metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di-μ2-methoxo-bis­­{[μ-3,10,18,25-tetra­aza­penta­cyclo­[17.4.4.3.1.1]triconta-1(31),2,4(9),5,7,10,12,14,16(32),17,19(24),20,22,25,27,29-hexa­deca­ene-31,32-diolato]dizinc(II)} bis­­(perchlorate) N,N-di­methyl­formamide disolvate

aMedicinal Chemistry and Drug Action, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia, and bSchool of Chemistry, Monash University, Clayton, Victoria 3800, Australia
*Correspondence e-mail: bim.graham@pharm.monash.edu.au

(Received 27 January 2011; accepted 16 February 2011; online 23 February 2011)

The title compound, [Zn4(C28H18N4O2)2(CH3O)2](ClO4)2·2C3H7NO, is a C2 symmetric tetra­nuclear zinc(II) complex comprised of two [Zn2L]2+ units bridged by a pair of μ2-OMe ligands (where L is the doubly-deprotonated form of the macrocyclic dinucleating ligand derived from the [2 + 2] Schiff base condensation between 2-hy­droxy­benzene-1,3-dicarbaldehyde and 1,2-diamino­benzene). Each ZnII atom has a distorted square-pyramidal coordination geometry and the Zn4(μ-OMe)2 unit lies in the cleft formed by two distinctly bent Schiff base ligands. The observed mol­ecular shape is supported by an intra­molecular ππ inter­action between one of the phenolate rings on each of the two ligands [centroid–centroid distance = 3.491 (5) Å]. The methyl groups of the solvent molecule are disordered over two sets of sites in a 0.6:0.4 ratio.

Related literature

For the first examples of polynuclear transition metal complexes of Schiff base macrocyclic ligands, see: Pilkington & Robson (1970[Pilkington, N. H. & Robson, R. (1970). Aust. J. Chem. 23, 2226-2236.]). For complexes comprising of macrocyclic ligands derived from 2-hy­droxy-benzene-1,3-dicarbaldehyde and diamines or triamines, see: Vigato et al. (1990[Vigato, P. A., Tamburini, S. & Fenton, D. E. (1990). Coord. Chem. Rev. 106, 25-170.], 2007[Vigato, P. A., Tamburini, S. & Bertolo, L. (2007). Coord. Chem. Rev. 251, 1311-1492.]); Huang et al. (2006[Huang, W., Zhu, H. B. & Gou, S. H. (2006). Coord. Chem. Rev. 250, 414-423.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn4(C28H18N4O2)2(CH3O)2](ClO4)2·2C3H7NO

  • Mr = 1553.57

  • Monoclinic, C 2/c

  • a = 30.9454 (4) Å

  • b = 10.4512 (2) Å

  • c = 20.5774 (4) Å

  • β = 112.019 (1)°

  • V = 6169.65 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.70 mm−1

  • T = 123 K

  • 0.20 × 0.20 × 0.13 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.]) Tmin = 0.92, Tmax = 1.0

  • 32276 measured reflections

  • 6063 independent reflections

  • 4245 reflections with I > 2σ(I)

  • Rint = 0.074

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.123

  • S = 1.03

  • 6063 reflections

  • 453 parameters

  • 17 restraints

  • H-atom parameters constrained

  • Δρmax = 0.86 e Å−3

  • Δρmin = −0.47 e Å−3

Data collection: COLLECT (Nonius, 2004[Nonius (2004). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997)[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]; data reduction: DENZO-SMN[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: CIFTAB (Sheldrick, 1997[Sheldrick, G. M. (1997). CIFTAB. University of Göttingen, Germany.]).

Supporting information


Comment top

The molecular structure of [Zn4L2(CH3O)2](ClO4)2 × 2 DMF (1) (Figure 1) features two Schiff base ligands, each of which coordinates a pair of zinc(II) centres. The dinuclear subunits are then bridged by two exogenous methoxo ligands. The two independent zinc(II) atoms have similar square-pyramidal coordination environments. The basal plane consists of nitrogen and oxygen atoms of the Schiff base ligand (mean deviation Zn1 0.004 (3) Å, Zn2 0.019 (3) Å); Zn1 and Zn2 lie out of these basal planes by 0.644 (1) and 0.654 (1) Å, respectively. The oxygen atoms, O3 and O3i (symmetry code: i 1 - x, y, 0.5 - z), of the bridging methoxo ligands occupy the apical positions. The two zinc(II) centres within each macrocyclic cavity are separated by 3.0136 (6) Å, whilst those bridged by the methoxo ligand are situated 3.4458 (5) Å apart.

Within the cation, there is an aromatic π-π interaction between the phenolic ring (C8—C13) from each of the Schiff base ligands. The centroid-centroid separation between them is 3.491 (5) Å and there is a distinct bending of the Schiff base ligand with the C8—C13 ring forming an angle of 27.44 (9) ° to the N1, N2, N3, N4 plane (cf 4.1 (1) ° for the other phenolic ring C15—C20). Overall, the cation adopts a 'cleft-shaped' structure with the associated ClO4- anions and DMF molecules located near the periphery of the cleft opening.

Related literature top

For the first examples of polynuclear transition metal complexes of Schiff base macrocyclic ligands, see: Pilkington & Robson (1970). For complexes comprising of macrocyclic ligands derived from 2-hydroxy-benzene-1,3-dicarbaldehyde and diamines or triamines, see: Vigato et al. (1990, 2007); Huang et al. (2006).

Experimental top

A solution of 2-hydroxy-benzene-1,3-dicarbaldehyde (2 mmol) in ethanol (10 ml) was added dropwise to a stirred solution of Zn(ClO4)2 × 6 H2O (2 mmol) and 1,2-diaminobenzene (2 mmol) in ethanol (20 ml). Triethylamine (2 mmol) was then added and the reaction mixture was stirred for 3 h at room temperature. The solvent was removed in vacuo and the resulting solid was recrystallized by slow diffusion of methanol into an N,N-dimethylformamide solution to give the title compound as yellow blocks in 64% yield. IR (cm-1): 622 (ClO4), 1090 (ClO4), 1540 (C=C), 1615 (C=N). CAUTION: Although no problems were encountered in this work transition metal perchlorates are potentially explosive. They should be prepared in small quantities and handled with care.

Refinement top

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances in the range 0.95–1.00 Å and Uiso(H) = 1.2–1.5 Ueq(C).

The methyl groups of the solvent DMF molecule, C31 and C32, were modeled as disordered over two positions 0.8 Å apart (refinined occupancies 0.60:0.40) and were refined with constrained N—C distances and anisotropic thermal parameters.

Computing details top

Data collection: COLLECT (Nonius, 2004); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: CIFTAB (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. A view of the complex cation of (I) showing labeling of selected non-hydrogen atoms. Displacement ellipsoids are drawn at the 50% probability level and hydrogen atoms have been omitted for clarity. Atoms denoted 'i' are generated by the symmetry operator: 1 - x, y, 0.5 - z.
Di-µ2-methoxo-bis{[µ-3,10,18,25-tetraazapentacyclo[17.4.4.3.1.1]triconta- 1(31),2,4(9),5,7,10,12,14,16 (32),17,19 (24),20,22,25,27,29-hexadecaene-31,32- diolato]dizinc(II)} bis(perchlorate) N,N-dimethylformamide disolvate top
Crystal data top
[Zn4(C28H18N4O2)2(CH3O)2](ClO4)2·2C3H7NOF(000) = 3168
Mr = 1553.57Dx = 1.673 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3613 reflections
a = 30.9454 (4) Åθ = 2.1–26.0°
b = 10.4512 (2) ŵ = 1.70 mm1
c = 20.5774 (4) ÅT = 123 K
β = 112.019 (1)°Block, yellow
V = 6169.65 (19) Å30.20 × 0.20 × 0.13 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
6063 independent reflections
Radiation source: fine-focus sealed tube4245 reflections with I > 2σ(I)
Horizonally mounted graphite crystal monochromatorRint = 0.074
Detector resolution: 9 pixels mm-1θmax = 26.0°, θmin = 2.1°
Thin–slice ϕ and ω scansh = 3838
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
k = 1212
Tmin = 0.92, Tmax = 1.0l = 2525
32276 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0611P)2 + 14.7497P]
where P = (Fo2 + 2Fc2)/3
6063 reflections(Δ/σ)max = 0.001
453 parametersΔρmax = 0.86 e Å3
17 restraintsΔρmin = 0.47 e Å3
Crystal data top
[Zn4(C28H18N4O2)2(CH3O)2](ClO4)2·2C3H7NOV = 6169.65 (19) Å3
Mr = 1553.57Z = 4
Monoclinic, C2/cMo Kα radiation
a = 30.9454 (4) ŵ = 1.70 mm1
b = 10.4512 (2) ÅT = 123 K
c = 20.5774 (4) Å0.20 × 0.20 × 0.13 mm
β = 112.019 (1)°
Data collection top
Nonius KappaCCD
diffractometer
6063 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
4245 reflections with I > 2σ(I)
Tmin = 0.92, Tmax = 1.0Rint = 0.074
32276 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04517 restraints
wR(F2) = 0.123H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0611P)2 + 14.7497P]
where P = (Fo2 + 2Fc2)/3
6063 reflectionsΔρmax = 0.86 e Å3
453 parametersΔρmin = 0.47 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

The methyl groups of the solvent DMF molecule, C31 and C32, were modeled as disordered over two positions 0.8 Å apart (refined occupancies 0.60:0.40) and were refined with constrained N—C distances and anisotropic thermal parameters.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.544502 (14)0.56311 (4)0.36676 (2)0.01940 (13)
Zn20.440196 (15)0.56125 (4)0.29071 (2)0.01988 (13)
Cl30.84640 (4)0.42735 (11)0.41666 (5)0.0349 (3)
O10.49269 (8)0.6907 (2)0.31948 (12)0.0221 (6)
O20.48877 (9)0.4672 (2)0.37215 (13)0.0246 (6)
O30.56028 (9)0.4799 (2)0.29429 (12)0.0211 (6)
O40.66347 (13)0.0167 (4)0.36447 (19)0.0604 (10)
O50.80381 (13)0.4340 (5)0.4259 (2)0.0914 (17)
O60.84744 (12)0.5253 (4)0.3665 (2)0.0599 (10)
O70.88417 (12)0.4450 (4)0.48234 (17)0.0586 (10)
O80.85150 (17)0.3080 (4)0.38887 (19)0.0873 (15)
N10.58342 (11)0.4818 (3)0.46159 (16)0.0232 (7)
N20.58800 (11)0.7109 (3)0.40917 (16)0.0240 (7)
N30.39402 (11)0.7064 (3)0.27061 (16)0.0239 (7)
N40.39069 (11)0.4756 (3)0.32117 (16)0.0236 (7)
N50.68833 (17)0.1882 (4)0.3794 (3)0.0628 (13)
C10.62745 (13)0.5440 (4)0.48975 (19)0.0245 (9)
C20.63005 (13)0.6653 (4)0.46105 (19)0.0256 (9)
C30.67245 (15)0.7315 (5)0.4850 (2)0.0376 (11)
H30.67470.81280.46580.045*
C40.71091 (15)0.6788 (5)0.5362 (2)0.0424 (12)
H40.73950.72450.55240.051*
C50.70858 (15)0.5603 (5)0.5645 (2)0.0374 (11)
H50.73550.52560.59990.045*
C60.66721 (14)0.4916 (4)0.5414 (2)0.0319 (10)
H60.66580.40960.56050.038*
C70.57915 (14)0.8310 (4)0.3979 (2)0.0266 (9)
H70.60430.88880.41850.032*
C80.53386 (14)0.8859 (4)0.35607 (19)0.0230 (8)
C90.49187 (13)0.8162 (4)0.32477 (18)0.0214 (8)
C100.44868 (14)0.8847 (4)0.30100 (18)0.0243 (9)
C110.44939 (15)1.0188 (4)0.3043 (2)0.0306 (10)
H110.42071.06420.28840.037*
C120.49064 (15)1.0866 (4)0.3302 (2)0.0322 (10)
H120.49041.17740.32950.039*
C130.53222 (16)1.0211 (4)0.3570 (2)0.0304 (10)
H130.56051.06790.37650.037*
C140.40247 (14)0.8270 (4)0.27734 (19)0.0270 (9)
H140.37650.88320.26600.032*
C150.34817 (13)0.6556 (4)0.2554 (2)0.0270 (9)
C160.34680 (13)0.5339 (4)0.2840 (2)0.0260 (9)
C170.30367 (14)0.4767 (5)0.2720 (2)0.0348 (10)
H170.30220.39530.29160.042*
C180.26309 (16)0.5393 (5)0.2314 (2)0.0390 (11)
H180.23370.50080.22350.047*
C190.26487 (15)0.6566 (5)0.2025 (2)0.0409 (12)
H190.23670.69740.17390.049*
C200.30707 (15)0.7164 (4)0.2143 (2)0.0356 (10)
H200.30790.79810.19450.043*
C210.39648 (14)0.3803 (4)0.36304 (19)0.0256 (9)
H210.36920.34290.36580.031*
C220.44099 (13)0.3244 (4)0.40659 (19)0.0239 (9)
C230.48531 (13)0.3777 (4)0.41457 (19)0.0228 (8)
C240.52560 (14)0.3311 (4)0.46991 (19)0.0256 (9)
C250.52120 (15)0.2229 (4)0.5082 (2)0.0285 (9)
H250.54820.19020.54440.034*
C260.47916 (15)0.1639 (4)0.4945 (2)0.0310 (10)
H260.47750.08720.51820.037*
C270.43931 (15)0.2168 (4)0.4462 (2)0.0281 (9)
H270.41000.17940.43950.034*
C280.57110 (14)0.3906 (4)0.49350 (19)0.0262 (9)
H280.59390.36010.53610.031*
C290.5691 (2)0.3485 (4)0.3017 (2)0.0519 (14)
H29A0.54060.30160.27470.078*
H29B0.57930.32500.35130.078*
H29C0.59360.32690.28420.078*
C300.67208 (19)0.0813 (6)0.3976 (3)0.0556 (15)
H300.66690.08280.44030.067*
C310.7049 (6)0.2897 (15)0.4349 (9)0.084 (4)0.60 (2)
H31A0.71680.36290.41690.126*0.60 (2)
H31B0.72990.25500.47630.126*0.60 (2)
H31C0.67890.31740.44780.126*0.60 (2)
C320.6894 (5)0.1867 (13)0.3083 (6)0.056 (3)0.60 (2)
H32A0.70170.26830.29920.084*0.60 (2)
H32B0.65770.17400.27370.084*0.60 (2)
H32C0.70940.11670.30470.084*0.60 (2)
C31'0.6860 (5)0.3255 (11)0.4007 (12)0.055 (5)0.40 (2)
H31D0.70250.38030.37890.082*0.40 (2)
H31E0.70070.33290.45180.082*0.40 (2)
H31F0.65330.35230.38520.082*0.40 (2)
C32'0.7093 (8)0.1998 (19)0.3261 (9)0.053 (5)0.40 (2)
H32D0.71710.28960.32200.080*0.40 (2)
H32E0.68710.16960.28080.080*0.40 (2)
H32F0.73770.14790.34000.080*0.40 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0232 (2)0.0180 (2)0.0188 (2)0.00098 (19)0.00989 (18)0.00027 (17)
Zn20.0236 (2)0.0188 (2)0.0191 (2)0.00050 (19)0.01015 (18)0.00067 (17)
Cl30.0274 (5)0.0398 (6)0.0327 (5)0.0016 (5)0.0057 (4)0.0034 (5)
O10.0236 (14)0.0164 (14)0.0265 (14)0.0006 (11)0.0095 (11)0.0011 (11)
O20.0236 (14)0.0262 (15)0.0252 (14)0.0023 (12)0.0104 (12)0.0083 (11)
O30.0287 (15)0.0167 (13)0.0220 (13)0.0045 (11)0.0143 (12)0.0041 (10)
O40.070 (3)0.049 (2)0.060 (2)0.018 (2)0.022 (2)0.0024 (19)
O50.034 (2)0.174 (5)0.064 (3)0.005 (3)0.0168 (19)0.042 (3)
O60.044 (2)0.063 (3)0.065 (2)0.0124 (18)0.0112 (18)0.0204 (19)
O70.041 (2)0.085 (3)0.0386 (19)0.0051 (19)0.0016 (16)0.0150 (18)
O80.148 (4)0.048 (2)0.045 (2)0.012 (3)0.012 (2)0.0124 (19)
N10.0244 (18)0.0235 (18)0.0214 (16)0.0011 (14)0.0083 (14)0.0013 (13)
N20.0283 (18)0.0236 (19)0.0238 (16)0.0044 (15)0.0141 (14)0.0020 (13)
N30.0260 (18)0.0233 (19)0.0216 (16)0.0037 (15)0.0079 (14)0.0001 (13)
N40.0251 (18)0.0249 (18)0.0237 (17)0.0037 (14)0.0123 (14)0.0042 (14)
N50.080 (3)0.049 (3)0.087 (3)0.022 (3)0.063 (3)0.023 (2)
C10.024 (2)0.033 (2)0.0184 (18)0.0023 (17)0.0112 (16)0.0079 (16)
C20.026 (2)0.032 (2)0.0217 (19)0.0006 (18)0.0121 (17)0.0037 (17)
C30.036 (3)0.043 (3)0.033 (2)0.012 (2)0.012 (2)0.003 (2)
C40.028 (2)0.064 (3)0.034 (2)0.015 (2)0.011 (2)0.006 (2)
C50.027 (2)0.057 (3)0.028 (2)0.001 (2)0.0106 (19)0.001 (2)
C60.033 (2)0.039 (3)0.023 (2)0.007 (2)0.0098 (18)0.0001 (19)
C70.031 (2)0.026 (2)0.028 (2)0.0110 (18)0.0171 (18)0.0076 (17)
C80.036 (2)0.019 (2)0.0206 (19)0.0018 (18)0.0183 (17)0.0006 (15)
C90.033 (2)0.0176 (19)0.0182 (18)0.0005 (17)0.0147 (16)0.0007 (15)
C100.039 (2)0.017 (2)0.0196 (19)0.0014 (18)0.0147 (18)0.0024 (15)
C110.044 (3)0.023 (2)0.029 (2)0.010 (2)0.018 (2)0.0056 (17)
C120.052 (3)0.019 (2)0.034 (2)0.001 (2)0.026 (2)0.0038 (18)
C130.047 (3)0.024 (2)0.029 (2)0.006 (2)0.023 (2)0.0013 (17)
C140.034 (2)0.026 (2)0.023 (2)0.0091 (19)0.0133 (17)0.0036 (17)
C150.024 (2)0.031 (2)0.025 (2)0.0039 (18)0.0075 (17)0.0062 (17)
C160.025 (2)0.033 (2)0.022 (2)0.0021 (18)0.0106 (17)0.0069 (16)
C170.031 (2)0.043 (3)0.031 (2)0.003 (2)0.0134 (19)0.0067 (19)
C180.028 (2)0.054 (3)0.034 (2)0.002 (2)0.010 (2)0.009 (2)
C190.028 (2)0.054 (3)0.035 (2)0.012 (2)0.006 (2)0.005 (2)
C200.037 (3)0.038 (3)0.028 (2)0.009 (2)0.0090 (19)0.0039 (19)
C210.029 (2)0.027 (2)0.026 (2)0.0064 (18)0.0163 (18)0.0072 (17)
C220.031 (2)0.020 (2)0.026 (2)0.0016 (17)0.0168 (17)0.0017 (16)
C230.034 (2)0.017 (2)0.0239 (19)0.0004 (17)0.0187 (17)0.0009 (16)
C240.034 (2)0.024 (2)0.0229 (19)0.0008 (18)0.0150 (18)0.0003 (16)
C250.036 (2)0.028 (2)0.027 (2)0.0057 (19)0.0163 (18)0.0030 (17)
C260.045 (3)0.023 (2)0.035 (2)0.000 (2)0.028 (2)0.0049 (18)
C270.037 (2)0.023 (2)0.034 (2)0.0046 (19)0.025 (2)0.0035 (17)
C280.031 (2)0.029 (2)0.0173 (18)0.0051 (18)0.0074 (17)0.0031 (16)
C290.104 (4)0.024 (2)0.048 (3)0.011 (3)0.051 (3)0.005 (2)
C300.060 (4)0.064 (4)0.054 (3)0.027 (3)0.034 (3)0.012 (3)
C310.089 (6)0.071 (6)0.087 (6)0.005 (4)0.027 (4)0.019 (4)
C320.036 (7)0.077 (8)0.069 (7)0.008 (6)0.035 (6)0.023 (6)
C31'0.042 (9)0.045 (9)0.070 (12)0.022 (7)0.013 (8)0.018 (8)
C32'0.057 (7)0.047 (6)0.059 (6)0.004 (5)0.026 (5)0.006 (4)
Geometric parameters (Å, º) top
Zn1—O31.940 (2)C10—C111.404 (6)
Zn1—N22.019 (3)C10—C141.457 (6)
Zn1—O12.031 (2)C11—C121.380 (6)
Zn1—O22.034 (3)C11—H110.9500
Zn1—N12.054 (3)C12—C131.377 (6)
Zn1—Zn23.0134 (6)C12—H120.9500
Zn2—O3i1.940 (2)C13—H130.9500
Zn2—N32.018 (3)C14—H140.9500
Zn2—O12.025 (2)C15—C201.390 (5)
Zn2—O22.036 (3)C15—C161.408 (6)
Zn2—N42.064 (3)C16—C171.398 (6)
Cl3—O51.403 (4)C17—C181.384 (6)
Cl3—O81.405 (4)C17—H170.9500
Cl3—O71.429 (3)C18—C191.373 (7)
Cl3—O61.462 (4)C18—H180.9500
O1—C91.316 (4)C19—C201.384 (6)
O2—C231.310 (4)C19—H190.9500
O3—C291.396 (5)C20—H200.9500
O3—Zn2i1.940 (2)C21—C221.455 (5)
O4—C301.204 (6)C21—H210.9500
N1—C281.293 (5)C22—C271.401 (5)
N1—C11.422 (5)C22—C231.432 (5)
N2—C71.287 (5)C23—C241.423 (5)
N2—C21.421 (5)C24—C251.413 (5)
N3—C141.285 (5)C24—C281.447 (5)
N3—C151.435 (5)C25—C261.370 (6)
N4—C211.285 (5)C25—H250.9500
N4—C161.422 (5)C26—C271.377 (6)
N5—C301.335 (6)C26—H260.9500
N5—C32'1.475 (9)C27—H270.9500
N5—C321.477 (11)C28—H280.9500
N5—C311.501 (12)C29—H29A0.9800
N5—C31'1.510 (9)C29—H29B0.9800
C1—C61.402 (5)C29—H29C0.9800
C1—C21.413 (6)C30—H300.9500
C2—C31.399 (6)C31—H31A0.9800
C3—C41.375 (6)C31—H31B0.9800
C3—H30.9500C31—H31C0.9800
C4—C51.381 (7)C32—H32A0.9800
C4—H40.9500C32—H32B0.9800
C5—C61.387 (6)C32—H32C0.9800
C5—H50.9500C31'—H31D0.9800
C6—H60.9500C31'—H31E0.9800
C7—C81.459 (5)C31'—H31F0.9800
C7—H70.9500C32'—H32D0.9800
C8—C131.415 (6)C32'—H32E0.9800
C8—C91.417 (5)C32'—H32F0.9800
C9—C101.431 (5)
O3—Zn1—N2110.85 (12)C8—C9—C10118.6 (3)
O3—Zn1—O1107.89 (10)C11—C10—C9119.2 (4)
N2—Zn1—O189.05 (12)C11—C10—C14115.1 (4)
O3—Zn1—O2106.49 (11)C9—C10—C14125.6 (4)
N2—Zn1—O2142.66 (12)C12—C11—C10121.8 (4)
O1—Zn1—O279.43 (10)C12—C11—H11119.1
O3—Zn1—N1108.52 (11)C10—C11—H11119.1
N2—Zn1—N181.23 (13)C13—C12—C11119.4 (4)
O1—Zn1—N1143.43 (11)C13—C12—H12120.3
O2—Zn1—N187.22 (11)C11—C12—H12120.3
O3—Zn1—Zn297.31 (8)C12—C13—C8121.6 (4)
N2—Zn1—Zn2129.80 (9)C12—C13—H13119.2
O1—Zn1—Zn241.93 (7)C8—C13—H13119.2
O2—Zn1—Zn242.26 (7)N3—C14—C10125.2 (4)
N1—Zn1—Zn2128.55 (9)N3—C14—H14117.4
O3i—Zn2—N3112.30 (11)C10—C14—H14117.4
O3i—Zn2—O1106.91 (10)C20—C15—C16120.2 (4)
N3—Zn2—O189.22 (12)C20—C15—N3124.6 (4)
O3i—Zn2—O2106.50 (11)C16—C15—N3115.2 (3)
N3—Zn2—O2141.19 (11)C17—C16—C15119.3 (4)
O1—Zn2—O279.53 (10)C17—C16—N4124.6 (4)
O3i—Zn2—N4109.14 (11)C15—C16—N4116.1 (3)
N3—Zn2—N480.73 (13)C18—C17—C16119.6 (4)
O1—Zn2—N4143.75 (11)C18—C17—H17120.2
O2—Zn2—N486.77 (11)C16—C17—H17120.2
O3i—Zn2—Zn196.64 (8)C19—C18—C17120.6 (4)
N3—Zn2—Zn1129.79 (9)C19—C18—H18119.7
O1—Zn2—Zn142.11 (7)C17—C18—H18119.7
O2—Zn2—Zn142.20 (7)C18—C19—C20121.0 (4)
N4—Zn2—Zn1128.13 (9)C18—C19—H19119.5
O5—Cl3—O8110.8 (3)C20—C19—H19119.5
O5—Cl3—O7110.0 (2)C19—C20—C15119.2 (4)
O8—Cl3—O7108.8 (2)C19—C20—H20120.4
O5—Cl3—O6109.4 (2)C15—C20—H20120.4
O8—Cl3—O6107.4 (2)N4—C21—C22125.9 (4)
O7—Cl3—O6110.5 (2)N4—C21—H21117.1
C9—O1—Zn2130.6 (2)C22—C21—H21117.1
C9—O1—Zn1130.6 (2)C27—C22—C23119.2 (4)
Zn2—O1—Zn195.96 (11)C27—C22—C21116.6 (3)
C23—O2—Zn1132.1 (2)C23—C22—C21124.0 (3)
C23—O2—Zn2132.3 (2)O2—C23—C24120.8 (3)
Zn1—O2—Zn295.54 (10)O2—C23—C22121.0 (3)
C29—O3—Zn2i117.7 (2)C24—C23—C22118.2 (3)
C29—O3—Zn1116.9 (2)C25—C24—C23118.8 (4)
Zn2i—O3—Zn1125.25 (13)C25—C24—C28116.2 (4)
C28—N1—C1123.4 (3)C23—C24—C28124.9 (3)
C28—N1—Zn1127.4 (3)C26—C25—C24121.9 (4)
C1—N1—Zn1109.2 (2)C26—C25—H25119.1
C7—N2—C2122.4 (3)C24—C25—H25119.1
C7—N2—Zn1127.3 (3)C25—C26—C27119.4 (4)
C2—N2—Zn1110.1 (2)C25—C26—H26120.3
C14—N3—C15122.1 (3)C27—C26—H26120.3
C14—N3—Zn2128.0 (3)C26—C27—C22121.6 (4)
C15—N3—Zn2109.4 (2)C26—C27—H27119.2
C21—N4—C16123.9 (3)C22—C27—H27119.2
C21—N4—Zn2127.4 (3)N1—C28—C24125.6 (3)
C16—N4—Zn2108.6 (2)N1—C28—H28117.2
C30—N5—C32'126.5 (9)C24—C28—H28117.2
C30—N5—C32114.8 (7)O3—C29—H29A109.5
C30—N5—C31115.8 (7)O3—C29—H29B109.5
C32'—N5—C31112.8 (11)H29A—C29—H29B109.5
C32—N5—C31129.3 (10)O3—C29—H29C109.5
C30—N5—C31'130.5 (7)H29A—C29—H29C109.5
C32'—N5—C31'102.7 (11)H29B—C29—H29C109.5
C32—N5—C31'108.6 (11)O4—C30—N5125.5 (5)
C6—C1—C2119.8 (4)O4—C30—H30117.3
C6—C1—N1124.4 (4)N5—C30—H30117.3
C2—C1—N1115.9 (3)N5—C31—H31A109.5
C3—C2—C1119.3 (4)N5—C31—H31B109.5
C3—C2—N2124.9 (4)H31A—C31—H31B109.5
C1—C2—N2115.8 (3)N5—C31—H31C109.5
C4—C3—C2120.0 (4)H31A—C31—H31C109.5
C4—C3—H3120.0H31B—C31—H31C109.5
C2—C3—H3120.0N5—C32—H32A109.5
C3—C4—C5121.0 (4)N5—C32—H32B109.5
C3—C4—H4119.5H32A—C32—H32B109.5
C5—C4—H4119.5N5—C32—H32C109.5
C4—C5—C6120.5 (4)H32A—C32—H32C109.5
C4—C5—H5119.8H32B—C32—H32C109.5
C6—C5—H5119.8N5—C31'—H31D109.5
C5—C6—C1119.5 (4)N5—C31'—H31E109.5
C5—C6—H6120.3H31D—C31'—H31E109.5
C1—C6—H6120.3N5—C31'—H31F109.5
N2—C7—C8125.6 (4)H31D—C31'—H31F109.5
N2—C7—H7117.2H31E—C31'—H31F109.5
C8—C7—H7117.2N5—C32'—H32D109.5
C13—C8—C9119.2 (4)N5—C32'—H32E109.5
C13—C8—C7114.6 (4)H32D—C32'—H32E109.5
C9—C8—C7125.5 (3)N5—C32'—H32F109.5
O1—C9—C8120.5 (3)H32D—C32'—H32F109.5
O1—C9—C10121.0 (3)H32E—C32'—H32F109.5
Symmetry code: (i) x+1, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Zn4(C28H18N4O2)2(CH3O)2](ClO4)2·2C3H7NO
Mr1553.57
Crystal system, space groupMonoclinic, C2/c
Temperature (K)123
a, b, c (Å)30.9454 (4), 10.4512 (2), 20.5774 (4)
β (°) 112.019 (1)
V3)6169.65 (19)
Z4
Radiation typeMo Kα
µ (mm1)1.70
Crystal size (mm)0.20 × 0.20 × 0.13
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1997)
Tmin, Tmax0.92, 1.0
No. of measured, independent and
observed [I > 2σ(I)] reflections
32276, 6063, 4245
Rint0.074
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.123, 1.03
No. of reflections6063
No. of parameters453
No. of restraints17
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0611P)2 + 14.7497P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.86, 0.47

Computer programs: COLLECT (Nonius, 2004), DENZO-SMN (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), CIFTAB (Sheldrick, 1997).

 

Acknowledgements

We acknowledge support from Monash University and the Australian Research Council

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBlessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHuang, W., Zhu, H. B. & Gou, S. H. (2006). Coord. Chem. Rev. 250, 414–423.  Web of Science CrossRef CAS Google Scholar
First citationNonius (2004). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPilkington, N. H. & Robson, R. (1970). Aust. J. Chem. 23, 2226–2236.  Google Scholar
First citationSheldrick, G. M. (1997). CIFTAB. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVigato, P. A., Tamburini, S. & Bertolo, L. (2007). Coord. Chem. Rev. 251, 1311–1492.  Web of Science CrossRef CAS Google Scholar
First citationVigato, P. A., Tamburini, S. & Fenton, D. E. (1990). Coord. Chem. Rev. 106, 25–170.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds