organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(2,4-Di­fluoro­anilino)-9-nitro­dibenzo[b,e]oxepin-11(6H)-one

aInstitute of Pharmacy, Department of Pharmaceutical Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany, and bDepartment of Organic Chemistry, Johannes Gutenberg-University Mainz, Duessbergweg 10-14, 55099 Mainz, Germany
*Correspondence e-mail: stefan.laufer@uni-tuebingen.de

(Received 18 January 2011; accepted 21 January 2011; online 2 February 2011)

In the title compound, C20H12F2N2O4, the two benzene rings of the tricyclic unit are oriented at a dihedral angle of 30.6 (1)°. The 2,4-difluoro­anilino residue is oriented at a dihedral angle of 68.2 (1)° with respect to the phen­oxy ring. In the crystal, N—H⋯O hydrogen bonds between the amino group and the carbonyl O atom of the oxepinone ring link the mol­ecules into infinte chains along the c axis.

Related literature

For palladium-catalysed amination reactions of aryl halides with anilines, see: Jensen et al. (2004[Jensen, T. A., Liang, X., Tanner, D. & Skjaerbaek, N. (2004). J. Org. Chem. 69, 4936-4947]). For p38 MAP kinase inhibitors based on dibenzo[b,e]oxepin-11(6H)-one, see: Laufer et al. (2006[Laufer, S. A., Ahrens, G. M., Karcher, S. C., Hering, J. S. & Niess, R. (2006). J. Med. Chem. 49, 7912-7915.]).

[Scheme 1]

Experimental

Crystal data
  • C20H12F2N2O4

  • Mr = 382.32

  • Orthorhombic, P n a 21

  • a = 27.0813 (15) Å

  • b = 13.0411 (8) Å

  • c = 4.5998 (2) Å

  • V = 1624.51 (15) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.08 mm−1

  • T = 193 K

  • 0.47 × 0.24 × 0.12 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: numerical (CORINC; Dräger & Gattow, 1971[Dräger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761-762.]) Tmin = 0.721, Tmax = 0.882

  • 3417 measured reflections

  • 3010 independent reflections

  • 2924 reflections with I > 2σ(I)

  • Rint = 0.051

  • 3 standard reflections every 60 min intensity decay: 3%

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.127

  • S = 1.03

  • 3010 reflections

  • 253 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.20 e Å−3

  • Absolute structure: Flack, (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1270 Friedel pairs

  • Flack parameter: −0.22 (18)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N16—H16⋯O25i 0.95 2.32 3.236 (3) 162
Symmetry code: (i) [-x+1, -y+1, z+{\script{1\over 2}}].

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: CORINC (Dräger & Gattow, 1971[Dräger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761-762.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

Based on dibenzo[b,e]oxepin-11(6H)-one (Laufer et al. 2006) as p38 MAP kinase inhibitors, our intent was to synthesize disubstituted oxepin derivatives. The title compound was synthesized in the course of an ongoing study to increase the solubility of the molecules. The structure of the title compound, at 193 K shows orthorhombic symmetry. The two phenyl rings of the tricyclic unit are oriented at a dihedral angle of 30.6 (1°). The 2,4-difluoroanilino residue is oriented at a dihedral angel of 68.2 (1°) towards the phenoxy ring. The crystal stucture is characterized by an intermolecular hydrogen bond N16–H···O25 (2.32 Å).

Related literature top

For palladium-catalysed amination reactions of aryl halides with anilines, see: Jensen et al. (2004). For p38 MAP kinase inhibitors based on dibenzo[b,e]oxepin-11(6H)-one, see: Laufer et al. (2006).

Experimental top

For the preperation of the title compound a mixture of 200 mg (0.69 mmol) 3-chloro-9-nitrodibenzo[b,e]oxepin-11(6H)-one, 100 mg (0.77 mmol) 2–4-difluoroaniline, 1.00 g (3.07 mmol) Cs2CO3, 45 mg (0.10 mmol) 2-(dicyclohexylphosphino)-2`-4`-6`-triisopropylbiphenyl and 20 mg (0.09 mmol) Pd(OAc)2 in 2 ml absolute tert-butanol and 10 ml absolute 2.4-dioxane was stirred for 1 h at 284 K under an argon atmosphere. The mixture was then filtered and evaporated under reduced pressure. The residue was purified by flash chromatography (SiO2 n-hexane/ethyl acetate 2:1) to get 103 mg (0,27 mmol) of the product as a yellow solid (yield 39 %). Crystals of the title compound were obtained by slow evaporation of diethyl ether and hexane (1:1) at room temperature.

Refinement top

Hydrogen atoms attached to carbons were placed at calculated positions with C—H = 0.95 Å (aromatic) or 0.98–0.99 Å (sp3 C-atom). Hydrogen atom attached to nitrogen was located in diff. Fourier maps. All H atoms were refined in the riding-model approximation with isotropic displacement parameters (set at 1.2–1.5 times of the Ueq of the parent atom). The absolute structure was determined on the basis of 1270 Friedel pairs.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: CORINC (Dräger & Gattow, 1971); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of compound I. Displacement ellipsoids are drawn at the 50% probability level.
3-(2,4-Difluoroanilino)-9-nitrodibenzo[b,e]oxepin- 11(6H)-one top
Crystal data top
C20H12F2N2O4F(000) = 784
Mr = 382.32Dx = 1.563 Mg m3
Orthorhombic, Pna21Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2c -2nCell parameters from 25 reflections
a = 27.0813 (15) Åθ = 65–69°
b = 13.0411 (8) ŵ = 1.08 mm1
c = 4.5998 (2) ÅT = 193 K
V = 1624.51 (15) Å3Needle, yellow
Z = 40.47 × 0.24 × 0.12 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
2924 reflections with I > 2σ(I)
Radiation source: rotating anodeRint = 0.051
Graphite monochromatorθmax = 69.8°, θmin = 3.3°
ω/2θ scansh = 3333
Absorption correction: numerical
(CORINC; Dräger & Gattow, 1971)
k = 1515
Tmin = 0.721, Tmax = 0.882l = 55
3417 measured reflections3 standard reflections every 60 min
3010 independent reflections intensity decay: 3%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.127 w = 1/[σ2(Fo2) + (0.0989P)2 + 0.3414P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.023
3010 reflectionsΔρmax = 0.17 e Å3
253 parametersΔρmin = 0.20 e Å3
1 restraintAbsolute structure: Flack, (1983), 1270 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.22 (18)
Crystal data top
C20H12F2N2O4V = 1624.51 (15) Å3
Mr = 382.32Z = 4
Orthorhombic, Pna21Cu Kα radiation
a = 27.0813 (15) ŵ = 1.08 mm1
b = 13.0411 (8) ÅT = 193 K
c = 4.5998 (2) Å0.47 × 0.24 × 0.12 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
2924 reflections with I > 2σ(I)
Absorption correction: numerical
(CORINC; Dräger & Gattow, 1971)
Rint = 0.051
Tmin = 0.721, Tmax = 0.8823 standard reflections every 60 min
3417 measured reflections intensity decay: 3%
3010 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.127Δρmax = 0.17 e Å3
S = 1.03Δρmin = 0.20 e Å3
3010 reflectionsAbsolute structure: Flack, (1983), 1270 Friedel pairs
253 parametersAbsolute structure parameter: 0.22 (18)
1 restraint
Special details top

Experimental. 1H NMR (200 MHz, DMSO-d~6~) δ in p.p.m. 5.32 (s, 2 H), 6.26 (m, 1 H), 6.65 (dd, J=8.65, 1.96 Hz, 1 H), 7.11 (m, 1 H), 7.39 (m, 2 H), 7.82 (m, 1 H), 8.02 (d, J=8.97 Hz, 1 H), 8.41 (dd, J=8.21, 2.53 Hz, 1 H), 8.52 (d, J=2.40 Hz, 1 H), 8.85 (s, NH,1 H).

13C NMR (50 MHz, DMSO-d~6~) δ in p.p.m. 72.5, 102.1, 110.5, 116.5, 124.3, 127.0, 130.4, 134.1, 141.1, 142.9, 148.3, 152.9, 163.4, 185.1, C—F not detected.

GC/MS, m/z (%) 382 (100, M+), 308 (12), 152 (9), 98 (7), 63 (1).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.58864 (5)0.24963 (11)0.3890 (3)0.0240 (3)
C20.56177 (7)0.30020 (15)0.5965 (4)0.0215 (4)
C30.51656 (8)0.25513 (16)0.6587 (5)0.0242 (4)
H30.50680.19470.55870.029*
C40.48548 (8)0.29789 (17)0.8665 (5)0.0245 (4)
C50.50161 (8)0.38484 (16)1.0212 (5)0.0242 (4)
H50.48180.41231.17280.029*
C60.54556 (8)0.42947 (15)0.9536 (5)0.0234 (4)
H60.55560.48821.06050.028*
C70.57698 (7)0.39218 (15)0.7306 (4)0.0216 (4)
C80.61655 (7)0.46277 (15)0.6377 (4)0.0222 (4)
C90.65513 (7)0.43587 (15)0.4150 (5)0.0215 (4)
C100.68194 (8)0.51865 (17)0.3032 (5)0.0248 (4)
H100.67520.58650.36700.030*
C110.71823 (7)0.50081 (16)0.0997 (5)0.0262 (5)
C120.73012 (8)0.40368 (18)0.0000 (5)0.0275 (5)
H120.75510.39360.14230.033*
C130.70420 (7)0.32175 (17)0.1161 (5)0.0253 (5)
H130.71200.25410.05500.030*
C140.66696 (7)0.33663 (16)0.3204 (5)0.0223 (4)
C150.64067 (7)0.24498 (15)0.4420 (5)0.0253 (5)
H15A0.65420.18200.35250.030*
H15B0.64660.24120.65410.030*
N160.43947 (7)0.25975 (16)0.9317 (5)0.0341 (5)
H160.41910.30401.04350.041*
C170.41597 (8)0.18098 (18)0.7713 (5)0.0287 (5)
C180.37502 (8)0.20134 (19)0.5998 (6)0.0352 (5)
H180.36310.26970.58600.042*
C190.35112 (10)0.1240 (2)0.4481 (7)0.0434 (6)
H190.32260.13810.33450.052*
C200.36991 (10)0.0266 (2)0.4670 (6)0.0407 (6)
C210.41046 (10)0.00166 (19)0.6308 (7)0.0409 (6)
H210.42290.06640.63840.049*
C220.43238 (9)0.0805 (2)0.7842 (6)0.0355 (6)
F230.34769 (7)0.04940 (15)0.3148 (5)0.0629 (6)
F240.47133 (6)0.05902 (13)0.9539 (5)0.0558 (5)
O250.61751 (6)0.55042 (11)0.7364 (4)0.0302 (4)
N260.74461 (7)0.58919 (15)0.0221 (5)0.0315 (4)
O270.73855 (7)0.67347 (14)0.0898 (5)0.0476 (5)
O280.77170 (7)0.57374 (15)0.2321 (5)0.0434 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0251 (7)0.0263 (7)0.0205 (8)0.0019 (5)0.0021 (6)0.0047 (6)
C20.0275 (9)0.0227 (10)0.0143 (9)0.0030 (7)0.0011 (8)0.0020 (8)
C30.0306 (10)0.0249 (10)0.0171 (10)0.0024 (8)0.0015 (9)0.0011 (8)
C40.0270 (10)0.0287 (10)0.0179 (11)0.0006 (8)0.0009 (8)0.0029 (8)
C50.0303 (10)0.0286 (11)0.0137 (10)0.0044 (8)0.0011 (8)0.0012 (8)
C60.0327 (10)0.0243 (9)0.0132 (10)0.0013 (8)0.0043 (8)0.0005 (8)
C70.0253 (9)0.0251 (10)0.0142 (10)0.0013 (8)0.0036 (8)0.0021 (8)
C80.0271 (9)0.0210 (9)0.0184 (10)0.0019 (7)0.0060 (8)0.0015 (8)
C90.0230 (9)0.0245 (9)0.0170 (10)0.0001 (8)0.0063 (8)0.0033 (8)
C100.0283 (10)0.0227 (9)0.0234 (11)0.0015 (8)0.0083 (9)0.0037 (8)
C110.0246 (9)0.0300 (11)0.0239 (11)0.0059 (8)0.0052 (8)0.0067 (9)
C120.0252 (9)0.0333 (11)0.0239 (11)0.0003 (8)0.0023 (9)0.0038 (9)
C130.0256 (9)0.0261 (10)0.0241 (11)0.0017 (8)0.0032 (9)0.0014 (8)
C140.0218 (9)0.0249 (10)0.0201 (10)0.0013 (7)0.0055 (8)0.0019 (8)
C150.0266 (10)0.0220 (10)0.0275 (11)0.0005 (7)0.0022 (9)0.0028 (9)
N160.0318 (9)0.0404 (11)0.0301 (11)0.0050 (8)0.0088 (9)0.0101 (9)
C170.0274 (10)0.0336 (11)0.0250 (12)0.0039 (8)0.0078 (9)0.0015 (9)
C180.0338 (11)0.0355 (13)0.0363 (14)0.0036 (9)0.0046 (10)0.0016 (11)
C190.0371 (12)0.0532 (15)0.0400 (16)0.0028 (11)0.0025 (12)0.0075 (13)
C200.0447 (14)0.0424 (13)0.0349 (15)0.0147 (11)0.0132 (11)0.0110 (11)
C210.0444 (12)0.0287 (12)0.0495 (16)0.0035 (10)0.0142 (12)0.0015 (12)
C220.0309 (11)0.0381 (12)0.0373 (14)0.0009 (9)0.0052 (11)0.0077 (11)
F230.0677 (11)0.0604 (11)0.0606 (12)0.0257 (9)0.0120 (10)0.0305 (10)
F240.0483 (9)0.0541 (10)0.0649 (12)0.0051 (7)0.0134 (9)0.0171 (9)
O250.0352 (8)0.0244 (8)0.0311 (9)0.0034 (6)0.0017 (7)0.0047 (7)
N260.0312 (9)0.0318 (10)0.0314 (11)0.0070 (8)0.0010 (9)0.0060 (9)
O270.0584 (11)0.0300 (9)0.0545 (13)0.0103 (8)0.0147 (10)0.0022 (8)
O280.0460 (9)0.0441 (10)0.0402 (11)0.0120 (8)0.0137 (9)0.0031 (9)
Geometric parameters (Å, º) top
O1—C21.370 (2)C12—H120.9500
O1—C151.431 (3)C13—C141.392 (3)
C2—C31.388 (3)C13—H130.9500
C2—C71.410 (3)C14—C151.499 (3)
C3—C41.390 (3)C15—H15A0.9900
C3—H30.9500C15—H15B0.9900
C4—N161.375 (3)N16—C171.416 (3)
C4—C51.408 (3)N16—H160.9504
C5—C61.361 (3)C17—C181.387 (3)
C5—H50.9500C17—C221.385 (3)
C6—C71.419 (3)C18—C191.387 (4)
C6—H60.9500C18—H180.9500
C7—C81.476 (3)C19—C201.371 (4)
C8—O251.230 (3)C19—H190.9500
C8—C91.504 (3)C20—F231.355 (3)
C9—C101.399 (3)C20—C211.371 (4)
C9—C141.403 (3)C21—C221.381 (4)
C10—C111.377 (3)C21—H210.9500
C10—H100.9500C22—F241.341 (3)
C11—C121.385 (3)N26—O271.225 (3)
C11—N261.467 (3)N26—O281.230 (3)
C12—C131.385 (3)
C2—O1—C15115.13 (16)C12—C13—H13119.3
O1—C2—C3114.11 (19)C14—C13—H13119.3
O1—C2—C7123.99 (18)C13—C14—C9120.24 (19)
C3—C2—C7121.85 (19)C13—C14—C15119.00 (19)
C2—C3—C4120.4 (2)C9—C14—C15120.75 (19)
C2—C3—H3119.8O1—C15—C14111.72 (16)
C4—C3—H3119.8O1—C15—H15A109.3
N16—C4—C3123.6 (2)C14—C15—H15A109.3
N16—C4—C5117.53 (19)O1—C15—H15B109.3
C3—C4—C5118.85 (19)C14—C15—H15B109.3
C6—C5—C4120.02 (19)H15A—C15—H15B107.9
C6—C5—H5120.0C4—N16—C17123.8 (2)
C4—C5—H5120.0C4—N16—H16115.2
C5—C6—C7122.89 (19)C17—N16—H16117.5
C5—C6—H6118.6C18—C17—C22117.5 (2)
C7—C6—H6118.6C18—C17—N16121.1 (2)
C2—C7—C6115.63 (18)C22—C17—N16121.3 (2)
C2—C7—C8128.01 (18)C17—C18—C19121.4 (2)
C6—C7—C8115.54 (18)C17—C18—H18119.3
O25—C8—C7119.20 (19)C19—C18—H18119.3
O25—C8—C9116.95 (18)C20—C19—C18117.9 (2)
C7—C8—C9123.78 (18)C20—C19—H19121.0
C10—C9—C14118.6 (2)C18—C19—H19121.0
C10—C9—C8115.52 (18)F23—C20—C19118.7 (3)
C14—C9—C8125.81 (18)F23—C20—C21117.8 (3)
C11—C10—C9119.3 (2)C19—C20—C21123.5 (2)
C11—C10—H10120.3C20—C21—C22116.6 (2)
C9—C10—H10120.3C20—C21—H21121.7
C10—C11—C12123.1 (2)C22—C21—H21121.7
C10—C11—N26118.3 (2)F24—C22—C21118.7 (2)
C12—C11—N26118.6 (2)F24—C22—C17118.3 (2)
C11—C12—C13117.4 (2)C21—C22—C17123.0 (2)
C11—C12—H12121.3O27—N26—O28123.8 (2)
C13—C12—H12121.3O27—N26—C11118.7 (2)
C12—C13—C14121.3 (2)O28—N26—C11117.5 (2)
C15—O1—C2—C3140.97 (18)C12—C13—C14—C90.5 (3)
C15—O1—C2—C741.3 (3)C12—C13—C14—C15179.1 (2)
O1—C2—C3—C4179.62 (18)C10—C9—C14—C130.9 (3)
C7—C2—C3—C42.6 (3)C8—C9—C14—C13178.83 (19)
C2—C3—C4—N16177.5 (2)C10—C9—C14—C15177.64 (19)
C2—C3—C4—C52.8 (3)C8—C9—C14—C150.3 (3)
N16—C4—C5—C6176.1 (2)C2—O1—C15—C1488.1 (2)
C3—C4—C5—C64.2 (3)C13—C14—C15—O1121.5 (2)
C4—C5—C6—C70.2 (3)C9—C14—C15—O159.9 (3)
O1—C2—C7—C6176.19 (18)C3—C4—N16—C178.2 (4)
C3—C2—C7—C66.3 (3)C5—C4—N16—C17172.1 (2)
O1—C2—C7—C814.7 (3)C4—N16—C17—C18110.1 (3)
C3—C2—C7—C8162.8 (2)C4—N16—C17—C2271.2 (3)
C5—C6—C7—C24.9 (3)C22—C17—C18—C190.4 (4)
C5—C6—C7—C8165.57 (19)N16—C17—C18—C19178.4 (2)
C2—C7—C8—O25162.9 (2)C17—C18—C19—C201.5 (4)
C6—C7—C8—O256.2 (3)C18—C19—C20—F23178.5 (2)
C2—C7—C8—C914.0 (3)C18—C19—C20—C211.0 (4)
C6—C7—C8—C9176.95 (17)F23—C20—C21—C22179.9 (2)
O25—C8—C9—C1011.8 (3)C19—C20—C21—C220.6 (4)
C7—C8—C9—C10165.16 (18)C20—C21—C22—F24178.1 (2)
O25—C8—C9—C14166.2 (2)C20—C21—C22—C171.8 (4)
C7—C8—C9—C1416.9 (3)C18—C17—C22—F24178.6 (2)
C14—C9—C10—C111.4 (3)N16—C17—C22—F240.1 (3)
C8—C9—C10—C11179.54 (17)C18—C17—C22—C211.3 (4)
C9—C10—C11—C120.6 (3)N16—C17—C22—C21179.9 (2)
C9—C10—C11—N26177.82 (18)C10—C11—N26—O2710.3 (3)
C10—C11—C12—C130.8 (3)C12—C11—N26—O27171.3 (2)
N26—C11—C12—C13179.2 (2)C10—C11—N26—O28169.8 (2)
C11—C12—C13—C141.3 (3)C12—C11—N26—O288.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N16—H16···O25i0.952.323.236 (3)162
Symmetry code: (i) x+1, y+1, z+1/2.

Experimental details

Crystal data
Chemical formulaC20H12F2N2O4
Mr382.32
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)193
a, b, c (Å)27.0813 (15), 13.0411 (8), 4.5998 (2)
V3)1624.51 (15)
Z4
Radiation typeCu Kα
µ (mm1)1.08
Crystal size (mm)0.47 × 0.24 × 0.12
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionNumerical
(CORINC; Dräger & Gattow, 1971)
Tmin, Tmax0.721, 0.882
No. of measured, independent and
observed [I > 2σ(I)] reflections
3417, 3010, 2924
Rint0.051
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.127, 1.03
No. of reflections3010
No. of parameters253
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.20
Absolute structureFlack, (1983), 1270 Friedel pairs
Absolute structure parameter0.22 (18)

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), CORINC (Dräger & Gattow, 1971), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N16—H16···O25i0.952.323.236 (3)162
Symmetry code: (i) x+1, y+1, z+1/2.
 

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDräger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761–762.  Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJensen, T. A., Liang, X., Tanner, D. & Skjaerbaek, N. (2004). J. Org. Chem. 69, 4936–4947  Web of Science CrossRef PubMed CAS Google Scholar
First citationLaufer, S. A., Ahrens, G. M., Karcher, S. C., Hering, J. S. & Niess, R. (2006). J. Med. Chem. 49, 7912–7915.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds