organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Morpholinium 4-amino-5-meth­­oxy-2-methyl­benzensulfonate

aCollege of Chemical Engineering and Material Sciences, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
*Correspondence e-mail: mcl1mcl2@sina.com

(Received 10 January 2011; accepted 29 January 2011; online 12 February 2011)

In the crystal structure of the title compound, C4H10NO+·C8H10NO4S, the components are linked by N—H⋯O hydrogen bonds, forming a centrosymmetric 2:2 aggregate. The aggregates are further connected by N—H⋯O hydrogen bonds between the anions, forming a double-tape structure along the a axis.

Related literature

For related structures, see: Barbour et al. (1996[Barbour, L. J., Damon, A. K., Orr, G. W. & Atwood, J. L. (1996). Supramol. Chem. 7, 209-211.]); Brito et al. (2004[Brito, I., Vargas, D., Cardenas, A., Lopez-Rodriguez, M. & Wittke, O. (2004). J. Chilean Chem. Soc. 49, 1-3.]); Yin et al. (2006[Yin, C.-X., Huo, F.-J. & Yang, P. (2006). Acta Cryst. E62, o2084-o2085.]).

[Scheme 1]

Experimental

Crystal data
  • C4H10NO+·C8H10NO4S

  • Mr = 304.37

  • Monoclinic, P 21 /c

  • a = 9.2141 (5) Å

  • b = 14.8227 (9) Å

  • c = 10.4740 (7) Å

  • β = 91.120 (2)°

  • V = 1430.24 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 293 K

  • 0.34 × 0.25 × 0.24 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.910, Tmax = 0.931

  • 13039 measured reflections

  • 3105 independent reflections

  • 2962 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.117

  • S = 1.12

  • 3105 reflections

  • 191 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.52 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2i 0.90 1.92 2.795 (3) 162
N1—H1B⋯O2 0.90 2.56 3.126 (2) 121
N1—H1B⋯O3 0.90 1.89 2.790 (3) 175
N2—H2A⋯O1ii 0.86 (2) 2.23 (2) 3.054 (3) 159.1 (2)
N2—H2B⋯O5iii 0.85 (2) 2.25 (2) 3.077 (4) 161.5 (2)
Symmetry codes: (i) -x+2, -y, -z+1; (ii) x-1, y, z; (iii) x-1, y, z+1.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Several supramolecular structures of morpholinium sulfonate have been reported previously (Barbour et al., 1996; Yin et al., 2006; Brito et al., 2004). As an extension of research, we report here the structure of the title compound, (I).

As shown in Figs. 1 and 2, the 4-amino-5-methoxy-2-methylbenzensulfonate anion is linked to the morpholinium cation by N1—H1B···O3, N1—H1B···O2 and N1—H1A···O2i hydrogen bonds (Table 1). Bond lengths of morpholine ring are very similar to those observed previously (Barbour et al., 1996; Yin et al., 2006; Brito et al., 2004). N2—H2A···O1ii and N2—H2B···O5iii hydrogen bonds (Table 1) also play important roles in stabilizing the crystal.

Related literature top

For related structures, see: Barbour et al. (1996); Brito et al. (2004); Yin et al. (2006).

Experimental top

4-Amino-5-methoxy-2-methylbenzensulfonic acid (2.2 g) and morpholine (0.9 g), in a molar ratio of 1:1, were mixed and dissolved in sufficient ethanol by heating to 373 K, at which point a clear solution resulted. The system was then cooled slowly to room temperature. Crystals (2.5 g) were formed, collected and washed with ethanol.

Refinement top

H atoms attached to atom N2 were located in a difference Fourier map, and were refined freely. H atoms attached to atom N1 were treated as riding (N—H = 0.90 Å), with Uiso(H) = 1.2Ueq(N). Other H atoms were placed in calculated positions (C—H = 0.93–0.97 Å), with Uiso(H) = 1.2 or 1.5Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme and 50% probability displacement ellipsoids for non-H atoms. Hydrogen bond is illustrated as dashed lines.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed down the a axis. Hydrogen bonds are drawn as dashed lines.
Morpholinium 4-amino-5-methoxy-2-methylbenzensulfonate top
Crystal data top
C4H10NO+·C8H10NO4SF(000) = 648.0
Mr = 304.37Dx = 1.413 Mg m3
Monoclinic, P21/cMelting point: 467 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 9.2141 (5) ÅCell parameters from 3615 reflections
b = 14.8227 (9) Åθ = 2.3–25.3°
c = 10.4740 (7) ŵ = 0.25 mm1
β = 91.120 (2)°T = 293 K
V = 1430.24 (15) Å3Block, colorless
Z = 40.34 × 0.25 × 0.24 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
3105 independent reflections
Radiation source: fine-focus sealed tube2962 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ϕ and ω scansθmax = 27.0°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1111
Tmin = 0.910, Tmax = 0.931k = 1818
13039 measured reflectionsl = 1313
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.117 w = 1/[σ2(Fo2) + (0.0661P)2 + 0.3546P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max < 0.001
3105 reflectionsΔρmax = 0.27 e Å3
191 parametersΔρmin = 0.52 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.083 (5)
Crystal data top
C4H10NO+·C8H10NO4SV = 1430.24 (15) Å3
Mr = 304.37Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.2141 (5) ŵ = 0.25 mm1
b = 14.8227 (9) ÅT = 293 K
c = 10.4740 (7) Å0.34 × 0.25 × 0.24 mm
β = 91.120 (2)°
Data collection top
Bruker SMART APEX CCD
diffractometer
3105 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2962 reflections with I > 2σ(I)
Tmin = 0.910, Tmax = 0.931Rint = 0.034
13039 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.12Δρmax = 0.27 e Å3
3105 reflectionsΔρmin = 0.52 e Å3
191 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
H2A0.152 (2)0.1046 (13)0.8007 (19)0.044 (5)*
H2B0.219 (2)0.1123 (13)0.925 (2)0.052 (6)*
C10.48589 (15)0.11584 (9)0.87597 (13)0.0312 (3)
C20.62334 (14)0.11986 (9)0.82610 (13)0.0316 (3)
H20.70390.12360.88080.038*
C30.64240 (14)0.11834 (8)0.69411 (13)0.0290 (3)
C40.52301 (15)0.11504 (9)0.61017 (13)0.0316 (3)
C50.38583 (15)0.10920 (10)0.66357 (14)0.0343 (3)
H50.30520.10600.60900.041*
C60.36395 (14)0.10799 (9)0.79442 (14)0.0307 (3)
C70.53473 (19)0.11758 (12)0.46690 (14)0.0450 (4)
H7A0.44650.09510.42840.067*
H7B0.61470.08060.44140.067*
H7C0.55050.17860.43970.067*
C80.57504 (19)0.12216 (13)1.09045 (15)0.0467 (4)
H8C0.54050.12301.17630.070*
H8D0.62940.17611.07480.070*
H8E0.63630.07051.07900.070*
C90.91130 (17)0.12103 (11)0.23520 (16)0.0427 (4)
H9A0.86460.17900.22220.051*
H9B0.83630.07580.24530.051*
C101.12875 (18)0.18648 (12)0.33325 (16)0.0462 (4)
H10A1.19280.18490.40780.055*
H10B1.09310.24770.32280.055*
C111.21090 (17)0.15881 (13)0.21691 (16)0.0471 (4)
H11A1.29140.19990.20470.056*
H11B1.25020.09870.22930.056*
C121.0018 (2)0.09834 (14)0.12131 (16)0.0526 (4)
H12A1.04000.03770.13100.063*
H12B0.94080.09960.04480.063*
O10.91647 (12)0.12197 (9)0.75110 (12)0.0501 (3)
O20.83977 (12)0.02929 (7)0.57210 (11)0.0449 (3)
O30.83980 (11)0.19031 (7)0.55105 (10)0.0416 (3)
O51.11893 (13)0.15976 (10)0.10715 (11)0.0533 (3)
O40.45499 (12)0.11751 (9)1.00344 (10)0.0447 (3)
N11.00509 (15)0.12414 (9)0.35140 (12)0.0383 (3)
H1A1.03890.06850.36900.046*
H1B0.95270.14270.41810.046*
N20.22873 (14)0.09542 (10)0.84692 (15)0.0416 (3)
S10.82261 (3)0.11518 (2)0.63924 (3)0.03170 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0266 (7)0.0409 (7)0.0263 (6)0.0017 (5)0.0007 (5)0.0003 (5)
C20.0234 (6)0.0425 (7)0.0287 (6)0.0004 (5)0.0023 (5)0.0000 (5)
C30.0247 (6)0.0331 (6)0.0292 (6)0.0013 (4)0.0016 (5)0.0007 (5)
C40.0310 (7)0.0359 (7)0.0278 (6)0.0026 (5)0.0022 (5)0.0020 (5)
C50.0261 (6)0.0428 (8)0.0337 (7)0.0015 (5)0.0068 (5)0.0025 (5)
C60.0240 (6)0.0330 (6)0.0351 (7)0.0022 (5)0.0005 (5)0.0005 (5)
C70.0442 (9)0.0628 (10)0.0279 (7)0.0011 (7)0.0031 (6)0.0029 (6)
C80.0391 (8)0.0722 (11)0.0285 (7)0.0002 (7)0.0041 (6)0.0019 (7)
C90.0326 (8)0.0515 (9)0.0441 (9)0.0013 (6)0.0020 (6)0.0035 (6)
C100.0465 (9)0.0476 (9)0.0444 (8)0.0033 (7)0.0013 (7)0.0057 (7)
C110.0357 (7)0.0563 (10)0.0495 (9)0.0041 (7)0.0074 (7)0.0044 (7)
C120.0480 (10)0.0733 (12)0.0366 (8)0.0010 (8)0.0003 (7)0.0092 (8)
O10.0255 (5)0.0828 (9)0.0420 (6)0.0007 (5)0.0006 (5)0.0016 (5)
O20.0445 (6)0.0391 (6)0.0515 (6)0.0111 (4)0.0101 (5)0.0029 (5)
O30.0421 (6)0.0389 (6)0.0442 (6)0.0001 (4)0.0136 (5)0.0033 (4)
O50.0477 (7)0.0754 (9)0.0371 (6)0.0013 (6)0.0099 (5)0.0109 (6)
O40.0280 (5)0.0799 (9)0.0263 (5)0.0004 (5)0.0018 (4)0.0003 (5)
N10.0404 (7)0.0415 (7)0.0336 (6)0.0080 (5)0.0096 (5)0.0055 (5)
N20.0233 (6)0.0583 (8)0.0431 (7)0.0010 (5)0.0007 (5)0.0006 (6)
S10.0252 (2)0.0379 (2)0.0322 (2)0.00271 (11)0.00416 (14)0.00068 (12)
Geometric parameters (Å, º) top
C1—O41.3707 (17)C9—C121.507 (2)
C1—C21.3806 (19)C9—H9A0.9700
C1—C61.4029 (19)C9—H9B0.9700
C2—C31.3972 (19)C10—N11.482 (2)
C2—H20.9300C10—C111.504 (2)
C3—C41.3955 (19)C10—H10A0.9700
C3—S11.7683 (13)C10—H10B0.9700
C4—C51.395 (2)C11—O51.415 (2)
C4—C71.507 (2)C11—H11A0.9700
C5—C61.389 (2)C11—H11B0.9700
C5—H50.9300C12—O51.422 (2)
C6—N21.3842 (18)C12—H12A0.9700
C7—H7A0.9600C12—H12B0.9700
C7—H7B0.9600O1—S11.4461 (12)
C7—H7C0.9600O2—S11.4645 (11)
C8—O41.4211 (18)O3—S11.4575 (11)
C8—H8C0.9600N1—H1A0.9000
C8—H8D0.9600N1—H1B0.9000
C8—H8E0.9600N2—H2A0.86 (2)
C9—N11.480 (2)N2—H2B0.86 (2)
O4—C1—C2125.26 (12)N1—C10—C11109.53 (13)
O4—C1—C6114.54 (12)N1—C10—H10A109.8
C2—C1—C6120.19 (12)C11—C10—H10A109.8
C1—C2—C3120.51 (12)N1—C10—H10B109.8
C1—C2—H2119.7C11—C10—H10B109.8
C3—C2—H2119.7H10A—C10—H10B108.2
C4—C3—C2120.74 (12)O5—C11—C10110.65 (13)
C4—C3—S1121.87 (11)O5—C11—H11A109.5
C2—C3—S1117.32 (10)C10—C11—H11A109.5
C5—C4—C3117.32 (12)O5—C11—H11B109.5
C5—C4—C7118.94 (13)C10—C11—H11B109.5
C3—C4—C7123.74 (13)H11A—C11—H11B108.1
C6—C5—C4123.13 (12)O5—C12—C9111.88 (15)
C6—C5—H5118.4O5—C12—H12A109.2
C4—C5—H5118.4C9—C12—H12A109.2
N2—C6—C5122.87 (13)O5—C12—H12B109.2
N2—C6—C1119.06 (13)C9—C12—H12B109.2
C5—C6—C1118.01 (13)H12A—C12—H12B107.9
C4—C7—H7A109.5C11—O5—C12110.65 (12)
C4—C7—H7B109.5C1—O4—C8116.84 (12)
H7A—C7—H7B109.5C9—N1—C10110.61 (12)
C4—C7—H7C109.5C9—N1—H1A109.5
H7A—C7—H7C109.5C10—N1—H1A109.5
H7B—C7—H7C109.5C9—N1—H1B109.5
O4—C8—H8C109.5C10—N1—H1B109.5
O4—C8—H8D109.5H1A—N1—H1B108.1
H8C—C8—H8D109.5C6—N2—H2A119.5 (13)
O4—C8—H8E109.5C6—N2—H2B116.8 (15)
H8C—C8—H8E109.5H2A—N2—H2B112.7 (19)
H8D—C8—H8E109.5O1—S1—O3112.93 (7)
N1—C9—C12109.57 (13)O1—S1—O2112.40 (7)
N1—C9—H9A109.8O3—S1—O2110.23 (7)
C12—C9—H9A109.8O1—S1—C3106.58 (7)
N1—C9—H9B109.8O3—S1—C3107.47 (6)
C12—C9—H9B109.8O2—S1—C3106.86 (6)
H9A—C9—H9B108.2
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.901.922.795 (3)162
N1—H1B···O20.902.563.126 (2)121
N1—H1B···O30.901.892.790 (3)175
N2—H2A···O1ii0.86 (2)2.23 (2)3.054 (3)159.1 (2)
N2—H2B···O5iii0.85 (2)2.25 (2)3.077 (4)161.5 (2)
Symmetry codes: (i) x+2, y, z+1; (ii) x1, y, z; (iii) x1, y, z+1.

Experimental details

Crystal data
Chemical formulaC4H10NO+·C8H10NO4S
Mr304.37
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)9.2141 (5), 14.8227 (9), 10.4740 (7)
β (°) 91.120 (2)
V3)1430.24 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.34 × 0.25 × 0.24
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.910, 0.931
No. of measured, independent and
observed [I > 2σ(I)] reflections
13039, 3105, 2962
Rint0.034
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.117, 1.12
No. of reflections3105
No. of parameters191
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.52

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.901.922.795 (3)162
N1—H1B···O20.902.563.126 (2)121
N1—H1B···O30.901.892.790 (3)175
N2—H2A···O1ii0.86 (2)2.23 (2)3.054 (3)159.1 (2)
N2—H2B···O5iii0.85 (2)2.25 (2)3.077 (4)161.5 (2)
Symmetry codes: (i) x+2, y, z+1; (ii) x1, y, z; (iii) x1, y, z+1.
 

References

First citationBarbour, L. J., Damon, A. K., Orr, G. W. & Atwood, J. L. (1996). Supramol. Chem. 7, 209–211.  CSD CrossRef CAS Web of Science Google Scholar
First citationBrito, I., Vargas, D., Cardenas, A., Lopez-Rodriguez, M. & Wittke, O. (2004). J. Chilean Chem. Soc. 49, 1–3.  CrossRef Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYin, C.-X., Huo, F.-J. & Yang, P. (2006). Acta Cryst. E62, o2084–o2085.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds