metal-organic compounds
Tris(4,4′-bi-1,3-thiazole-κ2N,N′)iron(II) tetrabromidoferrate(III) bromide
aDepartment of Chemistry, Islamic Azad University, North Tehran Branch, Tehran, Iran, and bDepartment of Chemistry, Shahid Beheshti University, G. C., Evin, Tehran 1983963113, Iran
*Correspondence e-mail: n-safari@cc.sbu.ac.ir
In the [Fe(4,4′-bit)3]2+ (4,4′-bit is 4,4′-bi-1,3-thiazole) cation of the title compound, [Fe(C6H4N2S2)3][FeBr4]Br, the FeII atom (3 symmetry) is six-coordinated in a distorted octahedral geometry by six N atoms from three 4,4′-bit ligands. In the [FeBr4]− anion, the FeIII atom (3 symmetry) is four-coordinated in a distorted tetrahedral geometry. In the crystal, intermolecular C—H⋯Br hydrogen bonds and Br⋯π interactions [Br⋯centroid distances = 3.562 (3) and 3.765 (2) Å] link the cations and anions, stabilizing the structure.
Related literature
For general background to metal complexes with 4,4′-bi-1,3-thiazole ligands, see: Baker & Goodwin (1985); Mahjoub & Morsali (2001, 2002a,b). For related structures, see: Al-Hashemi et al. (2009); Ali & Al-Far (2007); Amani et al. (2007a,b, 2009); Craig et al. (1988); Figgis et al. (1983); Jia et al. (2006); Khavasi et al. (2008); Kulkarni et al. (1998); Notash et al. (2008, 2009); Rahimi et al. (2009); Safari et al. (2009). For the synthesis of the ligand, see: Erlenmeyer & Ueberwasser (1939).
Experimental
Crystal data
|
|
|
Data collection: APEX2 (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536811004181/hy2404sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811004181/hy2404Isup2.hkl
4,4'-bi-1,3-thiazole (0.11 g, 0.63 mmol) in CH3OH (20 ml) was added to a solution of FeBr3 (0.06 g, 0.21 mmol) in CH3OH (10 ml) and the resulting red solution was stirred at 313 K for 1 h. The red colored precipitated product was recrystallized from CH3CN/CH3OH (v/v 2:1). After two weeks, dark-red prismatic crystals of the title compound were isolated (yield: 0.08 g, 75.0%; m.p. 464 K).
All H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 Å and with Uiso(H) = 1.2Ueq(C).
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Fe(C6H4N2S2)3][FeBr4]Br | Dx = 2.270 Mg m−3 |
Mr = 1015.95 | Mo Kα radiation, λ = 0.71073 Å |
Trigonal, R3 | Cell parameters from 1635 reflections |
Hall symbol: R 3 | θ = 3.0–28.0° |
a = 12.0638 (7) Å | µ = 8.14 mm−1 |
c = 17.6907 (13) Å | T = 100 K |
V = 2229.7 (2) Å3 | Prism, dark-red |
Z = 3 | 0.45 × 0.35 × 0.30 mm |
F(000) = 1455 |
Bruker APEXII CCD diffractometer | 2508 independent reflections |
Radiation source: fine-focus sealed tube | 2427 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.099 |
ϕ and ω scans | θmax = 28.9°, θmin = 2.3° |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | h = −16→16 |
Tmin = 0.031, Tmax = 0.086 | k = −16→16 |
8430 measured reflections | l = −24→23 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.036 | H-atom parameters constrained |
wR(F2) = 0.085 | w = 1/[σ2(Fo2) + (0.0485P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.01 | (Δ/σ)max < 0.001 |
2508 reflections | Δρmax = 0.93 e Å−3 |
112 parameters | Δρmin = −0.78 e Å−3 |
1 restraint | Absolute structure: Flack (1983), 1195 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.021 (9) |
[Fe(C6H4N2S2)3][FeBr4]Br | Z = 3 |
Mr = 1015.95 | Mo Kα radiation |
Trigonal, R3 | µ = 8.14 mm−1 |
a = 12.0638 (7) Å | T = 100 K |
c = 17.6907 (13) Å | 0.45 × 0.35 × 0.30 mm |
V = 2229.7 (2) Å3 |
Bruker APEXII CCD diffractometer | 2508 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | 2427 reflections with I > 2σ(I) |
Tmin = 0.031, Tmax = 0.086 | Rint = 0.099 |
8430 measured reflections |
R[F2 > 2σ(F2)] = 0.036 | H-atom parameters constrained |
wR(F2) = 0.085 | Δρmax = 0.93 e Å−3 |
S = 1.01 | Δρmin = −0.78 e Å−3 |
2508 reflections | Absolute structure: Flack (1983), 1195 Friedel pairs |
112 parameters | Absolute structure parameter: 0.021 (9) |
1 restraint |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.53314 (4) | 0.70585 (5) | 0.46767 (3) | 0.02946 (13) | |
Br2 | 0.3333 | 0.6667 | 0.64196 (3) | 0.01401 (14) | |
Br3 | 1.6667 | 1.3333 | 0.53208 (4) | 0.01483 (14) | |
Fe1 | 1.0000 | 1.0000 | 0.48640 (5) | 0.00941 (17) | |
Fe2 | 0.3333 | 0.6667 | 0.50986 (6) | 0.01351 (18) | |
S1 | 1.25908 (10) | 1.31480 (10) | 0.64504 (6) | 0.0182 (2) | |
S2 | 1.33303 (9) | 1.07879 (10) | 0.33584 (6) | 0.01552 (19) | |
N1 | 1.1247 (3) | 1.1426 (3) | 0.54875 (19) | 0.0120 (6) | |
N2 | 1.1543 (3) | 1.0443 (3) | 0.42603 (19) | 0.0121 (6) | |
C1 | 1.1756 (4) | 1.0038 (4) | 0.3613 (2) | 0.0141 (7) | |
H1A | 1.1107 | 0.9401 | 0.3323 | 0.017* | |
C2 | 1.3758 (4) | 1.1697 (4) | 0.4169 (2) | 0.0161 (7) | |
H2A | 1.4589 | 1.2296 | 0.4310 | 0.019* | |
C3 | 1.2677 (4) | 1.1394 (4) | 0.4572 (2) | 0.0132 (7) | |
C4 | 1.2524 (4) | 1.1950 (4) | 0.5268 (2) | 0.0127 (7) | |
C5 | 1.3381 (4) | 1.2906 (4) | 0.5716 (3) | 0.0185 (8) | |
H5A | 1.4262 | 1.3361 | 0.5639 | 0.022* | |
C6 | 1.1159 (4) | 1.1969 (4) | 0.6109 (2) | 0.0154 (7) | |
H6A | 1.0383 | 1.1732 | 0.6345 | 0.019* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0213 (2) | 0.0518 (3) | 0.0176 (2) | 0.0201 (2) | 0.00229 (16) | −0.0064 (2) |
Br2 | 0.01593 (18) | 0.01593 (18) | 0.0102 (3) | 0.00796 (9) | 0.000 | 0.000 |
Br3 | 0.01604 (19) | 0.01604 (19) | 0.0124 (3) | 0.00802 (9) | 0.000 | 0.000 |
Fe1 | 0.0096 (2) | 0.0096 (2) | 0.0090 (4) | 0.00479 (11) | 0.000 | 0.000 |
Fe2 | 0.0153 (3) | 0.0153 (3) | 0.0099 (4) | 0.00764 (13) | 0.000 | 0.000 |
S1 | 0.0184 (4) | 0.0170 (4) | 0.0170 (5) | 0.0072 (4) | −0.0042 (4) | −0.0073 (4) |
S2 | 0.0162 (4) | 0.0198 (4) | 0.0128 (4) | 0.0107 (3) | 0.0037 (3) | 0.0013 (3) |
N1 | 0.0113 (13) | 0.0118 (14) | 0.0122 (14) | 0.0052 (12) | 0.0016 (11) | 0.0003 (11) |
N2 | 0.0143 (14) | 0.0143 (14) | 0.0102 (13) | 0.0090 (12) | 0.0021 (12) | 0.0016 (12) |
C1 | 0.0135 (16) | 0.0138 (16) | 0.0157 (17) | 0.0074 (14) | 0.0000 (13) | −0.0008 (13) |
C2 | 0.0161 (16) | 0.0175 (17) | 0.0139 (18) | 0.0078 (14) | 0.0027 (14) | 0.0035 (14) |
C3 | 0.0173 (17) | 0.0131 (15) | 0.0134 (16) | 0.0106 (14) | 0.0009 (13) | 0.0036 (13) |
C4 | 0.0156 (16) | 0.0101 (15) | 0.0126 (16) | 0.0065 (13) | 0.0010 (13) | 0.0001 (12) |
C5 | 0.0168 (17) | 0.0198 (19) | 0.0192 (19) | 0.0092 (15) | −0.0020 (14) | −0.0002 (15) |
C6 | 0.0135 (16) | 0.0148 (17) | 0.0151 (17) | 0.0048 (13) | −0.0024 (14) | −0.0020 (13) |
Fe1—N1 | 1.962 (3) | N2—C1 | 1.320 (5) |
Fe1—N2 | 1.974 (3) | N2—C3 | 1.385 (5) |
Fe2—Br1 | 2.3348 (5) | C1—H1A | 0.9300 |
Fe2—Br2 | 2.3370 (12) | C2—C3 | 1.366 (6) |
S1—C6 | 1.706 (4) | C2—H2A | 0.9300 |
S1—C5 | 1.721 (4) | C3—C4 | 1.458 (5) |
S2—C1 | 1.706 (4) | C4—C5 | 1.355 (6) |
S2—C2 | 1.720 (4) | C5—H5A | 0.9300 |
N1—C6 | 1.312 (5) | C6—H6A | 0.9300 |
N1—C4 | 1.396 (5) | ||
N1—Fe1—N1i | 91.50 (14) | C6—N1—Fe1 | 133.8 (3) |
N1—Fe1—N1ii | 91.50 (14) | C4—N1—Fe1 | 115.4 (3) |
N1i—Fe1—N1ii | 91.50 (14) | C1—N2—C3 | 111.0 (3) |
N1—Fe1—N2i | 171.87 (13) | C1—N2—Fe1 | 134.5 (3) |
N1i—Fe1—N2i | 82.00 (14) | C3—N2—Fe1 | 114.6 (3) |
N1ii—Fe1—N2i | 93.53 (13) | N2—C1—S2 | 113.8 (3) |
N1—Fe1—N2 | 82.00 (14) | N2—C1—H1A | 123.1 |
N1i—Fe1—N2 | 93.53 (13) | S2—C1—H1A | 123.1 |
N1ii—Fe1—N2 | 171.87 (13) | C3—C2—S2 | 108.8 (3) |
N2i—Fe1—N2 | 93.49 (14) | C3—C2—H2A | 125.6 |
N1—Fe1—N2ii | 93.53 (13) | S2—C2—H2A | 125.6 |
N1i—Fe1—N2ii | 171.87 (14) | C2—C3—N2 | 115.4 (3) |
N1ii—Fe1—N2ii | 82.00 (14) | C2—C3—C4 | 129.9 (4) |
N2i—Fe1—N2ii | 93.49 (14) | N2—C3—C4 | 114.7 (3) |
N2—Fe1—N2ii | 93.49 (14) | C5—C4—N1 | 115.0 (4) |
Br1iii—Fe2—Br1iv | 110.29 (3) | C5—C4—C3 | 131.9 (4) |
Br1iii—Fe2—Br1 | 110.29 (3) | N1—C4—C3 | 113.0 (3) |
Br1iv—Fe2—Br1 | 110.29 (3) | C4—C5—S1 | 109.5 (3) |
Br1iii—Fe2—Br2 | 108.64 (3) | C4—C5—H5A | 125.2 |
Br1iv—Fe2—Br2 | 108.64 (3) | S1—C5—H5A | 125.2 |
Br1—Fe2—Br2 | 108.64 (3) | N1—C6—S1 | 114.3 (3) |
C6—S1—C5 | 90.4 (2) | N1—C6—H6A | 122.8 |
C1—S2—C2 | 91.01 (19) | S1—C6—H6A | 122.8 |
C6—N1—C4 | 110.7 (3) | ||
N1i—Fe1—N1—C6 | −86.9 (3) | S2—C2—C3—N2 | 1.7 (4) |
N1ii—Fe1—N1—C6 | 4.6 (4) | S2—C2—C3—C4 | −175.8 (3) |
N2—Fe1—N1—C6 | 179.8 (4) | C1—N2—C3—C2 | −1.2 (5) |
N2ii—Fe1—N1—C6 | 86.7 (4) | Fe1—N2—C3—C2 | 178.8 (3) |
N1i—Fe1—N1—C4 | 88.3 (3) | C1—N2—C3—C4 | 176.7 (3) |
N1ii—Fe1—N1—C4 | 179.8 (3) | Fe1—N2—C3—C4 | −3.3 (4) |
N2—Fe1—N1—C4 | −5.1 (3) | C6—N1—C4—C5 | −1.7 (5) |
N2ii—Fe1—N1—C4 | −98.1 (3) | Fe1—N1—C4—C5 | −178.0 (3) |
N1—Fe1—N2—C1 | −175.5 (4) | C6—N1—C4—C3 | −179.1 (3) |
N1i—Fe1—N2—C1 | 93.5 (4) | Fe1—N1—C4—C3 | 4.7 (4) |
N2i—Fe1—N2—C1 | 11.3 (4) | C2—C3—C4—C5 | −0.2 (7) |
N2ii—Fe1—N2—C1 | −82.4 (3) | N2—C3—C4—C5 | −177.7 (4) |
N1—Fe1—N2—C3 | 4.6 (3) | C2—C3—C4—N1 | 176.7 (4) |
N1i—Fe1—N2—C3 | −86.5 (3) | N2—C3—C4—N1 | −0.8 (5) |
N2i—Fe1—N2—C3 | −168.6 (3) | N1—C4—C5—S1 | 1.4 (5) |
N2ii—Fe1—N2—C3 | 97.6 (3) | C3—C4—C5—S1 | 178.2 (3) |
C3—N2—C1—S2 | 0.0 (4) | C6—S1—C5—C4 | −0.6 (3) |
Fe1—N2—C1—S2 | −180.0 (2) | C4—N1—C6—S1 | 1.2 (4) |
C2—S2—C1—N2 | 0.8 (3) | Fe1—N1—C6—S1 | 176.5 (2) |
C1—S2—C2—C3 | −1.4 (3) | C5—S1—C6—N1 | −0.3 (3) |
Symmetry codes: (i) −x+y+1, −x+2, z; (ii) −y+2, x−y+1, z; (iii) −y+1, x−y+1, z; (iv) −x+y, −x+1, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2A···Br3 | 0.93 | 2.81 | 3.665 (5) | 153 |
C5—H5A···Br3 | 0.93 | 2.97 | 3.798 (5) | 149 |
Experimental details
Crystal data | |
Chemical formula | [Fe(C6H4N2S2)3][FeBr4]Br |
Mr | 1015.95 |
Crystal system, space group | Trigonal, R3 |
Temperature (K) | 100 |
a, c (Å) | 12.0638 (7), 17.6907 (13) |
V (Å3) | 2229.7 (2) |
Z | 3 |
Radiation type | Mo Kα |
µ (mm−1) | 8.14 |
Crystal size (mm) | 0.45 × 0.35 × 0.30 |
Data collection | |
Diffractometer | Bruker APEXII CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2001) |
Tmin, Tmax | 0.031, 0.086 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8430, 2508, 2427 |
Rint | 0.099 |
(sin θ/λ)max (Å−1) | 0.680 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.036, 0.085, 1.01 |
No. of reflections | 2508 |
No. of parameters | 112 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.93, −0.78 |
Absolute structure | Flack (1983), 1195 Friedel pairs |
Absolute structure parameter | 0.021 (9) |
Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2A···Br3 | 0.93 | 2.81 | 3.665 (5) | 153 |
C5—H5A···Br3 | 0.93 | 2.97 | 3.798 (5) | 149 |
Acknowledgements
We thank the Graduate Study Councils of the Islamic Azad University, North Tehran Branch, and Shahid Beheshti University for financial support.
References
Al-Hashemi, R., Safari, N., Abedi, A., Notash, B., Amani, V. & Khavasi, H. R. (2009). J. Coord. Chem. 62, 2909–2918. Web of Science CSD CrossRef CAS Google Scholar
Ali, B. F. & Al-Far, R. (2007). Acta Cryst. C63, m451–m453. Web of Science CSD CrossRef IUCr Journals Google Scholar
Amani, V., Safari, N. & Khavasi, H. R. (2007a). Polyhedron, 26, 4257–4262. Web of Science CSD CrossRef CAS Google Scholar
Amani, V., Safari, N., Khavasi, H. R. & Mirzaei, P. (2007b). Polyhedron, 26, 4908–4914. Web of Science CSD CrossRef CAS Google Scholar
Amani, V., Safari, N., Notash, B. & Khavasi, H. R. (2009). J. Coord. Chem. 62, 1939–1950. Web of Science CSD CrossRef CAS Google Scholar
Baker, A. T. & Goodwin, H. A. (1985). Aust. J. Chem. 38, 851–863. CSD CrossRef CAS Google Scholar
Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Craig, D. C., Goodwin, H. A., Onggo, D. & Rae, A. D. (1988). Aust. J. Chem. 41, 1625–1644. CSD CrossRef CAS Google Scholar
Erlenmeyer, H. & Ueberwasser, H. (1939). Helv. Chim. Acta, 22, 938–939. CrossRef CAS Google Scholar
Figgis, B. N., Patrick, J. M., Reynolds, P. A., Skelton, B. W., White, A. H. & Healy, P. C. (1983). Aust. J. Chem. 36, 2043–2055. CSD CrossRef CAS Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Jia, C., Liu, S. X., Ambrus, C., Labat, G., Neels, A. & Decurtins, S. (2006). Polyhedron, 25, 1613–1617. Web of Science CSD CrossRef CAS Google Scholar
Khavasi, H. R., Abedi, A., Amani, V., Notash, B. & Safari, N. (2008). Polyhedron, 27, 1848–1854. Web of Science CSD CrossRef CAS Google Scholar
Kulkarni, P., Padhye, S. & Sinn, E. (1998). Polyhedron, 17, 2623–2626. Web of Science CSD CrossRef CAS Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Mahjoub, A. R. & Morsali, A. (2001). Chem. Lett. 30, 1234–1235. CSD CrossRef Google Scholar
Mahjoub, A. R. & Morsali, A. (2002a). Polyhedron, 21, 197–203. Web of Science CSD CrossRef CAS Google Scholar
Mahjoub, A. R. & Morsali, A. (2002b). Z. Kristallogr. New Cryst. Struct. 217, 443–444. CAS Google Scholar
Notash, B., Safari, N., Abedi, A., Amani, V. & Khavasi, H. R. (2009). J. Coord. Chem. 62, 1638–1649. Web of Science CSD CrossRef CAS Google Scholar
Notash, B., Safari, N., Khavasi, H. R., Amani, V. & Abedi, A. (2008). J. Organomet. Chem. 693, 3553–3557. Web of Science CrossRef CAS Google Scholar
Rahimi, N., Safari, N., Amani, V. & Khavasi, H. R. (2009). Acta Cryst. E65, m1370. Web of Science CrossRef IUCr Journals Google Scholar
Safari, N., Amani, V., Abedi, A., Notash, B. & Ng, S. W. (2009). Acta Cryst. E65, m372. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Erlenmeyer & Ueberwasser (1939) first reported the synthesis of 4,4'-bi-1,3-thiazole (4,4'-bit) and Craig et al. (1988) determined the structure of this compound. Although 4,4'-bit is a good bidentate ligand, a few of its metal complexes have been prepared, such as those of nickel and iron (Baker & Goodwin, 1985), lead (Mahjoub & Morsali, 2001, 2002a) and bismuth (Mahjoub & Morsali, 2002b). We recently introduced the coordination chemistry of 2,2'-dimethyl-4,4'-bi-1,3-thiazole with copper (Al-Hashemi et al., 2009), zinc and mercury (Khavasi et al., 2008; Safari et al., 2009), cadmium (Notash et al., 2009) and thallium (Notash et al., 2008). We report here the synthesis and crystal structure of the title compound.
The asymmetric unit of the title compound (Fig. 1), contains one third of an [Fe(4,4'-bit)3]2+ cation, one third of an [FeBr4]- anion and one third of a Br- anion. In the [Fe(4,4'-bit)3]2+ cation, the FeII atom (3 symmetry) is six-coordinated in a distorted octahedral geometry by six N atoms from three 4,4'-bit ligands. The Fe—N bond lengths are 1.962 (3) and 1.974 (3) Å (Table 1). The average Fe—N bond distances in high-spin iron(II) and (III) complexes with phenanthroline and bipyridine are around 2.2 Å. However, for low-spin iron(II) and (III) complexes, the Fe—N distances less than 2.0 Å have been reported (Amani et al., 2007a,b, 2009; Figgis et al., 1983; Kulkarni et al., 1998; Rahimi et al., 2009). Therefore, in the [Fe(4,4'-bit)3]2+ cation, the Fe—N bond distances are unambiguous in accord with low-spin iron(II). The N—Fe—N bond angles are in the range of 82.00 (14) to 171.87 (14)°. The bond angles and distances are in good agreement to those of [Fe(4,4'-bit)3]2+ cations, which have been found in other structures (Baker & Goodwin, 1985). In the [FeBr4]- anion, the FeIII atom (3 symmetry) is four-coordinated in a distorted tetrahedral geometry by four Br atoms. The Fe—Br bond lengths are 2.3348 (5) and 2.3370 (12) Å. The Br—Fe—Br angles, in turn, span the ranges of 108.64 (3) to 110.29 (3)°, and the bond angles and distances are in good agreement to those of [FeBr4]- anions, which have been found in other structures (Ali & Al-Far 2007; Jia et al., 2006).
Fig. 2 shows significant intermolecular C—H···Br hydrogen bonds in the title compound (Table 2). The hydrogen bonds cause the formation of a supramolecular architecture, best described as built up by Br(thiazol)9 supramolecular synthons (Fig. 2) assembled via C—H···Br hydrogen bonds, where nine thiazole groups surround one (central) uncoordinated bromide ion. These synthons are further connected into an adamantoid-like network that extends into a three-dimensional structure. The discrete [FeBr4]- anions occupy the cavities that result from the three-dimensional assembly of the Br(thiazol)9 entities. There also exist intermolecular Br···π interactions between the [FeBr4]- anions and thiazole rings in the crystal structure (Fig. 3), with Br1···Cg1 = 3.562 (3) and Br1i···Cg2 = 3.765 (2) Å [Cg1 and Cg2 are the centroids of C1, C2, C3, N2, S2 ring and C4, C5, C6, N1, S1 ring. Symmetry code: (i) 1-x+y, 2-x, z]. The hydrogen bonds and Br···π interactions link the cations and anions, which may be effective in the stabilization of the structure.