organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[4-(Methyl­sulfon­yl)phen­yl]aceto­nitrile

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Chemistry, Mangalore University, Mangalagangotri, Karnataka State 574 199, India
*Correspondence e-mail: hkfun@usm.my

(Received 26 January 2011; accepted 30 January 2011; online 5 February 2011)

In the title compound, C9H9NO2S, the benzene ring and the acetonitrile group are approximately coplanar, with a C—C—C—C torsion angle of 1.1 (3)° between them. In the crystal, mol­ecules are linked via inter­molecular C—H⋯O hydrogen bonds into layers parallel to (001).

Related literature

For general background to and the biological activity of COX-2 inhibitors, see: Orjales et al. (2008[Orjales, A., Mosquera, R., Lòpez, B., Olivera, R., Labeaga, L. & Núñez, M. T. (2008). Bioorg. Med. Chem. 16, 2183-2199.]); Zarghi et al. (2008[Zarghi, A., Tahghighi, A., Soleimani, Z., Daraie, B., Dadrass, O. G. & Hedayati, M. (2008). Sci. Pharm. 76, 361-376.]); Shah et al. (2010[Shah, U. A., Deokar, H. S., Kadam, S. S. & Kulkarni, V. M. (2010). Mol. Divers. 14, 559-568.]); Arico et al. (2002[Arico, S., Pattirgre, S., Bauvy, C., Gane, P., Barbat, A., Codogno, P. & Ogier-Denis, E. (2002). J. Biol. Chem. 227, 27613-27621.]); Davies et al. (2002[Davies, G., Martin, L. A., Sacks, N. & Dowsett, M. (2002). Ann. Oncol. 13, 669-678.]); Sawaoka et al. (1998[Sawaoka, H., Kawano, S., Tsuji, S., Tsujii, M. & Gunawan, E. S. (1998). Am. J. Physiol. 274, 1061-1067.]); Liu et al. (2000[Liu, H. X., Kirschenbaum, A., Yao, S., Lee, R., Holland, J. F. & Levine, A. C. (2000). J. Urol. 164, 820-825.]); Pasinetti (2001[Pasinetti, G. M. (2001). Arch. Gerontol. Geriatr. 33, 13-28.]); Norman et al. (1995[Norman, B. H., Lee, L. F., Masferrer, J. L. & Talley, J. J. (1995). US Patent No. 5380738]). For a related structure, see: Charlier et al. (2004[Charlier, C., Norberg, B., Goossens, L., Hénichart, J.-P. & Durant, F. (2004). Acta Cryst. C60, o648-o652.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C9H9NO2S

  • Mr = 195.23

  • Triclinic, [P \overline 1]

  • a = 5.5599 (2) Å

  • b = 8.0942 (3) Å

  • c = 10.9006 (4) Å

  • α = 81.162 (2)°

  • β = 85.347 (2)°

  • γ = 74.458 (2)°

  • V = 466.60 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 296 K

  • 0.51 × 0.28 × 0.14 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.810, Tmax = 0.957

  • 5970 measured reflections

  • 1826 independent reflections

  • 1673 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.110

  • S = 1.09

  • 1826 reflections

  • 119 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5A⋯O1i 0.93 2.47 3.384 (2) 169
C9—H9B⋯O2ii 0.96 2.39 3.343 (3) 175
Symmetry codes: (i) x, y-1, z; (ii) x+1, y, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Compounds bearing the 4-methylsulfonylphenyl moiety are found to possess diverse biological properties. They are found to be highly potent and specific COX-2 inhibitors (Orjales et al., 2008; Zarghi et al., 2008; Shah et al., 2010). Recent studies have shown that selective COX-2 inhibitors can induce apoptosis in colon, stomach, prostate, and breast cancer cell lines (Arico et al., 2002; Davies et al., 2002; Sawaoka et al., 1998; Liu et al., 2000). Selective COX-2 inhibitors offer potential treatment for the prophylactic prevention of inflammatory neurodegerative disorders such as Alzheimer's disease (Pasinetti, 2001). They are also found to be anti-inflammatory agents (Norman et al., 1995). The crystal structure of a methylsulfonylphenyl derivative has been reported (Charlier et al., 2004).

The molecular structure is shown in Fig. 1. Bond lengths (Allen et al., 1987) and angles are within normal ranges. The benzene ring (C1–C6) and the acetonitrile group (C7/C8/N1) are approximately coplanar [torsion angles C1—C6—C7—C8 = 1.1 (3) and C5—C6—C7—C8 = -178.67 (16) °]. In the crystal packing (Fig. 2), the molecules are linked via intermolecular C5–H5A···O1 and C9–H9B···O2 (Table 1) hydrogen bonds into infinite two-dimensional planes parallel to (001).

Related literature top

For general background to and the biological activity of COX-2 inhibitors, see: Orjales et al. (2008); Zarghi et al. (2008); Shah et al. (2010); Arico et al. (2002); Davies et al. (2002); Sawaoka et al. (1998); Liu et al. (2000); Pasinetti (2001); Norman et al. (1995). For a related structure, see: Charlier et al. (2004). For bond-length data, see: Allen et al. (1987).

Experimental top

4-Methylthiophenylacetonitrile (0.1 mol) was taken in 3 mL of acetic anhydride and cooled to 5°C. To the reaction mixture sodium tungstate (0.02 mol) was added followed by 30% hydrogen peroxide (0.2 mol) in 1.2 mL of acetic acid and water mixture (in 2:1 ratio). The temperature of the reaction mixture was slowly brought to room temperature. The completion of reaction was monitored by TLC. The solid precipitate was filtered and washed with water until the pH became neutral. The product was dried at 65 °C for 10-12 h. The product was then recrystallized in methanol (m. p.: 120–124 °C).

Refinement top

All H atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.97 Å and Uiso(H) = 1.2 or 1.5 Ueq(C). The highest residual electron density peak is located at 0.88 Å from C3 and the deepest hole is located at 0.74 Å from S1. A rotating-group model was applied for the methyl group.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008; molecular graphics: SHELXTL (Sheldrick, 2008; software used to prepare material for publication: SHELXTL (Sheldrick, 2008 and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 30% probability displacement ellipsoids for non-H atoms and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal structure of the title compound, viewed along the c axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.
2-[4-(Methylsulfonyl)phenyl]acetonitrile top
Crystal data top
C9H9NO2SZ = 2
Mr = 195.23F(000) = 204
Triclinic, P1Dx = 1.390 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.5599 (2) ÅCell parameters from 4240 reflections
b = 8.0942 (3) Åθ = 2.6–33.0°
c = 10.9006 (4) ŵ = 0.31 mm1
α = 81.162 (2)°T = 296 K
β = 85.347 (2)°Block, colourless
γ = 74.458 (2)°0.51 × 0.28 × 0.14 mm
V = 466.60 (3) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
1826 independent reflections
Radiation source: fine-focus sealed tube1673 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ϕ and ω scansθmax = 26.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 66
Tmin = 0.810, Tmax = 0.957k = 99
5970 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.054P)2 + 0.1771P]
where P = (Fo2 + 2Fc2)/3
1826 reflections(Δ/σ)max = 0.001
119 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
C9H9NO2Sγ = 74.458 (2)°
Mr = 195.23V = 466.60 (3) Å3
Triclinic, P1Z = 2
a = 5.5599 (2) ÅMo Kα radiation
b = 8.0942 (3) ŵ = 0.31 mm1
c = 10.9006 (4) ÅT = 296 K
α = 81.162 (2)°0.51 × 0.28 × 0.14 mm
β = 85.347 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
1826 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
1673 reflections with I > 2σ(I)
Tmin = 0.810, Tmax = 0.957Rint = 0.023
5970 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 1.09Δρmax = 0.29 e Å3
1826 reflectionsΔρmin = 0.42 e Å3
119 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.64766 (8)0.30347 (6)0.36428 (4)0.04502 (19)
O10.6714 (4)0.45775 (18)0.28743 (16)0.0728 (5)
O20.4011 (3)0.2889 (2)0.40261 (19)0.0773 (5)
N11.5750 (4)0.2897 (2)0.02043 (19)0.0638 (5)
C11.1353 (3)0.0135 (2)0.15700 (17)0.0427 (4)
H1A1.27990.01140.10810.051*
C21.0162 (3)0.1282 (2)0.21644 (17)0.0429 (4)
H2A1.08010.22460.20800.051*
C30.8008 (3)0.1237 (2)0.28841 (15)0.0365 (4)
C40.7055 (3)0.0194 (2)0.30170 (17)0.0439 (4)
H4A0.56070.02120.35050.053*
C50.8260 (3)0.1598 (2)0.24231 (18)0.0445 (4)
H5A0.76200.25610.25120.053*
C61.0422 (3)0.1580 (2)0.16938 (15)0.0370 (4)
C71.1679 (4)0.3160 (2)0.10645 (18)0.0464 (4)
H7A1.20730.41670.16940.056*
H7B1.05110.33430.05170.056*
C81.3966 (4)0.3021 (2)0.03441 (18)0.0468 (4)
C90.8180 (4)0.2777 (3)0.4977 (2)0.0586 (5)
H9A0.74820.37320.54330.088*
H9B0.98910.27440.47380.088*
H9C0.81000.17160.54900.088*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0405 (3)0.0414 (3)0.0506 (3)0.00199 (19)0.00442 (19)0.0129 (2)
O10.1054 (14)0.0367 (8)0.0691 (10)0.0059 (8)0.0101 (9)0.0042 (7)
O20.0381 (8)0.0876 (12)0.1116 (14)0.0088 (7)0.0091 (8)0.0496 (11)
N10.0653 (12)0.0591 (11)0.0703 (12)0.0208 (9)0.0182 (10)0.0217 (9)
C10.0428 (9)0.0427 (10)0.0458 (10)0.0169 (7)0.0069 (7)0.0099 (7)
C20.0466 (10)0.0382 (9)0.0479 (10)0.0185 (7)0.0028 (8)0.0079 (7)
C30.0367 (8)0.0361 (8)0.0354 (8)0.0072 (7)0.0024 (6)0.0042 (6)
C40.0390 (9)0.0468 (10)0.0474 (10)0.0153 (8)0.0042 (7)0.0070 (8)
C50.0471 (10)0.0393 (9)0.0519 (10)0.0200 (8)0.0002 (8)0.0062 (8)
C60.0395 (9)0.0366 (8)0.0351 (8)0.0094 (7)0.0051 (7)0.0050 (7)
C70.0500 (10)0.0394 (9)0.0516 (11)0.0119 (8)0.0004 (8)0.0123 (8)
C80.0567 (12)0.0381 (9)0.0463 (10)0.0094 (8)0.0016 (9)0.0138 (8)
C90.0550 (12)0.0689 (14)0.0505 (11)0.0037 (10)0.0073 (9)0.0231 (10)
Geometric parameters (Å, º) top
S1—O11.4239 (16)C4—C51.381 (3)
S1—O21.4306 (16)C4—H4A0.9300
S1—C91.755 (2)C5—C61.388 (2)
S1—C31.7657 (17)C5—H5A0.9300
N1—C81.136 (3)C6—C71.519 (2)
C1—C61.385 (2)C7—C81.461 (3)
C1—C21.387 (2)C7—H7A0.9700
C1—H1A0.9300C7—H7B0.9700
C2—C31.383 (2)C9—H9A0.9600
C2—H2A0.9300C9—H9B0.9600
C3—C41.382 (3)C9—H9C0.9600
O1—S1—O2117.73 (12)C4—C5—H5A119.8
O1—S1—C9108.35 (11)C6—C5—H5A119.8
O2—S1—C9108.32 (12)C1—C6—C5119.12 (16)
O1—S1—C3108.95 (9)C1—C6—C7122.56 (16)
O2—S1—C3108.26 (9)C5—C6—C7118.32 (15)
C9—S1—C3104.42 (9)C8—C7—C6113.81 (15)
C6—C1—C2120.95 (16)C8—C7—H7A108.8
C6—C1—H1A119.5C6—C7—H7A108.8
C2—C1—H1A119.5C8—C7—H7B108.8
C3—C2—C1118.95 (16)C6—C7—H7B108.8
C3—C2—H2A120.5H7A—C7—H7B107.7
C1—C2—H2A120.5N1—C8—C7179.0 (2)
C4—C3—C2120.80 (16)S1—C9—H9A109.5
C4—C3—S1119.91 (13)S1—C9—H9B109.5
C2—C3—S1119.28 (13)H9A—C9—H9B109.5
C5—C4—C3119.72 (16)S1—C9—H9C109.5
C5—C4—H4A120.1H9A—C9—H9C109.5
C3—C4—H4A120.1H9B—C9—H9C109.5
C4—C5—C6120.45 (16)
C6—C1—C2—C30.3 (3)C2—C3—C4—C50.1 (3)
C1—C2—C3—C40.3 (3)S1—C3—C4—C5179.93 (13)
C1—C2—C3—S1179.94 (13)C3—C4—C5—C60.0 (3)
O1—S1—C3—C4145.12 (16)C2—C1—C6—C50.1 (3)
O2—S1—C3—C415.97 (18)C2—C1—C6—C7179.65 (16)
C9—S1—C3—C499.29 (17)C4—C5—C6—C10.0 (3)
O1—S1—C3—C235.06 (17)C4—C5—C6—C7179.80 (16)
O2—S1—C3—C2164.22 (15)C1—C6—C7—C81.1 (3)
C9—S1—C3—C280.53 (17)C5—C6—C7—C8178.67 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···O1i0.932.473.384 (2)169
C9—H9B···O2ii0.962.393.343 (3)175
Symmetry codes: (i) x, y1, z; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC9H9NO2S
Mr195.23
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)5.5599 (2), 8.0942 (3), 10.9006 (4)
α, β, γ (°)81.162 (2), 85.347 (2), 74.458 (2)
V3)466.60 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.51 × 0.28 × 0.14
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.810, 0.957
No. of measured, independent and
observed [I > 2σ(I)] reflections
5970, 1826, 1673
Rint0.023
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.110, 1.09
No. of reflections1826
No. of parameters119
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.42

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008 and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···O1i0.932.473.384 (2)169
C9—H9B···O2ii0.962.393.343 (3)175
Symmetry codes: (i) x, y1, z; (ii) x+1, y, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: A-5525-2009.

Acknowledgements

HKF and CKQ thank Universiti Sains Malaysia for the Research University Grant (No. 1001/PFIZIK/811160).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationArico, S., Pattirgre, S., Bauvy, C., Gane, P., Barbat, A., Codogno, P. & Ogier-Denis, E. (2002). J. Biol. Chem. 227, 27613–27621.  Web of Science CrossRef Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCharlier, C., Norberg, B., Goossens, L., Hénichart, J.-P. & Durant, F. (2004). Acta Cryst. C60, o648–o652.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationDavies, G., Martin, L. A., Sacks, N. & Dowsett, M. (2002). Ann. Oncol. 13, 669–678.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLiu, H. X., Kirschenbaum, A., Yao, S., Lee, R., Holland, J. F. & Levine, A. C. (2000). J. Urol. 164, 820–825.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNorman, B. H., Lee, L. F., Masferrer, J. L. & Talley, J. J. (1995). US Patent No. 5380738  Google Scholar
First citationOrjales, A., Mosquera, R., Lòpez, B., Olivera, R., Labeaga, L. & Núñez, M. T. (2008). Bioorg. Med. Chem. 16, 2183–2199.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPasinetti, G. M. (2001). Arch. Gerontol. Geriatr. 33, 13–28.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSawaoka, H., Kawano, S., Tsuji, S., Tsujii, M. & Gunawan, E. S. (1998). Am. J. Physiol. 274, 1061–1067.  Google Scholar
First citationShah, U. A., Deokar, H. S., Kadam, S. S. & Kulkarni, V. M. (2010). Mol. Divers. 14, 559–568.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZarghi, A., Tahghighi, A., Soleimani, Z., Daraie, B., Dadrass, O. G. & Hedayati, M. (2008). Sci. Pharm. 76, 361–376.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds