metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 3| March 2011| Pages m360-m361

Bis(2,3-di­amino­pyridinium) bis­­(μ-pyridine-2,6-di­carboxyl­ato)-κ4O2,N,O6:O6;κ4O2:O2,N,O6-bis­­[aqua­(pyridine-2,6-di­carboxyl­ato-κ3O2,N,O6)bis­­muthate(III)] tetra­hydrate

aFaculty of Chemistry, Islamic Azad University, North Tehran Branch, Tehran, Iran, bFaculty of Chemistry, Tarbiat Moallem University, 15614 Tehran, Iran, cDepartment of Chemistry, School of Sciences, Ferdowsi University of Mashhad, Mashhad 917791436, Iran, and dDepartment of Chemistry, Shahid Beheshti University, G. C., Evin, Tehran 1983963113, Iran
*Correspondence e-mail: haghabozorg@yahoo.com

(Received 9 February 2011; accepted 15 February 2011; online 23 February 2011)

In the centrosymmetric dinuclear complex anion of the title compound, (C5H8N3)2[Bi2(C7H3NO4)4(H2O)2]·4H2O, the BiIII atom is eight-coordinated in an N2O6 environment and has a distorted bicapped trigonal–prismatic coordination environment. Extensive inter­molecular O—H⋯O, N—H⋯O and weak C—H⋯O hydrogen bonds lead to the stability of the crystal structure. Inter­actions between one C—H group of the 2,3-diamino­pyridinium [(2,3-dapyH)+] cation and the aromatic ring of the pyridine-2,6-dicarboxyl­ate (pydc) ligand (C—H⋯centroid distance = 2.78 Å) and ππ inter­actions between the (2,3-dapyH)+ cations and between the (2,3-dapyH)+ cation and the pydc ligand [centroid–centroid distances = 3.489 (5) and 3.694 (5) Å] are observed.

Related literature

For related structures, see: Aghabozorg et al. (2008[Aghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc. 5, 184-227.], 2010[Aghabozorg, H., Moteieyan, E., Salimi, A. R., Mirzaei, M., Manteghi, F., Shokrollahi, A., Derki, S., Ghadermazi, M., Sheshmani, S. & Eshtiagh-Hosseini, H. (2010). Polyhedron, 29, 1453-1464.]); Sheshmani et al. (2005[Sheshmani, S., Kheirollahi, P. D., Aghabozorg, H., Shokrollahi, A., Kickelbick, G., Shamsipur, M., Ramezanipour, F. & Moghimi, A. (2005). Z. Anorg. Allg. Chem. 631, 3058-3065.]).

[Scheme 1]

Experimental

Crystal data
  • (C5H8N3)2[Bi2(C7H3NO4)4(H2O)2]·4H2O

  • Mr = 1406.76

  • Triclinic, [P \overline 1]

  • a = 9.3462 (19) Å

  • b = 10.726 (2) Å

  • c = 11.098 (2) Å

  • α = 95.13 (3)°

  • β = 91.38 (3)°

  • γ = 90.47 (3)°

  • V = 1107.7 (4) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 8.03 mm−1

  • T = 298 K

  • 0.33 × 0.27 × 0.23 mm

Data collection
  • Stoe IPDS-2 diffractometer

  • Absorption correction: numerical (X-SHAPE and X-RED32; Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA, X-SHAPE and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.083, Tmax = 0.156

  • 12406 measured reflections

  • 5940 independent reflections

  • 5539 reflections with I > 2σ(I)

  • Rint = 0.113

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.154

  • S = 1.05

  • 5940 reflections

  • 347 parameters

  • 9 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 2.98 e Å−3

  • Δρmin = −2.93 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O11i 0.87 (14) 2.02 (14) 2.797 (10) 148 (12)
N4—H4A⋯O2ii 0.86 2.11 2.924 (9) 158
N4—H4B⋯O6i 0.86 1.97 2.830 (10) 178
N5—H5A⋯O3iii 0.86 2.53 3.216 (10) 138
N5—H5B⋯O6i 0.86 2.11 2.972 (10) 176
O9—H9A⋯O8iv 0.81 (7) 2.07 (12) 2.746 (10) 141 (15)
O9—H9B⋯O11v 0.84 (8) 1.99 (10) 2.771 (11) 155 (15)
O10—H10A⋯O5 0.94 (8) 1.96 (8) 2.862 (9) 160 (11)
O10—H10B⋯O7vi 0.80 (8) 2.21 (8) 2.972 (10) 160 (13)
O11—H11A⋯O4iii 0.89 (8) 2.01 (13) 2.717 (11) 136 (14)
O11—H11B⋯O10vii 0.92 (9) 1.96 (9) 2.836 (12) 158 (13)
C11—H11⋯O8viii 0.93 2.26 3.050 (10) 142
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+2, -y, -z+1; (iii) -x+1, -y+1, -z+1; (iv) -x, -y, -z+2; (v) x-1, y-1, z; (vi) x+1, y, z; (vii) x, y+1, z; (viii) -x, -y+1, -z+2.

Data collection: X-AREA (Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA, X-SHAPE and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Pyridine-2,6-dicarboxylic acid (pydcH2) can form various complexes containing transition and main metals (Aghabozorg et al., 2008). There are complexes in which pydc acts as a bridging ligand between two metal atoms (Aghabozorg et al., 2010; Sheshmani et al., 2005).

Herein, we report the crystal structure of the title compund as another example of bismuth(III) coordination compound, which bears heterocyclic 2,3-diaminopyridine (2,3-dapy) and pydcH2 ligands. The molecular structure of the title compound is shown in Fig. 1. The centrosymmetric binuclear unit consists of two BiIII atoms, four (pydc)2- ligands, two coordinated water molecules. Two pydc ligands act as tridentate ligands with an N atom of the pyridine ring and two O atoms of the dicarboxylate groups acting as donors. One of the dicarboxylate O atoms for the other two pydc ligands plays a bridging role between two Bi atoms. The structure also contains two (2,3-dapyH)+ cations and four uncoordinated water molecules. The BiIII atom is eight-coordinated in an N2O6 environment and has a distorted bicapped trigonal-prismatic geometry, as it is shown in Fig. 2. There are extensive intermolecular O—H···O, N—H···O and weak C—H···O hydrogen bonds, which cause the stability of the crystal structure (Fig. 3, Table 1). There are also ππ interactions between the (2,3-dapyH)+ rings and between the (2,3-dapyH)+ and pydc rings (Fig. 4), with centroid–centroid distances of 3.489 (5) and 3.694 (5) Å, respectively. Furthermore, there is C—H···π interacton between C—H group of the (2,3-dapyH)+ cation and pydc ligand, with an C—H···centroid distance of 2.78 Å (Fig. 5).

Related literature top

For related structures, see: Aghabozorg et al. (2008, 2010); Sheshmani et al. (2005).

Experimental top

An aqueous solution of Bi(NO3)3 (1 mmol), pydcH2 (3 mmol) and 2,3-dapy (1 mmol) was refluxed for about 30 min in a 1:3:1 molar ratio. Brown crystals of the title compound were obtained from the solution by slow evaporation of the solvent within two weeks at room temperature.

Refinement top

H atoms attached to pyridine N and water O atoms were found in a difference Fourier map and refined with Uiso(H) = 1.0–1.5Ueq(N,O). H atoms of the water molecules, H9A, H9B, H10A, H10B, H11A, H11B were refined with distance restraints of O—H = 0.81 (7), 0.84 (8), 0.94 (8), 0.80 (8), 0.89 (8) and 0.92 (9) Å and H···H distance restraints of 1.45 (4) Å for H10A···H10B and 1.40 (4) Å for H11A···H11B. H atoms on C atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). The highest residual electron density was found at 0.83 Å from Bi1 atom and the deepest hole at 0.74 Å from Bi1 atom.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA (Stoe & Cie, 2005); data reduction: X-AREA (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level. [Symmetry code: (i) -x+1, -y, -z+2.]
[Figure 2] Fig. 2. The coordination environment of the BiIII atom, showing a distorted bicapped trigonal-prismatic geometry. [Symmetry code: (i) -x+1, -y, -z+2.]
[Figure 3] Fig. 3. A view of the crystal packing, showing O—H···O, N—H···O and weak C—H···O hydrogen bonds (dashed lines) in the title compound.
[Figure 4] Fig. 4. ππ stacking interactions between the aromatic rings of the (2,3-dapyH)+ cation and pydc ligand.
[Figure 5] Fig. 5. C—H···π interaction between C—H group of the (2,3-dapyH)+ cation and the aromatic ring of the pydc ligand.
Bis(2,3-diaminopyridinium) bis(µ-pyridine-2,6-dicarboxylato)- κ4O2,N,O6:O6; κ4O2:O2,N,O6-bis[aqua(pyridine-2,6- dicarboxylato-κ3O2,N,O6)bismuthate(III)] tetrahydrate top
Crystal data top
(C5H8N3)2[Bi2(C7H3NO4)4(H2O)2]·4H2OZ = 1
Mr = 1406.76F(000) = 680
Triclinic, P1Dx = 2.109 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.3462 (19) ÅCell parameters from 5940 reflections
b = 10.726 (2) Åθ = 2.2–29.2°
c = 11.098 (2) ŵ = 8.03 mm1
α = 95.13 (3)°T = 298 K
β = 91.38 (3)°Prism, brown
γ = 90.47 (3)°0.33 × 0.27 × 0.23 mm
V = 1107.7 (4) Å3
Data collection top
Stoe IPDS-2
diffractometer
5940 independent reflections
Radiation source: fine-focus sealed tube5539 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.113
ω scansθmax = 29.2°, θmin = 2.2°
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe & Cie, 2005)
h = 1212
Tmin = 0.083, Tmax = 0.156k = 1414
12406 measured reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.154 w = 1/[σ2(Fo2) + (0.1042P)2 + 3.0215P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
5940 reflectionsΔρmax = 2.98 e Å3
347 parametersΔρmin = 2.93 e Å3
9 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0047 (13)
Crystal data top
(C5H8N3)2[Bi2(C7H3NO4)4(H2O)2]·4H2Oγ = 90.47 (3)°
Mr = 1406.76V = 1107.7 (4) Å3
Triclinic, P1Z = 1
a = 9.3462 (19) ÅMo Kα radiation
b = 10.726 (2) ŵ = 8.03 mm1
c = 11.098 (2) ÅT = 298 K
α = 95.13 (3)°0.33 × 0.27 × 0.23 mm
β = 91.38 (3)°
Data collection top
Stoe IPDS-2
diffractometer
5940 independent reflections
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe & Cie, 2005)
5539 reflections with I > 2σ(I)
Tmin = 0.083, Tmax = 0.156Rint = 0.113
12406 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0579 restraints
wR(F2) = 0.154H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 2.98 e Å3
5940 reflectionsΔρmin = 2.93 e Å3
347 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O100.8002 (8)0.0220 (8)0.8803 (9)0.0534 (19)
O80.0239 (8)0.3014 (6)1.0095 (8)0.056 (2)
O110.9124 (8)0.8479 (8)0.7003 (7)0.0502 (17)
O60.6729 (7)0.3001 (6)0.7953 (8)0.0494 (17)
Bi10.32379 (2)0.045644 (19)0.88303 (2)0.02387 (13)
N10.4091 (7)0.0927 (6)0.7035 (5)0.0265 (11)
C50.3481 (8)0.0744 (7)0.5968 (7)0.0297 (14)
C10.5057 (7)0.1819 (6)0.7123 (6)0.0247 (12)
C30.4867 (12)0.2374 (10)0.4998 (8)0.047 (2)
H30.51310.28710.43120.056*
C70.2415 (9)0.0299 (7)0.5988 (8)0.0359 (16)
C20.5469 (10)0.2566 (9)0.6098 (8)0.0426 (19)
H20.61470.31880.61630.051*
C40.3855 (10)0.1434 (9)0.4899 (8)0.0388 (17)
H40.34500.12770.41550.047*
N41.1655 (8)0.4867 (7)0.2534 (8)0.0436 (18)
H4A1.19860.41370.23190.052*
H4B1.21330.55260.23980.052*
C151.0421 (8)0.4974 (7)0.3068 (7)0.0300 (14)
C160.9763 (9)0.6147 (8)0.3425 (8)0.0333 (15)
N30.9707 (9)0.3919 (7)0.3263 (7)0.0383 (15)
N51.0463 (9)0.7230 (6)0.3244 (9)0.0462 (19)
H5A1.00860.79400.34690.055*
H5B1.12810.72050.29040.055*
C170.8460 (10)0.6133 (9)0.3960 (10)0.043 (2)
H170.80210.68850.42040.051*
C190.8402 (11)0.3898 (9)0.3806 (9)0.046 (2)
H190.79590.31440.39380.055*
C180.7782 (10)0.5004 (11)0.4144 (10)0.048 (2)
H180.68920.50120.45020.057*
O30.2133 (7)0.0852 (6)0.7009 (6)0.0381 (13)
O70.0896 (6)0.1326 (5)0.9346 (6)0.0340 (12)
O50.5370 (6)0.1332 (5)0.8106 (6)0.0324 (11)
N20.3143 (7)0.2700 (6)0.8827 (6)0.0262 (11)
C80.4311 (8)0.3335 (7)0.8530 (7)0.0283 (13)
O40.1860 (11)0.0529 (9)0.5024 (7)0.066 (2)
C140.0788 (9)0.2486 (7)0.9591 (8)0.0331 (15)
C130.5562 (8)0.2518 (7)0.8158 (7)0.0290 (14)
C120.1996 (8)0.3318 (7)0.9215 (7)0.0294 (14)
C90.4360 (8)0.4623 (7)0.8582 (8)0.0321 (15)
H90.51730.50450.83620.039*
C110.1952 (8)0.4614 (7)0.9293 (8)0.0324 (15)
H110.11350.50360.95540.039*
C100.3145 (9)0.5268 (7)0.8975 (9)0.0358 (17)
H100.31370.61380.90230.043*
O10.5240 (6)0.1236 (5)0.9223 (5)0.0290 (10)
O20.6605 (9)0.2791 (7)0.8471 (6)0.0489 (17)
C60.5695 (8)0.1989 (7)0.8366 (7)0.0276 (13)
O90.1606 (8)0.1496 (7)0.8422 (7)0.0455 (15)
H10B0.867 (9)0.064 (12)0.906 (13)0.055*
H11A0.851 (13)0.845 (14)0.638 (9)0.068*
H11B0.860 (15)0.908 (13)0.742 (11)0.068*
H9A0.143 (14)0.171 (15)0.909 (8)0.068*
H9B0.090 (13)0.126 (14)0.802 (10)0.068*
H10A0.717 (9)0.070 (11)0.875 (12)0.055*
H3A1.007 (14)0.325 (13)0.289 (12)0.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O100.036 (3)0.043 (3)0.081 (6)0.007 (3)0.001 (3)0.005 (4)
O80.052 (4)0.029 (3)0.090 (6)0.012 (3)0.045 (4)0.005 (3)
O110.049 (4)0.054 (4)0.049 (4)0.022 (3)0.006 (3)0.011 (3)
O60.034 (3)0.034 (3)0.080 (5)0.004 (2)0.025 (3)0.001 (3)
Bi10.02420 (17)0.01863 (16)0.02853 (18)0.00371 (9)0.00376 (9)0.00045 (9)
N10.030 (3)0.026 (3)0.024 (3)0.004 (2)0.004 (2)0.000 (2)
C50.032 (3)0.025 (3)0.032 (4)0.000 (3)0.003 (3)0.000 (3)
C10.025 (3)0.022 (3)0.026 (3)0.002 (2)0.003 (2)0.004 (2)
C30.060 (6)0.049 (5)0.030 (4)0.014 (4)0.012 (4)0.010 (4)
C70.039 (4)0.028 (3)0.042 (4)0.006 (3)0.004 (3)0.006 (3)
C20.041 (4)0.046 (5)0.037 (4)0.011 (4)0.006 (3)0.015 (4)
C40.045 (4)0.043 (4)0.027 (4)0.004 (3)0.006 (3)0.003 (3)
N40.037 (4)0.030 (3)0.063 (5)0.005 (3)0.019 (3)0.004 (3)
C150.035 (4)0.030 (3)0.025 (3)0.000 (3)0.001 (3)0.002 (3)
C160.032 (4)0.029 (3)0.039 (4)0.000 (3)0.005 (3)0.003 (3)
N30.045 (4)0.027 (3)0.043 (4)0.001 (3)0.010 (3)0.002 (3)
N50.051 (4)0.019 (3)0.069 (5)0.007 (3)0.024 (4)0.002 (3)
C170.037 (4)0.036 (4)0.055 (6)0.012 (3)0.013 (4)0.002 (4)
C190.053 (5)0.041 (4)0.044 (5)0.009 (4)0.013 (4)0.003 (4)
C180.033 (4)0.057 (6)0.052 (5)0.011 (4)0.015 (4)0.008 (4)
O30.044 (3)0.034 (3)0.036 (3)0.018 (2)0.007 (2)0.001 (2)
O70.029 (2)0.024 (2)0.048 (3)0.0006 (19)0.007 (2)0.004 (2)
O50.031 (3)0.024 (2)0.042 (3)0.0096 (19)0.014 (2)0.002 (2)
N20.027 (3)0.025 (3)0.026 (3)0.005 (2)0.006 (2)0.002 (2)
C80.033 (3)0.022 (3)0.029 (3)0.002 (2)0.006 (3)0.001 (2)
O40.082 (6)0.073 (5)0.042 (4)0.035 (5)0.015 (4)0.003 (4)
C140.033 (4)0.024 (3)0.043 (4)0.005 (3)0.008 (3)0.008 (3)
C130.027 (3)0.027 (3)0.032 (3)0.004 (2)0.008 (3)0.001 (3)
C120.028 (3)0.025 (3)0.035 (4)0.002 (2)0.005 (3)0.003 (3)
C90.026 (3)0.025 (3)0.046 (4)0.003 (2)0.008 (3)0.003 (3)
C110.028 (3)0.026 (3)0.043 (4)0.006 (3)0.007 (3)0.001 (3)
C100.036 (4)0.023 (3)0.048 (5)0.007 (3)0.006 (3)0.000 (3)
O10.030 (2)0.032 (2)0.023 (2)0.007 (2)0.0015 (19)0.0062 (19)
O20.067 (4)0.040 (3)0.039 (3)0.029 (3)0.002 (3)0.002 (3)
C60.027 (3)0.026 (3)0.029 (3)0.004 (2)0.006 (3)0.002 (3)
O90.045 (3)0.041 (3)0.049 (4)0.012 (3)0.010 (3)0.005 (3)
Geometric parameters (Å, º) top
O10—H10B0.80 (8)C15—C161.433 (11)
O10—H10A0.94 (8)C16—N51.362 (11)
O8—C141.239 (10)C16—C171.368 (12)
O11—H11A0.89 (8)N3—C191.374 (12)
O11—H11B0.92 (9)N3—H3A0.87 (14)
O6—C131.238 (9)N5—H5A0.8600
Bi1—O32.323 (6)N5—H5B0.8600
Bi1—O52.384 (6)C17—C181.396 (15)
Bi1—N22.409 (6)C17—H170.9300
Bi1—O72.447 (6)C19—C181.351 (15)
Bi1—N12.525 (6)C19—H190.9300
Bi1—O92.581 (7)C18—H180.9300
Bi1—O1i2.627 (5)O7—C141.255 (9)
Bi1—O12.673 (5)O5—C131.279 (9)
N1—C11.329 (9)N2—C121.325 (9)
N1—C51.333 (10)N2—C81.346 (9)
C5—C41.394 (11)C8—C91.377 (10)
C5—C71.504 (11)C8—C131.510 (10)
C1—C21.395 (10)C14—C121.522 (11)
C1—C61.516 (10)C12—C111.386 (10)
C3—C21.364 (14)C9—C101.394 (10)
C3—C41.398 (14)C9—H90.9300
C3—H30.9300C11—C101.381 (12)
C7—O41.224 (12)C11—H110.9300
C7—O31.266 (11)C10—H100.9300
C2—H20.9300O1—C61.275 (9)
C4—H40.9300O1—Bi1i2.627 (5)
N4—C151.310 (11)O2—C61.225 (10)
N4—H4A0.8600O9—H9A0.81 (7)
N4—H4B0.8600O9—H9B0.84 (8)
C15—N31.346 (10)
H10B—O10—H10A112 (9)N3—C15—C16117.8 (7)
H11A—O11—H11B91 (8)N5—C16—C17122.4 (8)
O3—Bi1—O587.5 (2)N5—C16—C15119.2 (7)
O3—Bi1—N273.7 (2)C17—C16—C15118.4 (8)
O5—Bi1—N267.26 (19)C15—N3—C19124.1 (8)
O3—Bi1—O774.0 (2)C15—N3—H3A113 (9)
O5—Bi1—O7133.22 (18)C19—N3—H3A122 (9)
N2—Bi1—O766.40 (19)C16—N5—H5A120.0
O3—Bi1—N166.3 (2)C16—N5—H5B120.0
O5—Bi1—N170.7 (2)H5A—N5—H5B120.0
N2—Bi1—N1122.1 (2)C16—C17—C18120.9 (8)
O7—Bi1—N1132.5 (2)C16—C17—H17119.6
O3—Bi1—O979.0 (3)C18—C17—H17119.6
O5—Bi1—O9140.1 (2)C18—C19—N3118.1 (9)
N2—Bi1—O9140.2 (2)C18—C19—H19121.0
O7—Bi1—O978.7 (2)N3—C19—H19121.0
N1—Bi1—O969.4 (2)C19—C18—C17120.7 (8)
O3—Bi1—O1i150.1 (2)C19—C18—H18119.6
O5—Bi1—O1i74.6 (2)C17—C18—H18119.6
N2—Bi1—O1i77.3 (2)C7—O3—Bi1124.9 (5)
O7—Bi1—O1i100.97 (19)C14—O7—Bi1119.0 (5)
N1—Bi1—O1i126.40 (18)C13—O5—Bi1121.0 (4)
O9—Bi1—O1i129.7 (2)C12—N2—C8119.8 (6)
O3—Bi1—O1128.33 (18)C12—N2—Bi1120.5 (5)
O5—Bi1—O176.04 (18)C8—N2—Bi1119.4 (5)
N2—Bi1—O1136.45 (19)N2—C8—C9122.5 (7)
O7—Bi1—O1147.79 (19)N2—C8—C13114.3 (6)
N1—Bi1—O161.99 (18)C9—C8—C13123.2 (7)
O9—Bi1—O183.3 (2)O8—C14—O7125.2 (8)
O1i—Bi1—O170.87 (18)O8—C14—C12117.1 (7)
C1—N1—C5120.5 (6)O7—C14—C12117.7 (7)
C1—N1—Bi1123.4 (5)O6—C13—O5122.5 (7)
C5—N1—Bi1116.0 (5)O6—C13—C8120.1 (7)
N1—C5—C4122.3 (7)O5—C13—C8117.4 (6)
N1—C5—C7115.4 (7)N2—C12—C11121.4 (7)
C4—C5—C7122.3 (8)N2—C12—C14114.3 (6)
N1—C1—C2120.7 (7)C11—C12—C14124.3 (7)
N1—C1—C6117.8 (6)C8—C9—C10117.5 (7)
C2—C1—C6121.5 (7)C8—C9—H9121.3
C2—C3—C4120.3 (8)C10—C9—H9121.3
C2—C3—H3119.8C10—C11—C12118.8 (7)
C4—C3—H3119.8C10—C11—H11120.6
O4—C7—O3124.9 (8)C12—C11—H11120.6
O4—C7—C5117.8 (8)C11—C10—C9119.9 (7)
O3—C7—C5117.3 (7)C11—C10—H10120.0
C3—C2—C1119.3 (8)C9—C10—H10120.0
C3—C2—H2120.3C6—O1—Bi1i124.2 (5)
C1—C2—H2120.3C6—O1—Bi1121.5 (5)
C5—C4—C3116.9 (8)Bi1i—O1—Bi1109.13 (18)
C5—C4—H4121.6O2—C6—O1125.5 (7)
C3—C4—H4121.6O2—C6—C1119.2 (7)
C15—N4—H4A120.0O1—C6—C1115.2 (6)
C15—N4—H4B120.0Bi1—O9—H9A105 (10)
H4A—N4—H4B120.0Bi1—O9—H9B106 (10)
N4—C15—N3118.1 (8)H9A—O9—H9B116 (10)
N4—C15—C16124.0 (7)
O3—Bi1—N1—C1178.5 (6)O1i—Bi1—O5—C1375.3 (6)
O5—Bi1—N1—C185.6 (6)O1—Bi1—O5—C13148.9 (6)
N2—Bi1—N1—C1131.0 (5)O3—Bi1—N2—C1286.6 (6)
O7—Bi1—N1—C1142.8 (5)O5—Bi1—N2—C12179.2 (6)
O9—Bi1—N1—C191.8 (6)O7—Bi1—N2—C127.3 (6)
O1i—Bi1—N1—C133.0 (6)N1—Bi1—N2—C12134.0 (6)
O1—Bi1—N1—C11.6 (5)O9—Bi1—N2—C1238.0 (7)
O3—Bi1—N1—C50.5 (5)O1i—Bi1—N2—C12100.8 (6)
O5—Bi1—N1—C596.4 (5)O1—Bi1—N2—C12144.4 (5)
N2—Bi1—N1—C551.0 (6)O3—Bi1—N2—C899.3 (6)
O7—Bi1—N1—C535.2 (6)O5—Bi1—N2—C85.1 (5)
O9—Bi1—N1—C586.2 (5)O7—Bi1—N2—C8178.5 (6)
O1i—Bi1—N1—C5149.0 (5)N1—Bi1—N2—C851.9 (6)
O1—Bi1—N1—C5179.6 (6)O9—Bi1—N2—C8147.8 (5)
C1—N1—C5—C42.4 (11)O1i—Bi1—N2—C873.3 (5)
Bi1—N1—C5—C4179.5 (6)O1—Bi1—N2—C829.8 (7)
C1—N1—C5—C7179.6 (7)C12—N2—C8—C91.7 (12)
Bi1—N1—C5—C72.4 (8)Bi1—N2—C8—C9175.9 (6)
C5—N1—C1—C21.1 (11)C12—N2—C8—C13177.3 (7)
Bi1—N1—C1—C2179.0 (6)Bi1—N2—C8—C133.1 (9)
C5—N1—C1—C6179.2 (6)Bi1—O7—C14—O8164.6 (8)
Bi1—N1—C1—C61.3 (9)Bi1—O7—C14—C1216.9 (10)
N1—C5—C7—O4177.7 (9)Bi1—O5—C13—O6169.5 (7)
C4—C5—C7—O40.5 (13)Bi1—O5—C13—C88.4 (10)
N1—C5—C7—O34.0 (11)N2—C8—C13—O6174.6 (8)
C4—C5—C7—O3178.8 (8)C9—C8—C13—O64.4 (13)
C4—C3—C2—C10.4 (16)N2—C8—C13—O53.3 (11)
N1—C1—C2—C30.2 (14)C9—C8—C13—O5177.7 (8)
C6—C1—C2—C3179.8 (9)C8—N2—C12—C111.8 (12)
N1—C5—C4—C32.6 (13)Bi1—N2—C12—C11175.9 (6)
C7—C5—C4—C3179.5 (9)C8—N2—C12—C14176.5 (7)
C2—C3—C4—C51.5 (15)Bi1—N2—C12—C142.4 (9)
N4—C15—C16—N52.3 (13)O8—C14—C12—N2171.6 (9)
N3—C15—C16—N5179.7 (9)O7—C14—C12—N29.8 (11)
N4—C15—C16—C17179.0 (9)O8—C14—C12—C116.6 (14)
N3—C15—C16—C171.0 (12)O7—C14—C12—C11172.0 (8)
N4—C15—N3—C19179.6 (9)N2—C8—C9—C100.8 (13)
C16—C15—N3—C191.5 (13)C13—C8—C9—C10178.1 (8)
N5—C16—C17—C18179.2 (11)N2—C12—C11—C101.0 (13)
C15—C16—C17—C180.6 (15)C14—C12—C11—C10177.1 (8)
C15—N3—C19—C181.4 (15)C12—C11—C10—C90.2 (13)
N3—C19—C18—C170.9 (17)C8—C9—C10—C110.1 (13)
C16—C17—C18—C190.6 (17)O3—Bi1—O1—C62.0 (7)
O4—C7—O3—Bi1178.0 (9)O5—Bi1—O1—C677.3 (6)
C5—C7—O3—Bi13.8 (11)N2—Bi1—O1—C6110.2 (6)
O5—Bi1—O3—C768.1 (7)O7—Bi1—O1—C6124.4 (6)
N2—Bi1—O3—C7135.2 (8)N1—Bi1—O1—C61.9 (5)
O7—Bi1—O3—C7155.3 (8)O9—Bi1—O1—C668.3 (6)
N1—Bi1—O3—C71.9 (7)O1i—Bi1—O1—C6155.5 (7)
O9—Bi1—O3—C774.1 (7)O3—Bi1—O1—Bi1i153.5 (2)
O1i—Bi1—O3—C7120.6 (7)O5—Bi1—O1—Bi1i78.3 (2)
O1—Bi1—O3—C71.8 (8)N2—Bi1—O1—Bi1i45.4 (4)
O3—Bi1—O7—C1491.9 (7)O7—Bi1—O1—Bi1i80.0 (4)
O5—Bi1—O7—C1421.3 (8)N1—Bi1—O1—Bi1i153.6 (3)
N2—Bi1—O7—C1413.0 (6)O9—Bi1—O1—Bi1i136.2 (3)
N1—Bi1—O7—C14125.7 (6)O1i—Bi1—O1—Bi1i0.0
O9—Bi1—O7—C14173.6 (7)Bi1i—O1—C6—O228.4 (11)
O1i—Bi1—O7—C1457.8 (7)Bi1—O1—C6—O2179.9 (7)
O1—Bi1—O7—C14129.2 (6)Bi1i—O1—C6—C1149.8 (5)
O3—Bi1—O5—C1380.5 (6)Bi1—O1—C6—C12.0 (8)
N2—Bi1—O5—C137.2 (6)N1—C1—C6—O2178.8 (8)
O7—Bi1—O5—C1315.4 (7)C2—C1—C6—O20.9 (12)
N1—Bi1—O5—C13146.3 (7)N1—C1—C6—O10.6 (10)
O9—Bi1—O5—C13150.0 (6)C2—C1—C6—O1179.1 (8)
Symmetry code: (i) x+1, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O11ii0.87 (14)2.02 (14)2.797 (10)148 (12)
N4—H4A···O2iii0.862.112.924 (9)158
N4—H4B···O6ii0.861.972.830 (10)178
N5—H5A···O3iv0.862.533.216 (10)138
N5—H5B···O6ii0.862.112.972 (10)176
O9—H9A···O8v0.81 (7)2.07 (12)2.746 (10)141 (15)
O9—H9B···O11vi0.84 (8)1.99 (10)2.771 (11)155 (15)
O10—H10A···O50.94 (8)1.96 (8)2.862 (9)160 (11)
O10—H10B···O7vii0.80 (8)2.21 (8)2.972 (10)160 (13)
O11—H11A···O4iv0.89 (8)2.01 (13)2.717 (11)136 (14)
O11—H11B···O10viii0.92 (9)1.96 (9)2.836 (12)158 (13)
C11—H11···O8ix0.932.263.050 (10)142
Symmetry codes: (ii) x+2, y+1, z+1; (iii) x+2, y, z+1; (iv) x+1, y+1, z+1; (v) x, y, z+2; (vi) x1, y1, z; (vii) x+1, y, z; (viii) x, y+1, z; (ix) x, y+1, z+2.

Experimental details

Crystal data
Chemical formula(C5H8N3)2[Bi2(C7H3NO4)4(H2O)2]·4H2O
Mr1406.76
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)9.3462 (19), 10.726 (2), 11.098 (2)
α, β, γ (°)95.13 (3), 91.38 (3), 90.47 (3)
V3)1107.7 (4)
Z1
Radiation typeMo Kα
µ (mm1)8.03
Crystal size (mm)0.33 × 0.27 × 0.23
Data collection
DiffractometerStoe IPDS2
diffractometer
Absorption correctionNumerical
(X-SHAPE and X-RED32; Stoe & Cie, 2005)
Tmin, Tmax0.083, 0.156
No. of measured, independent and
observed [I > 2σ(I)] reflections
12406, 5940, 5539
Rint0.113
(sin θ/λ)max1)0.686
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.154, 1.05
No. of reflections5940
No. of parameters347
No. of restraints9
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)2.98, 2.93

Computer programs: X-AREA (Stoe & Cie, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O11i0.87 (14)2.02 (14)2.797 (10)148 (12)
N4—H4A···O2ii0.862.112.924 (9)158
N4—H4B···O6i0.861.972.830 (10)178
N5—H5A···O3iii0.862.533.216 (10)138
N5—H5B···O6i0.862.112.972 (10)176
O9—H9A···O8iv0.81 (7)2.07 (12)2.746 (10)141 (15)
O9—H9B···O11v0.84 (8)1.99 (10)2.771 (11)155 (15)
O10—H10A···O50.94 (8)1.96 (8)2.862 (9)160 (11)
O10—H10B···O7vi0.80 (8)2.21 (8)2.972 (10)160 (13)
O11—H11A···O4iii0.89 (8)2.01 (13)2.717 (11)136 (14)
O11—H11B···O10vii0.92 (9)1.96 (9)2.836 (12)158 (13)
C11—H11···O8viii0.932.263.050 (10)142
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+2, y, z+1; (iii) x+1, y+1, z+1; (iv) x, y, z+2; (v) x1, y1, z; (vi) x+1, y, z; (vii) x, y+1, z; (viii) x, y+1, z+2.
 

Acknowledgements

We are grateful to the Islamic Azad University, North Tehran Branch, for financial support.

References

First citationAghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc. 5, 184–227.  CrossRef CAS Google Scholar
First citationAghabozorg, H., Moteieyan, E., Salimi, A. R., Mirzaei, M., Manteghi, F., Shokrollahi, A., Derki, S., Ghadermazi, M., Sheshmani, S. & Eshtiagh-Hosseini, H. (2010). Polyhedron, 29, 1453–1464.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheshmani, S., Kheirollahi, P. D., Aghabozorg, H., Shokrollahi, A., Kickelbick, G., Shamsipur, M., Ramezanipour, F. & Moghimi, A. (2005). Z. Anorg. Allg. Chem. 631, 3058–3065.  Web of Science CSD CrossRef Google Scholar
First citationStoe & Cie (2005). X-AREA, X-SHAPE and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 3| March 2011| Pages m360-m361
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds