metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chlorido{2-(morpholin-4-yl)-N-[1-(pyridin-2-yl)ethyl­­idene]ethanamine-κ3N,N′,N′′}copper(II) monohydrate

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: khaledi@siswa.um.edu.my

(Received 7 February 2011; accepted 9 February 2011; online 12 February 2011)

In the title compound, [CuCl2(C13H19N3O)]·H2O, the tridentate Schiff base ligand and the two Cl atoms complete a distorted square-pyramidal coordination geometry around the CuII ion in which the three N atoms and one Cl atom are located in the basal plane and the other Cl atom is at the apical position. In the crystal, O—H⋯Cl hydrogen bonds link the complex mol­ecules and the uncoordinated water mol­ecules into infinite chains along the a axis. The chains are further connected into a three-dimensional network via C—H⋯O and C—H⋯Cl inter­actions.

Related literature

For the structures of CuCl2 complexes with similar ligands, see: Saleh Salga et al. (2010[Saleh Salga, M., Khaledi, H., Mohd Ali, H. & Puteh, R. (2010). Acta Cryst. E66, m508.]); Wang et al. (2009[Wang, Q., Bi, C.-F., Wang, D.-Q. & Fan, Y.-H. (2009). Acta Cryst. E65, m439.]). For the structure of a CdCl2 complex with the same Schiff base ligand, see: Ikmal Hisham et al. (2010[Ikmal Hisham, N., Suleiman Gwaram, N., Khaledi, H. & Mohd Ali, H. (2010). Acta Cryst. E66, m1471.]). For a description of the geometry of complexes with a five-coordinate metal atom, see: Addison et al. (1984[Addison, A. W., Rao, T. N., Reedijk, J., Rijn, V. J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]).

[Scheme 1]

Experimental

Crystal data
  • [CuCl2(C13H19N3O)]·H2O

  • Mr = 385.77

  • Monoclinic, P 21 /n

  • a = 7.9194 (8) Å

  • b = 8.5793 (8) Å

  • c = 22.925 (2) Å

  • β = 91.981 (1)°

  • V = 1556.6 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.75 mm−1

  • T = 100 K

  • 0.18 × 0.16 × 0.09 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.743, Tmax = 0.858

  • 9634 measured reflections

  • 3348 independent reflections

  • 2948 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.060

  • S = 1.05

  • 3348 reflections

  • 197 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯Cl2i 0.84 (2) 2.35 (2) 3.1829 (16) 173 (2)
O2—H2B⋯Cl1 0.83 (2) 2.48 (2) 3.2841 (18) 164 (2)
C2—H2⋯O2ii 0.95 2.41 3.307 (2) 156
C3—H3⋯Cl2iii 0.95 2.82 3.619 (2) 142
C4—H4⋯O2iv 0.95 2.50 3.445 (2) 172
C7—H7A⋯Cl1v 0.98 2.68 3.6179 (19) 161
C8—H8A⋯O1vi 0.99 2.47 3.336 (2) 146
C10—H10B⋯Cl1 0.99 2.79 3.4496 (19) 124
C10—H10A⋯Cl2 0.99 2.71 3.3566 (19) 123
Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y+1, -z; (iii) -x+2, -y+2, -z; (iv) -x+1, -y+2, -z; (v) x, y+1, z; (vi) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001)[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]; software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The asymmetric unit of the title compound consists of a copper(II) complex and one molecule of water. Like the CdCl2 complex of the Schiff base, 2-morpholino-N-[1-(2-pyridyl)ethylidene]ethanamine, (Ikmal Hisham et al., 2010) the metal ion in the present structure is five-coordinated by the N,N',N"-tridentate Schiff base ligand and two Cl atoms in a distorted square-pyramidal geometry, the τ value (Addison et al.,1984) being 0.15. The Cu—Cl and Cu—N interatomic distances are comparable to the values reported in the literature (Saleh Salga et al., 2010; Wang et al., 2009). In the crystal, the adjacent metal complexes and water molecules are linked into a three-dimensional network via O—H···Cl, C—H···Cl and C—H···O interactions. In addition, intramolecular C—H···Cl hydrogen bonding is observed.

Related literature top

For the structures of CuCl2 complexes with similar ligands, see: Saleh Salga et al. (2010); Wang et al. (2009). For the structure of a CdCl2 complex with the same Schiff base ligand, see: Ikmal Hisham et al. (2010). For a description of the geometry of complexes with five-coordinate metal atom, see: Addison et al. (1984).

Experimental top

A mixture of 2-acetylpyridine (0.20 g, 1.65 mmol) and 4-(2-aminoethyl)morpholine (0.21 g, 1.65 mmol) in ethanol (20 ml) was refluxed. After 2 hr a solution of copper(II) chloride dihydrate (0.28 g, 1.65 mmol) in a minimum amount of ethanol was added and the resulting solution was refluxed for 30 min, then set aside at room temperature. The crystals of the title complex were obtained after a few days.

Refinement top

The C-bound hydrogen atoms were placed at calculated positions (C—H 0.95–0.99 Å) and were treated as riding on their parent atoms. The O-bound H atoms were placed in a difference Fourier map, and were refined with distance restraint of O—H 0.84 (2) Å. For all hydrogen atoms Uiso(H) were set to 1.2–1.5 times Ueq(carrier atom).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Displacement ellipsoid plot of the title compound at the 50% probability level. Hydrogen atoms are drawn as spheres of arbitrary radii.
Dichlorido{2-(morpholin-4-yl)-N-[1-(pyridin-2-yl)ethylidene]ethanamine- κ3N,N',N''}copper(II) monohydrate top
Crystal data top
[CuCl2(C13H19N3O)]·H2OF(000) = 796
Mr = 385.77Dx = 1.646 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4229 reflections
a = 7.9194 (8) Åθ = 2.5–28.2°
b = 8.5793 (8) ŵ = 1.75 mm1
c = 22.925 (2) ÅT = 100 K
β = 91.981 (1)°Block, green
V = 1556.6 (3) Å30.18 × 0.16 × 0.09 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3348 independent reflections
Radiation source: fine-focus sealed tube2948 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ϕ and ω scansθmax = 27.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.743, Tmax = 0.858k = 1010
9634 measured reflectionsl = 2928
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.060H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0258P)2 + 0.893P]
where P = (Fo2 + 2Fc2)/3
3348 reflections(Δ/σ)max = 0.001
197 parametersΔρmax = 0.37 e Å3
2 restraintsΔρmin = 0.34 e Å3
Crystal data top
[CuCl2(C13H19N3O)]·H2OV = 1556.6 (3) Å3
Mr = 385.77Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.9194 (8) ŵ = 1.75 mm1
b = 8.5793 (8) ÅT = 100 K
c = 22.925 (2) Å0.18 × 0.16 × 0.09 mm
β = 91.981 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
3348 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2948 reflections with I > 2σ(I)
Tmin = 0.743, Tmax = 0.858Rint = 0.023
9634 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0252 restraints
wR(F2) = 0.060H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.37 e Å3
3348 reflectionsΔρmin = 0.34 e Å3
197 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.60251 (3)0.86379 (2)0.122328 (9)0.01099 (7)
Cl10.49087 (6)0.62132 (5)0.11931 (2)0.01873 (11)
Cl20.90458 (6)0.85029 (5)0.15951 (2)0.01773 (11)
O10.32231 (17)0.82636 (16)0.30317 (6)0.0183 (3)
N10.68558 (19)0.86674 (17)0.03959 (7)0.0129 (3)
N20.60269 (19)1.09006 (17)0.10733 (7)0.0119 (3)
N30.51025 (18)0.92685 (17)0.20213 (6)0.0114 (3)
C10.7350 (2)0.7448 (2)0.00826 (8)0.0159 (4)
H10.71280.64270.02210.019*
C20.8177 (2)0.7617 (2)0.04381 (8)0.0167 (4)
H20.85130.67290.06530.020*
C30.8501 (2)0.9106 (2)0.06373 (8)0.0156 (4)
H30.90770.92540.09900.019*
C40.7975 (2)1.0386 (2)0.03157 (8)0.0147 (4)
H40.81681.14170.04490.018*
C50.7169 (2)1.0126 (2)0.01989 (8)0.0121 (4)
C60.6645 (2)1.1396 (2)0.05987 (8)0.0127 (4)
C70.6910 (2)1.3055 (2)0.04320 (8)0.0172 (4)
H7A0.63951.37370.07190.026*
H7B0.63851.32470.00450.026*
H7C0.81241.32710.04220.026*
C80.5483 (2)1.1856 (2)0.15617 (8)0.0127 (4)
H8A0.42721.21270.15100.015*
H8B0.61481.28320.15870.015*
C90.5779 (2)1.0881 (2)0.21117 (8)0.0132 (4)
H9A0.70051.08300.22100.016*
H9B0.52121.13790.24420.016*
C100.5778 (2)0.8179 (2)0.24813 (8)0.0139 (4)
H10A0.70170.83160.25220.017*
H10B0.55570.70940.23530.017*
C110.5017 (2)0.8419 (2)0.30720 (8)0.0174 (4)
H11A0.54920.76420.33520.021*
H11B0.53160.94710.32210.021*
C120.2547 (2)0.9419 (2)0.26393 (8)0.0171 (4)
H12A0.28531.04680.27890.021*
H12B0.12990.93400.26200.021*
C130.3217 (2)0.9220 (2)0.20293 (8)0.0130 (4)
H13A0.28180.82100.18670.016*
H13B0.27491.00570.17740.016*
O20.0878 (2)0.59912 (18)0.08146 (7)0.0273 (3)
H2A0.035 (3)0.659 (3)0.1032 (10)0.033*
H2B0.183 (2)0.602 (3)0.0978 (11)0.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01348 (12)0.00927 (11)0.01044 (12)0.00023 (8)0.00364 (8)0.00007 (8)
Cl10.0256 (3)0.0112 (2)0.0200 (2)0.00334 (17)0.00966 (19)0.00245 (17)
Cl20.0123 (2)0.0245 (2)0.0165 (2)0.00191 (17)0.00273 (17)0.00437 (18)
O10.0157 (7)0.0231 (7)0.0165 (7)0.0002 (5)0.0050 (5)0.0047 (6)
N10.0131 (7)0.0133 (7)0.0124 (8)0.0007 (6)0.0013 (6)0.0005 (6)
N20.0124 (7)0.0112 (7)0.0120 (8)0.0006 (6)0.0008 (6)0.0010 (6)
N30.0109 (7)0.0114 (7)0.0120 (8)0.0005 (6)0.0013 (6)0.0006 (6)
C10.0190 (10)0.0125 (9)0.0162 (10)0.0001 (7)0.0019 (8)0.0010 (7)
C20.0175 (9)0.0177 (9)0.0151 (10)0.0032 (7)0.0029 (7)0.0031 (7)
C30.0142 (9)0.0215 (10)0.0113 (9)0.0014 (7)0.0017 (7)0.0002 (7)
C40.0145 (9)0.0155 (9)0.0142 (9)0.0001 (7)0.0004 (7)0.0017 (7)
C50.0127 (9)0.0130 (8)0.0107 (9)0.0010 (7)0.0003 (7)0.0004 (7)
C60.0108 (8)0.0141 (9)0.0130 (9)0.0002 (7)0.0003 (7)0.0008 (7)
C70.0229 (10)0.0124 (9)0.0169 (10)0.0016 (7)0.0070 (8)0.0016 (7)
C80.0150 (9)0.0109 (8)0.0124 (9)0.0008 (7)0.0031 (7)0.0010 (7)
C90.0145 (9)0.0126 (9)0.0126 (9)0.0025 (7)0.0007 (7)0.0029 (7)
C100.0127 (9)0.0155 (9)0.0134 (9)0.0024 (7)0.0007 (7)0.0033 (7)
C110.0160 (9)0.0228 (10)0.0134 (9)0.0002 (8)0.0021 (7)0.0025 (8)
C120.0152 (9)0.0194 (9)0.0171 (10)0.0013 (7)0.0056 (8)0.0004 (8)
C130.0099 (8)0.0144 (9)0.0148 (9)0.0005 (7)0.0009 (7)0.0000 (7)
O20.0307 (9)0.0231 (8)0.0285 (9)0.0035 (7)0.0053 (7)0.0013 (7)
Geometric parameters (Å, º) top
Cu1—N21.9715 (15)C5—C61.491 (2)
Cu1—N12.0290 (15)C6—C71.490 (2)
Cu1—N32.0654 (15)C7—H7A0.9800
Cu1—Cl12.2604 (5)C7—H7B0.9800
Cu1—Cl22.5143 (5)C7—H7C0.9800
O1—C111.427 (2)C8—C91.524 (2)
O1—C121.430 (2)C8—H8A0.9900
N1—C11.336 (2)C8—H8B0.9900
N1—C51.356 (2)C9—H9A0.9900
N2—C61.281 (2)C9—H9B0.9900
N2—C81.464 (2)C10—C111.515 (3)
N3—C101.494 (2)C10—H10A0.9900
N3—C131.495 (2)C10—H10B0.9900
N3—C91.495 (2)C11—H11A0.9900
C1—C21.389 (3)C11—H11B0.9900
C1—H10.9500C12—C131.522 (3)
C2—C31.383 (3)C12—H12A0.9900
C2—H20.9500C12—H12B0.9900
C3—C41.395 (3)C13—H13A0.9900
C3—H30.9500C13—H13B0.9900
C4—C51.379 (3)O2—H2A0.837 (16)
C4—H40.9500O2—H2B0.831 (16)
N2—Cu1—N179.77 (6)C6—C7—H7B109.5
N2—Cu1—N384.20 (6)H7A—C7—H7B109.5
N1—Cu1—N3163.90 (6)C6—C7—H7C109.5
N2—Cu1—Cl1154.62 (5)H7A—C7—H7C109.5
N1—Cu1—Cl197.01 (4)H7B—C7—H7C109.5
N3—Cu1—Cl196.79 (4)N2—C8—C9106.53 (14)
N2—Cu1—Cl295.63 (5)N2—C8—H8A110.4
N1—Cu1—Cl288.97 (5)C9—C8—H8A110.4
N3—Cu1—Cl294.20 (4)N2—C8—H8B110.4
Cl1—Cu1—Cl2109.544 (19)C9—C8—H8B110.4
C11—O1—C12109.02 (14)H8A—C8—H8B108.6
C1—N1—C5118.92 (16)N3—C9—C8110.42 (14)
C1—N1—Cu1127.12 (12)N3—C9—H9A109.6
C5—N1—Cu1113.06 (12)C8—C9—H9A109.6
C6—N2—C8126.51 (15)N3—C9—H9B109.6
C6—N2—Cu1118.51 (13)C8—C9—H9B109.6
C8—N2—Cu1114.57 (11)H9A—C9—H9B108.1
C10—N3—C13107.88 (14)N3—C10—C11113.72 (15)
C10—N3—C9111.29 (14)N3—C10—H10A108.8
C13—N3—C9112.19 (14)C11—C10—H10A108.8
C10—N3—Cu1109.42 (11)N3—C10—H10B108.8
C13—N3—Cu1112.81 (11)C11—C10—H10B108.8
C9—N3—Cu1103.24 (10)H10A—C10—H10B107.7
N1—C1—C2122.40 (17)O1—C11—C10110.79 (15)
N1—C1—H1118.8O1—C11—H11A109.5
C2—C1—H1118.8C10—C11—H11A109.5
C3—C2—C1118.62 (17)O1—C11—H11B109.5
C3—C2—H2120.7C10—C11—H11B109.5
C1—C2—H2120.7H11A—C11—H11B108.1
C2—C3—C4119.35 (17)O1—C12—C13111.41 (15)
C2—C3—H3120.3O1—C12—H12A109.3
C4—C3—H3120.3C13—C12—H12A109.3
C5—C4—C3118.75 (17)O1—C12—H12B109.3
C5—C4—H4120.6C13—C12—H12B109.3
C3—C4—H4120.6H12A—C12—H12B108.0
N1—C5—C4121.95 (16)N3—C13—C12112.83 (15)
N1—C5—C6114.30 (15)N3—C13—H13A109.0
C4—C5—C6123.69 (16)C12—C13—H13A109.0
N2—C6—C7126.57 (17)N3—C13—H13B109.0
N2—C6—C5113.71 (16)C12—C13—H13B109.0
C7—C6—C5119.70 (16)H13A—C13—H13B107.8
C6—C7—H7A109.5H2A—O2—H2B101 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···Cl2i0.84 (2)2.35 (2)3.1829 (16)173 (2)
O2—H2B···Cl10.83 (2)2.48 (2)3.2841 (18)164 (2)
C2—H2···O2ii0.952.413.307 (2)156
C3—H3···Cl2iii0.952.823.619 (2)142
C4—H4···O2iv0.952.503.445 (2)172
C7—H7A···Cl1v0.982.683.6179 (19)161
C8—H8A···O1vi0.992.473.336 (2)146
C10—H10B···Cl10.992.793.4496 (19)124
C10—H10A···Cl20.992.713.3566 (19)123
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z; (iii) x+2, y+2, z; (iv) x+1, y+2, z; (v) x, y+1, z; (vi) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[CuCl2(C13H19N3O)]·H2O
Mr385.77
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)7.9194 (8), 8.5793 (8), 22.925 (2)
β (°) 91.981 (1)
V3)1556.6 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.75
Crystal size (mm)0.18 × 0.16 × 0.09
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.743, 0.858
No. of measured, independent and
observed [I > 2σ(I)] reflections
9634, 3348, 2948
Rint0.023
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.060, 1.05
No. of reflections3348
No. of parameters197
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.37, 0.34

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), X-SEED (Barbour, 2001), SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···Cl2i0.837 (16)2.351 (17)3.1829 (16)173 (2)
O2—H2B···Cl10.831 (16)2.476 (17)3.2841 (18)164 (2)
C2—H2···O2ii0.952.413.307 (2)156
C3—H3···Cl2iii0.952.823.619 (2)142
C4—H4···O2iv0.952.503.445 (2)172
C7—H7A···Cl1v0.982.683.6179 (19)161
C8—H8A···O1vi0.992.473.336 (2)146
C10—H10B···Cl10.992.793.4496 (19)124
C10—H10A···Cl20.992.713.3566 (19)123
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z; (iii) x+2, y+2, z; (iv) x+1, y+2, z; (v) x, y+1, z; (vi) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

The authors thank University of Malaya for funding this study (FRGS grant No. FP004/2010B).

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., Rijn, V. J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationIkmal Hisham, N., Suleiman Gwaram, N., Khaledi, H. & Mohd Ali, H. (2010). Acta Cryst. E66, m1471.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSaleh Salga, M., Khaledi, H., Mohd Ali, H. & Puteh, R. (2010). Acta Cryst. E66, m508.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Q., Bi, C.-F., Wang, D.-Q. & Fan, Y.-H. (2009). Acta Cryst. E65, m439.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds