, 2009; Fu & Xiong, 2008). With the purpose of obtaining phase transition crystals, the interactions of 1,4-diazabicyclo[2.2.2]octane with various metal ions have been studied and we have elaborated a serie of new materials with this organic molecule. In this paper, we describe the crystal structure of the title compound.

The asymmetric unit is composed of an SO42- anion, half 1,4-diazoniabicyclo[2.2.2]octane cation and half [Mg(H2O)6]2+ cation. (Fig. 1). The MgII ion, lying on an inversion center, is in a slightly distorted octahedral geometry formed by six O atoms from the water molecules. The [Mg(H2O)6]2+ cation possesses typical Mg—O bond lengths [2.035 (2)–2.086 (2) Å], while the O—Mg—O bond angles [88.90 (8)–91.86 (9)°] indicating some distortion from a regular octahedron.

In the crystal, the interionic hydrogen bonds are formed by all H atoms of the water molecules and the amine groups with all O atoms of the SO42- anion and its symmetric equivalents (Table 1). The complex cations [Mg(H2O)6]2+ and SO42- anions are linked through O—H···O hydrogen bonds into a three-dimensional network, indicating that SO42- anion is a good hydrogen-bonding acceptor. In addition, the amino cations are hydrogen bonded to the SO42- anions through N—H···O hydrogen bonds, which play an important role in stabilizing the crystal structure (Fig. 2).

Related literature top

For the properties and applications of amide salt compounds, see: Fu et al. (2007, 2008, 2009); Fu & Xiong (2008).

Experimental top

Commercial 1,4-diazabicyclo[2.2.2]octane (3 mmol), H2SO4 (3 mmol) and MgSO4 (3 mmol) were dissolved in water. The solvent was slowly evaporated in air, affording colorless block-shaped crystals of the title compound suitable for X-ray analysis.

The permittivity measurement shows that there is no phase transition within the temperature range from 100 to 400 K, while the permittivity is 10.2 at 1 MHz at room temperature.

Refinement top

H atoms attached to C and N atoms were positioned geometrically and treated as riding, with C—H = 0.97 and N—H = 0.91 Å and with Uiso(H) = 1.2Ueq(C, N). H atoms of water molecules were located in difference Fourier maps and refined as riding atoms, with O—H = 0.85 Å and Uiso(H) = 1.5Ueq(O). The highest residual electron density was found at 1.18 Å from H1B atom and the deepest hole at 1.42 Å from C2 atom.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (A) -x, y, 0.5-z; (B) 0.5-x, 0.5-y, -z.]
[Figure 2] Fig. 2. The crystal packing of the title compound, showing the three-dimensional hydrogen-bonded network. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.
1,4-Diazoniabicyclo[2.2.2]octane hexaaquamagnesium bis(sulfate) top
Crystal data top
(C6H14N2)[Mg(H2O)6](SO4)2F(000) = 928
Mr = 438.74Dx = 1.661 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2014 reflections
a = 14.968 (3) Åθ = 3.1–27.5°
b = 9.1860 (18) ŵ = 0.41 mm1
c = 14.334 (3) ÅT = 298 K
β = 117.12 (3)°Block, colorless
V = 1754.2 (8) Å30.40 × 0.30 × 0.20 mm
Z = 4
Data collection top
Rigaku SCXmini CCD
diffractometer
2014 independent reflections
Radiation source: fine-focus sealed tube1839 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω scansh = 1919
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1111
Tmin = 0.89, Tmax = 0.95l = 1818
8747 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.065H-atom parameters constrained
wR(F2) = 0.169 w = 1/[σ2(Fo2) + (0.0899P)2 + 2.4679P]
where P = (Fo2 + 2Fc2)/3
S = 1.26(Δ/σ)max < 0.001
2014 reflectionsΔρmax = 1.30 e Å3
116 parametersΔρmin = 1.08 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.045 (4)
Crystal data top
(C6H14N2)[Mg(H2O)6](SO4)2V = 1754.2 (8) Å3
Mr = 438.74Z = 4
Monoclinic, C2/cMo Kα radiation
a = 14.968 (3) ŵ = 0.41 mm1
b = 9.1860 (18) ÅT = 298 K
c = 14.334 (3) Å0.40 × 0.30 × 0.20 mm
β = 117.12 (3)°
Data collection top
Rigaku SCXmini CCD
diffractometer
2014 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1839 reflections with I > 2σ(I)
Tmin = 0.89, Tmax = 0.95Rint = 0.022
8747 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0650 restraints
wR(F2) = 0.169H-atom parameters constrained
S = 1.26Δρmax = 1.30 e Å3
2014 reflectionsΔρmin = 1.08 e Å3
116 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.61852 (4)0.24340 (6)0.11814 (4)0.0233 (3)
O1W0.17086 (15)0.3991 (2)0.04379 (17)0.0371 (5)
H1WA0.10910.37760.01970.056*
H1WB0.18760.46360.09130.056*
Mg10.25000.25000.00000.0216 (3)
O2W0.37984 (14)0.3255 (2)0.11889 (15)0.0352 (5)
H2WA0.43720.32440.12030.053*
H2WB0.38550.33210.18050.053*
O10.68789 (16)0.1296 (2)0.18242 (15)0.0383 (5)
O3W0.23727 (17)0.1023 (2)0.10262 (15)0.0397 (5)
H3WA0.20820.02030.08390.059*
H3WB0.26060.11420.16840.059*
O20.58702 (19)0.3346 (3)0.18142 (17)0.0490 (7)
N10.02189 (19)0.2779 (3)0.15657 (17)0.0352 (6)
H10.03870.27830.08700.042*
O30.52895 (16)0.1720 (3)0.03471 (16)0.0450 (6)
O40.66399 (19)0.3290 (2)0.06522 (19)0.0472 (6)
C10.0764 (3)0.2074 (5)0.2138 (3)0.0538 (9)
H1B0.12760.26410.20660.065*
H1C0.07480.11100.18550.065*
C20.1004 (3)0.1967 (5)0.1718 (3)0.0569 (10)
H2A0.10120.09550.15220.068*
H2B0.16600.23820.12830.068*
C30.0189 (4)0.4288 (4)0.1915 (3)0.0575 (10)
H3A0.08550.47130.15720.069*
H3B0.02540.48630.17340.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0256 (4)0.0261 (4)0.0189 (4)0.0006 (2)0.0108 (3)0.00084 (19)
O1W0.0286 (10)0.0394 (11)0.0437 (11)0.0001 (8)0.0166 (9)0.0157 (9)
Mg10.0226 (6)0.0232 (6)0.0179 (6)0.0001 (4)0.0085 (5)0.0008 (4)
O2W0.0254 (9)0.0532 (13)0.0245 (9)0.0056 (8)0.0091 (8)0.0064 (8)
O10.0425 (11)0.0411 (11)0.0247 (9)0.0132 (9)0.0095 (8)0.0013 (8)
O3W0.0609 (14)0.0335 (11)0.0253 (10)0.0144 (9)0.0203 (10)0.0001 (8)
O20.0632 (15)0.0555 (15)0.0317 (11)0.0207 (12)0.0247 (11)0.0024 (10)
N10.0370 (13)0.0521 (15)0.0166 (10)0.0083 (11)0.0122 (10)0.0022 (9)
O30.0314 (11)0.0643 (16)0.0304 (11)0.0149 (10)0.0064 (9)0.0022 (10)
O40.0637 (15)0.0410 (13)0.0503 (13)0.0170 (11)0.0378 (13)0.0022 (10)
C10.052 (2)0.073 (2)0.0464 (19)0.0296 (18)0.0312 (17)0.0097 (18)
C20.0463 (19)0.078 (3)0.0433 (19)0.0272 (19)0.0174 (15)0.0236 (18)
C30.080 (3)0.0389 (18)0.064 (2)0.0159 (17)0.042 (2)0.0226 (16)
Geometric parameters (Å, º) top
S1—O41.458 (2)O3W—H3WB0.8502
S1—O21.462 (2)N1—C31.467 (5)
S1—O11.466 (2)N1—C11.469 (4)
S1—O31.482 (2)N1—C21.490 (5)
O1W—Mg12.0856 (19)N1—H10.9100
O1W—H1WA0.8502C1—C2ii1.513 (5)
O1W—H1WB0.8500C1—H1B0.9700
Mg1—O2W2.035 (2)C1—H1C0.9700
Mg1—O2Wi2.035 (2)C2—C1ii1.513 (5)
Mg1—O3Wi2.0728 (19)C2—H2A0.9700
Mg1—O3W2.0728 (19)C2—H2B0.9700
Mg1—O1Wi2.0856 (19)C3—C3ii1.506 (8)
O2W—H2WA0.8499C3—H3A0.9700
O2W—H2WB0.8502C3—H3B0.9700
O3W—H3WA0.8499
O4—S1—O2111.89 (16)Mg1—O3W—H3WA123.8
O4—S1—O1110.28 (14)Mg1—O3W—H3WB125.4
O2—S1—O1110.80 (12)H3WA—O3W—H3WB110.9
O4—S1—O3106.49 (14)C3—N1—C1111.0 (3)
O2—S1—O3109.00 (14)C3—N1—C2109.1 (3)
O1—S1—O3108.21 (14)C1—N1—C2110.7 (3)
Mg1—O1W—H1WA112.8C3—N1—H1108.7
Mg1—O1W—H1WB134.3C1—N1—H1108.7
H1WA—O1W—H1WB110.8C2—N1—H1108.7
O2W—Mg1—O2Wi180.00 (17)N1—C1—C2ii108.5 (3)
O2W—Mg1—O3Wi90.55 (9)N1—C1—H1B110.0
O2Wi—Mg1—O3Wi89.45 (9)C2ii—C1—H1B110.0
O2W—Mg1—O3W89.45 (9)N1—C1—H1C110.0
O2Wi—Mg1—O3W90.55 (9)C2ii—C1—H1C110.0
O3Wi—Mg1—O3W180.00 (13)H1B—C1—H1C108.4
O2W—Mg1—O1Wi91.10 (8)N1—C2—C1ii108.2 (3)
O2Wi—Mg1—O1Wi88.90 (8)N1—C2—H2A110.1
O3Wi—Mg1—O1Wi88.14 (9)C1ii—C2—H2A110.1
O3W—Mg1—O1Wi91.86 (9)N1—C2—H2B110.1
O2W—Mg1—O1W88.90 (8)C1ii—C2—H2B110.1
O2Wi—Mg1—O1W91.10 (8)H2A—C2—H2B108.4
O3Wi—Mg1—O1W91.86 (9)N1—C3—C3ii108.51 (18)
O3W—Mg1—O1W88.14 (9)N1—C3—H3A110.0
O1Wi—Mg1—O1W180.00 (10)C3ii—C3—H3A110.0
Mg1—O2W—H2WA125.8N1—C3—H3B110.0
Mg1—O2W—H2WB119.9C3ii—C3—H3B110.0
H2WA—O2W—H2WB110.8H3A—C3—H3B108.4
C3—N1—C1—C2ii64.8 (4)C1—N1—C2—C1ii65.4 (4)
C2—N1—C1—C2ii56.5 (4)C1—N1—C3—C3ii55.0 (5)
C3—N1—C2—C1ii57.0 (5)C2—N1—C3—C3ii67.3 (5)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.911.872.734 (3)157
O1W—H1WA···O3i0.851.902.751 (3)179
O1W—H1WB···O1iii0.852.012.835 (3)165
O2W—H2WA···O20.852.002.809 (3)158
O2W—H2WB···O2iv0.851.832.674 (3)173
O3W—H3WA···O4v0.851.852.694 (3)170
O3W—H3WB···O1iv0.851.922.769 (3)177
Symmetry codes: (i) x+1/2, y+1/2, z; (iii) x1/2, y+1/2, z; (iv) x+1, y, z+1/2; (v) x1/2, y1/2, z.

Experimental details

Crystal data
Chemical formula(C6H14N2)[Mg(H2O)6](SO4)2
Mr438.74
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)14.968 (3), 9.1860 (18), 14.334 (3)
β (°) 117.12 (3)
V3)1754.2 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.41
Crystal size (mm)0.40 × 0.30 × 0.20
Data collection
DiffractometerRigaku SCXmini CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.89, 0.95
No. of measured, independent and
observed [I > 2σ(I)] reflections
8747, 2014, 1839
Rint0.022
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.169, 1.26
No. of reflections2014
No. of parameters116
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.30, 1.08

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.911.872.734 (3)157
O1W—H1WA···O3i0.851.902.751 (3)179
O1W—H1WB···O1ii0.852.012.835 (3)165
O2W—H2WA···O20.852.002.809 (3)158
O2W—H2WB···O2iii0.851.832.674 (3)173
O3W—H3WA···O4iv0.851.852.694 (3)170
O3W—H3WB···O1iii0.851.922.769 (3)177
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x1/2, y+1/2, z; (iii) x+1, y, z+1/2; (iv) x1/2, y1/2, z.
 

Acknowledgements

This work was supported by a start-up grant from Southeast University, China.

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994–997.  Web of Science CSD CrossRef CAS Google Scholar
First citationFu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H. & Huang, S. D. (2007). J. Am. Chem. Soc. 129, 5346–5347.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFu, D.-W. & Xiong, R.-G. (2008). Dalton Trans. pp. 3946–3948.  Web of Science CSD CrossRef Google Scholar
First citationFu, D.-W., Zhang, W. & Xiong, R.-G. (2008). Cryst. Growth Des. 8, 3461–3464.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds