organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(2,4,6-Tri­methyl­benz­yl)-1,3-thia­zol-2-amine

aDepartment of Organic Chemistry, Baku State University, Baku, Azerbaijan, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 16 February 2011; accepted 19 February 2011; online 26 February 2011)

The methyl­ene C atom in the title compound, C13H16N2S, is connected to a five-membered thia­zole ring and a mesityl substituent. The rings are aligned at 75.4 (1)°. The amino substitutent inter­acts with the ring N atom of an adjacent mol­ecule by an inter­molecular N—H⋯N hydrogen bond, generating a helical chain running along the b axis.

Related literature

For background to the synthetic procedure,: see: Yadigarov et al. (2010[Yadigarov, R. R., Khalilov, A. N., Mamedov, I. G., Nagiev, F. N., Magerramov, A. M. & Allakhverdiev, M. A. (2010). Russ. J. Org. Chem. 45, 1856-1858.]).

[Scheme 1]

Experimental

Crystal data
  • C13H16N2S

  • Mr = 232.34

  • Monoclinic, P 21 /n

  • a = 5.5028 (5) Å

  • b = 30.832 (3) Å

  • c = 7.8355 (7) Å

  • β = 110.016 (1)°

  • V = 1249.08 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 100 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.933, Tmax = 0.955

  • 7129 measured reflections

  • 2749 independent reflections

  • 2486 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.120

  • S = 1.06

  • 2749 reflections

  • 156 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H11⋯N2i 0.88 (1) 2.06 (1) 2.907 (2) 163 (2)
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

A recent study reported the reaction of 1-chloro-3-(2,4,6-trimethylphenyl)-propan-2-one with primary amines. The chlorine atom in the α-chloro ketone is not replaced directly by an amino RNH– group. The intermediate product undergoes a Favorskii rearrangement that furnishes a compound having two methylene groups between the aromatic system and the amido unit (Yadigarov et al., 2010). The present study employs thiourea as the amine. One of its amino –NH2 groups is involved in the formation of the thiazolyl ring in the resulting product (Scheme I, Fig. 1). The methylene carbon is connected to the five-membered thiazolyl ring and the six-membered mesityl group. The rings are aligned at 75.4 (1) °. The amino –NH2 substitutent interacts with the ring N atom of an adjacent molecule by an N–H···N hydrogen bond generating a helical chain that runs along the b-axis of the monoclinic unit cell.

Related literature top

For background to the synthetic procedure,: see: Yadigarov et al. (2010).

Experimental top

1-Chloro-3-(2,4,6-trimethylphenyl)-propan-2-one (10 mmol) and thiourea (10 mmol) were stirred in water (100 ml) for an hour. A precipitate formed and this was collected and redissolved in hot ethanol. Slow evaporation of the solvent gave colorless crystals in 50% yield; m.p. 380–381 K.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C–H 0.93 to 0.97 Å] and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2-1.5 Ueq(C).

The amino H-atoms were located in a difference Fourier map and were refined with a distance restraint of N–H 0.88±0.01 Å; their temperature factors were refined isotropically.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of C13H16N2S at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
4-(2,4,6-Trimethylbenzyl)-1,3-thiazol-2-amine top
Crystal data top
C13H16N2SF(000) = 496
Mr = 232.34Dx = 1.235 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3598 reflections
a = 5.5028 (5) Åθ = 2.6–29.1°
b = 30.832 (3) ŵ = 0.23 mm1
c = 7.8355 (7) ÅT = 100 K
β = 110.016 (1)°Prism, colorless
V = 1249.08 (19) Å30.30 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker APEXII
diffractometer
2749 independent reflections
Radiation source: fine-focus sealed tube2486 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ϕ and ω scansθmax = 27.5°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 77
Tmin = 0.933, Tmax = 0.955k = 4024
7129 measured reflectionsl = 910
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.060P)2 + 0.6878P]
where P = (Fo2 + 2Fc2)/3
2749 reflections(Δ/σ)max = 0.001
156 parametersΔρmax = 0.38 e Å3
2 restraintsΔρmin = 0.24 e Å3
Crystal data top
C13H16N2SV = 1249.08 (19) Å3
Mr = 232.34Z = 4
Monoclinic, P21/nMo Kα radiation
a = 5.5028 (5) ŵ = 0.23 mm1
b = 30.832 (3) ÅT = 100 K
c = 7.8355 (7) Å0.30 × 0.20 × 0.20 mm
β = 110.016 (1)°
Data collection top
Bruker APEXII
diffractometer
2749 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2486 reflections with I > 2σ(I)
Tmin = 0.933, Tmax = 0.955Rint = 0.024
7129 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0452 restraints
wR(F2) = 0.120H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.38 e Å3
2749 reflectionsΔρmin = 0.24 e Å3
156 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.65720 (8)0.220399 (14)0.75764 (6)0.02680 (15)
N10.2450 (3)0.26387 (5)0.7802 (2)0.0283 (3)
H110.351 (3)0.2757 (6)0.8795 (19)0.030 (5)*
H120.080 (2)0.2637 (8)0.764 (3)0.038 (6)*
N20.1780 (3)0.20379 (5)0.58369 (19)0.0241 (3)
C10.3278 (3)0.23024 (5)0.7040 (2)0.0215 (3)
C20.5821 (3)0.17807 (6)0.6029 (2)0.0267 (4)
H20.70560.16040.57590.032*
C30.3239 (3)0.17382 (5)0.5263 (2)0.0244 (3)
C40.1797 (4)0.13975 (6)0.3931 (3)0.0338 (4)
H4A0.05440.15420.28620.041*
H4B0.08000.12170.45020.041*
C50.3520 (3)0.11046 (6)0.3288 (2)0.0282 (4)
C60.3814 (4)0.11748 (6)0.1605 (2)0.0301 (4)
C70.5436 (4)0.09018 (7)0.1069 (3)0.0344 (4)
H70.56330.09500.00750.041*
C80.6772 (4)0.05629 (6)0.2137 (3)0.0344 (4)
C90.6454 (4)0.04995 (6)0.3799 (3)0.0365 (4)
H90.73520.02690.45570.044*
C100.4858 (4)0.07644 (6)0.4388 (3)0.0336 (4)
C110.2363 (5)0.15279 (7)0.0330 (3)0.0473 (6)
H11A0.26940.18070.09660.071*
H11B0.05050.14650.00850.071*
H11C0.29460.15410.07190.071*
C120.8478 (4)0.02682 (8)0.1499 (3)0.0487 (6)
H12A0.93480.04380.08200.073*
H12B0.74190.00420.07110.073*
H12C0.97760.01330.25520.073*
C130.4571 (7)0.06770 (8)0.6208 (3)0.0609 (8)
H13A0.56870.04340.68020.091*
H13B0.27670.06050.60290.091*
H13C0.50740.09360.69740.091*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0157 (2)0.0299 (2)0.0334 (3)0.00014 (16)0.00646 (16)0.00426 (18)
N10.0173 (7)0.0329 (8)0.0320 (8)0.0012 (6)0.0049 (6)0.0077 (7)
N20.0193 (7)0.0246 (7)0.0269 (7)0.0006 (6)0.0061 (5)0.0005 (6)
C10.0171 (7)0.0248 (8)0.0214 (7)0.0014 (6)0.0051 (6)0.0038 (6)
C20.0229 (8)0.0246 (8)0.0342 (9)0.0014 (7)0.0118 (7)0.0012 (7)
C30.0241 (8)0.0230 (8)0.0267 (8)0.0000 (7)0.0096 (6)0.0010 (7)
C40.0296 (9)0.0303 (9)0.0407 (10)0.0038 (8)0.0110 (8)0.0094 (8)
C50.0298 (9)0.0229 (8)0.0295 (9)0.0032 (7)0.0072 (7)0.0051 (7)
C60.0343 (9)0.0249 (9)0.0255 (9)0.0034 (7)0.0031 (7)0.0002 (7)
C70.0414 (10)0.0374 (11)0.0234 (9)0.0047 (9)0.0098 (8)0.0049 (8)
C80.0328 (10)0.0319 (10)0.0339 (10)0.0014 (8)0.0055 (8)0.0129 (8)
C90.0458 (11)0.0245 (9)0.0292 (9)0.0056 (8)0.0000 (8)0.0014 (8)
C100.0489 (11)0.0239 (9)0.0260 (9)0.0024 (8)0.0102 (8)0.0025 (7)
C110.0621 (14)0.0328 (11)0.0353 (11)0.0052 (10)0.0016 (10)0.0071 (9)
C120.0402 (12)0.0481 (13)0.0552 (14)0.0031 (10)0.0127 (10)0.0213 (11)
C130.118 (2)0.0327 (12)0.0400 (13)0.0024 (13)0.0379 (15)0.0050 (10)
Geometric parameters (Å, º) top
S1—C21.7323 (18)C7—C81.383 (3)
S1—C11.7415 (16)C7—H70.9500
N1—C11.351 (2)C8—C91.386 (3)
N1—H110.88 (1)C8—C121.509 (3)
N1—H120.87 (1)C9—C101.389 (3)
N2—C11.304 (2)C9—H90.9500
N2—C31.396 (2)C10—C131.512 (3)
C2—C31.346 (2)C11—H11A0.9800
C2—H20.9500C11—H11B0.9800
C3—C41.502 (2)C11—H11C0.9800
C4—C51.515 (2)C12—H12A0.9800
C4—H4A0.9900C12—H12B0.9800
C4—H4B0.9900C12—H12C0.9800
C5—C101.397 (3)C13—H13A0.9800
C5—C61.399 (3)C13—H13B0.9800
C6—C71.393 (3)C13—H13C0.9800
C6—C111.508 (3)
C2—S1—C189.03 (8)C6—C7—H7118.8
C1—N1—H11119.3 (14)C7—C8—C9117.63 (18)
C1—N1—H12115.1 (16)C7—C8—C12121.1 (2)
H11—N1—H12118 (2)C9—C8—C12121.3 (2)
C1—N2—C3110.84 (14)C8—C9—C10121.79 (18)
N2—C1—N1125.03 (15)C8—C9—H9119.1
N2—C1—S1114.43 (12)C10—C9—H9119.1
N1—C1—S1120.50 (13)C9—C10—C5119.78 (17)
C3—C2—S1110.36 (13)C9—C10—C13119.37 (19)
C3—C2—H2124.8C5—C10—C13120.84 (19)
S1—C2—H2124.8C6—C11—H11A109.5
C2—C3—N2115.33 (15)C6—C11—H11B109.5
C2—C3—C4127.16 (16)H11A—C11—H11B109.5
N2—C3—C4117.47 (15)C6—C11—H11C109.5
C3—C4—C5113.94 (15)H11A—C11—H11C109.5
C3—C4—H4A108.8H11B—C11—H11C109.5
C5—C4—H4A108.8C8—C12—H12A109.5
C3—C4—H4B108.8C8—C12—H12B109.5
C5—C4—H4B108.8H12A—C12—H12B109.5
H4A—C4—H4B107.7C8—C12—H12C109.5
C10—C5—C6119.39 (17)H12A—C12—H12C109.5
C10—C5—C4120.04 (17)H12B—C12—H12C109.5
C6—C5—C4120.56 (17)C10—C13—H13A109.5
C5—C6—C7118.95 (17)C10—C13—H13B109.5
C5—C6—C11122.00 (18)H13A—C13—H13B109.5
C7—C6—C11119.01 (18)C10—C13—H13C109.5
C8—C7—C6122.45 (18)H13A—C13—H13C109.5
C8—C7—H7118.8H13B—C13—H13C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11···N2i0.88 (1)2.06 (1)2.907 (2)163 (2)
Symmetry code: (i) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC13H16N2S
Mr232.34
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)5.5028 (5), 30.832 (3), 7.8355 (7)
β (°) 110.016 (1)
V3)1249.08 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.933, 0.955
No. of measured, independent and
observed [I > 2σ(I)] reflections
7129, 2749, 2486
Rint0.024
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.120, 1.06
No. of reflections2749
No. of parameters156
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.38, 0.24

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11···N2i0.88 (1)2.06 (1)2.907 (2)163 (2)
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

We thank Baku State University and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYadigarov, R. R., Khalilov, A. N., Mamedov, I. G., Nagiev, F. N., Magerramov, A. M. & Allakhverdiev, M. A. (2010). Russ. J. Org. Chem. 45, 1856–1858.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds